Home | History | Annotate | Download | only in NonLinearOptimization
      1 namespace Eigen {
      2 
      3 namespace internal {
      4 
      5 template <typename Scalar>
      6 void lmpar(
      7         Matrix< Scalar, Dynamic, Dynamic > &r,
      8         const VectorXi &ipvt,
      9         const Matrix< Scalar, Dynamic, 1 >  &diag,
     10         const Matrix< Scalar, Dynamic, 1 >  &qtb,
     11         Scalar delta,
     12         Scalar &par,
     13         Matrix< Scalar, Dynamic, 1 >  &x)
     14 {
     15     using std::abs;
     16     using std::sqrt;
     17     typedef DenseIndex Index;
     18 
     19     /* Local variables */
     20     Index i, j, l;
     21     Scalar fp;
     22     Scalar parc, parl;
     23     Index iter;
     24     Scalar temp, paru;
     25     Scalar gnorm;
     26     Scalar dxnorm;
     27 
     28 
     29     /* Function Body */
     30     const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
     31     const Index n = r.cols();
     32     eigen_assert(n==diag.size());
     33     eigen_assert(n==qtb.size());
     34     eigen_assert(n==x.size());
     35 
     36     Matrix< Scalar, Dynamic, 1 >  wa1, wa2;
     37 
     38     /* compute and store in x the gauss-newton direction. if the */
     39     /* jacobian is rank-deficient, obtain a least squares solution. */
     40     Index nsing = n-1;
     41     wa1 = qtb;
     42     for (j = 0; j < n; ++j) {
     43         if (r(j,j) == 0. && nsing == n-1)
     44             nsing = j - 1;
     45         if (nsing < n-1)
     46             wa1[j] = 0.;
     47     }
     48     for (j = nsing; j>=0; --j) {
     49         wa1[j] /= r(j,j);
     50         temp = wa1[j];
     51         for (i = 0; i < j ; ++i)
     52             wa1[i] -= r(i,j) * temp;
     53     }
     54 
     55     for (j = 0; j < n; ++j)
     56         x[ipvt[j]] = wa1[j];
     57 
     58     /* initialize the iteration counter. */
     59     /* evaluate the function at the origin, and test */
     60     /* for acceptance of the gauss-newton direction. */
     61     iter = 0;
     62     wa2 = diag.cwiseProduct(x);
     63     dxnorm = wa2.blueNorm();
     64     fp = dxnorm - delta;
     65     if (fp <= Scalar(0.1) * delta) {
     66         par = 0;
     67         return;
     68     }
     69 
     70     /* if the jacobian is not rank deficient, the newton */
     71     /* step provides a lower bound, parl, for the zero of */
     72     /* the function. otherwise set this bound to zero. */
     73     parl = 0.;
     74     if (nsing >= n-1) {
     75         for (j = 0; j < n; ++j) {
     76             l = ipvt[j];
     77             wa1[j] = diag[l] * (wa2[l] / dxnorm);
     78         }
     79         // it's actually a triangularView.solveInplace(), though in a weird
     80         // way:
     81         for (j = 0; j < n; ++j) {
     82             Scalar sum = 0.;
     83             for (i = 0; i < j; ++i)
     84                 sum += r(i,j) * wa1[i];
     85             wa1[j] = (wa1[j] - sum) / r(j,j);
     86         }
     87         temp = wa1.blueNorm();
     88         parl = fp / delta / temp / temp;
     89     }
     90 
     91     /* calculate an upper bound, paru, for the zero of the function. */
     92     for (j = 0; j < n; ++j)
     93         wa1[j] = r.col(j).head(j+1).dot(qtb.head(j+1)) / diag[ipvt[j]];
     94 
     95     gnorm = wa1.stableNorm();
     96     paru = gnorm / delta;
     97     if (paru == 0.)
     98         paru = dwarf / (std::min)(delta,Scalar(0.1));
     99 
    100     /* if the input par lies outside of the interval (parl,paru), */
    101     /* set par to the closer endpoint. */
    102     par = (std::max)(par,parl);
    103     par = (std::min)(par,paru);
    104     if (par == 0.)
    105         par = gnorm / dxnorm;
    106 
    107     /* beginning of an iteration. */
    108     while (true) {
    109         ++iter;
    110 
    111         /* evaluate the function at the current value of par. */
    112         if (par == 0.)
    113             par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
    114         wa1 = sqrt(par)* diag;
    115 
    116         Matrix< Scalar, Dynamic, 1 > sdiag(n);
    117         qrsolv<Scalar>(r, ipvt, wa1, qtb, x, sdiag);
    118 
    119         wa2 = diag.cwiseProduct(x);
    120         dxnorm = wa2.blueNorm();
    121         temp = fp;
    122         fp = dxnorm - delta;
    123 
    124         /* if the function is small enough, accept the current value */
    125         /* of par. also test for the exceptional cases where parl */
    126         /* is zero or the number of iterations has reached 10. */
    127         if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
    128             break;
    129 
    130         /* compute the newton correction. */
    131         for (j = 0; j < n; ++j) {
    132             l = ipvt[j];
    133             wa1[j] = diag[l] * (wa2[l] / dxnorm);
    134         }
    135         for (j = 0; j < n; ++j) {
    136             wa1[j] /= sdiag[j];
    137             temp = wa1[j];
    138             for (i = j+1; i < n; ++i)
    139                 wa1[i] -= r(i,j) * temp;
    140         }
    141         temp = wa1.blueNorm();
    142         parc = fp / delta / temp / temp;
    143 
    144         /* depending on the sign of the function, update parl or paru. */
    145         if (fp > 0.)
    146             parl = (std::max)(parl,par);
    147         if (fp < 0.)
    148             paru = (std::min)(paru,par);
    149 
    150         /* compute an improved estimate for par. */
    151         /* Computing MAX */
    152         par = (std::max)(parl,par+parc);
    153 
    154         /* end of an iteration. */
    155     }
    156 
    157     /* termination. */
    158     if (iter == 0)
    159         par = 0.;
    160     return;
    161 }
    162 
    163 template <typename Scalar>
    164 void lmpar2(
    165         const ColPivHouseholderQR<Matrix< Scalar, Dynamic, Dynamic> > &qr,
    166         const Matrix< Scalar, Dynamic, 1 >  &diag,
    167         const Matrix< Scalar, Dynamic, 1 >  &qtb,
    168         Scalar delta,
    169         Scalar &par,
    170         Matrix< Scalar, Dynamic, 1 >  &x)
    171 
    172 {
    173     using std::sqrt;
    174     using std::abs;
    175     typedef DenseIndex Index;
    176 
    177     /* Local variables */
    178     Index j;
    179     Scalar fp;
    180     Scalar parc, parl;
    181     Index iter;
    182     Scalar temp, paru;
    183     Scalar gnorm;
    184     Scalar dxnorm;
    185 
    186 
    187     /* Function Body */
    188     const Scalar dwarf = (std::numeric_limits<Scalar>::min)();
    189     const Index n = qr.matrixQR().cols();
    190     eigen_assert(n==diag.size());
    191     eigen_assert(n==qtb.size());
    192 
    193     Matrix< Scalar, Dynamic, 1 >  wa1, wa2;
    194 
    195     /* compute and store in x the gauss-newton direction. if the */
    196     /* jacobian is rank-deficient, obtain a least squares solution. */
    197 
    198 //    const Index rank = qr.nonzeroPivots(); // exactly double(0.)
    199     const Index rank = qr.rank(); // use a threshold
    200     wa1 = qtb;
    201     wa1.tail(n-rank).setZero();
    202     qr.matrixQR().topLeftCorner(rank, rank).template triangularView<Upper>().solveInPlace(wa1.head(rank));
    203 
    204     x = qr.colsPermutation()*wa1;
    205 
    206     /* initialize the iteration counter. */
    207     /* evaluate the function at the origin, and test */
    208     /* for acceptance of the gauss-newton direction. */
    209     iter = 0;
    210     wa2 = diag.cwiseProduct(x);
    211     dxnorm = wa2.blueNorm();
    212     fp = dxnorm - delta;
    213     if (fp <= Scalar(0.1) * delta) {
    214         par = 0;
    215         return;
    216     }
    217 
    218     /* if the jacobian is not rank deficient, the newton */
    219     /* step provides a lower bound, parl, for the zero of */
    220     /* the function. otherwise set this bound to zero. */
    221     parl = 0.;
    222     if (rank==n) {
    223         wa1 = qr.colsPermutation().inverse() *  diag.cwiseProduct(wa2)/dxnorm;
    224         qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
    225         temp = wa1.blueNorm();
    226         parl = fp / delta / temp / temp;
    227     }
    228 
    229     /* calculate an upper bound, paru, for the zero of the function. */
    230     for (j = 0; j < n; ++j)
    231         wa1[j] = qr.matrixQR().col(j).head(j+1).dot(qtb.head(j+1)) / diag[qr.colsPermutation().indices()(j)];
    232 
    233     gnorm = wa1.stableNorm();
    234     paru = gnorm / delta;
    235     if (paru == 0.)
    236         paru = dwarf / (std::min)(delta,Scalar(0.1));
    237 
    238     /* if the input par lies outside of the interval (parl,paru), */
    239     /* set par to the closer endpoint. */
    240     par = (std::max)(par,parl);
    241     par = (std::min)(par,paru);
    242     if (par == 0.)
    243         par = gnorm / dxnorm;
    244 
    245     /* beginning of an iteration. */
    246     Matrix< Scalar, Dynamic, Dynamic > s = qr.matrixQR();
    247     while (true) {
    248         ++iter;
    249 
    250         /* evaluate the function at the current value of par. */
    251         if (par == 0.)
    252             par = (std::max)(dwarf,Scalar(.001) * paru); /* Computing MAX */
    253         wa1 = sqrt(par)* diag;
    254 
    255         Matrix< Scalar, Dynamic, 1 > sdiag(n);
    256         qrsolv<Scalar>(s, qr.colsPermutation().indices(), wa1, qtb, x, sdiag);
    257 
    258         wa2 = diag.cwiseProduct(x);
    259         dxnorm = wa2.blueNorm();
    260         temp = fp;
    261         fp = dxnorm - delta;
    262 
    263         /* if the function is small enough, accept the current value */
    264         /* of par. also test for the exceptional cases where parl */
    265         /* is zero or the number of iterations has reached 10. */
    266         if (abs(fp) <= Scalar(0.1) * delta || (parl == 0. && fp <= temp && temp < 0.) || iter == 10)
    267             break;
    268 
    269         /* compute the newton correction. */
    270         wa1 = qr.colsPermutation().inverse() * diag.cwiseProduct(wa2/dxnorm);
    271         // we could almost use this here, but the diagonal is outside qr, in sdiag[]
    272         // qr.matrixQR().topLeftCorner(n, n).transpose().template triangularView<Lower>().solveInPlace(wa1);
    273         for (j = 0; j < n; ++j) {
    274             wa1[j] /= sdiag[j];
    275             temp = wa1[j];
    276             for (Index i = j+1; i < n; ++i)
    277                 wa1[i] -= s(i,j) * temp;
    278         }
    279         temp = wa1.blueNorm();
    280         parc = fp / delta / temp / temp;
    281 
    282         /* depending on the sign of the function, update parl or paru. */
    283         if (fp > 0.)
    284             parl = (std::max)(parl,par);
    285         if (fp < 0.)
    286             paru = (std::min)(paru,par);
    287 
    288         /* compute an improved estimate for par. */
    289         par = (std::max)(parl,par+parc);
    290     }
    291     if (iter == 0)
    292         par = 0.;
    293     return;
    294 }
    295 
    296 } // end namespace internal
    297 
    298 } // end namespace Eigen
    299