1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog (a] gmail.com> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 11 #define EIGEN_TEST_NO_LONGDOUBLE 12 #define EIGEN_TEST_FUNC cxx11_tensor_cuda 13 #define EIGEN_USE_GPU 14 15 #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500 16 #include <cuda_fp16.h> 17 #endif 18 #include "main.h" 19 #include <unsupported/Eigen/CXX11/Tensor> 20 21 using Eigen::Tensor; 22 23 template <int Layout> 24 void test_cuda_simple_argmax() 25 { 26 Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97)); 27 Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1)); 28 Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1)); 29 in.setRandom(); 30 in *= in.constant(100.0); 31 in(0, 0, 0) = -1000.0; 32 in(71, 52, 96) = 1000.0; 33 34 std::size_t in_bytes = in.size() * sizeof(double); 35 std::size_t out_bytes = out_max.size() * sizeof(DenseIndex); 36 37 double* d_in; 38 DenseIndex* d_out_max; 39 DenseIndex* d_out_min; 40 cudaMalloc((void**)(&d_in), in_bytes); 41 cudaMalloc((void**)(&d_out_max), out_bytes); 42 cudaMalloc((void**)(&d_out_min), out_bytes); 43 44 cudaMemcpy(d_in, in.data(), in_bytes, cudaMemcpyHostToDevice); 45 46 Eigen::CudaStreamDevice stream; 47 Eigen::GpuDevice gpu_device(&stream); 48 49 Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97)); 50 Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1)); 51 Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1)); 52 53 gpu_out_max.device(gpu_device) = gpu_in.argmax(); 54 gpu_out_min.device(gpu_device) = gpu_in.argmin(); 55 56 assert(cudaMemcpyAsync(out_max.data(), d_out_max, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); 57 assert(cudaMemcpyAsync(out_min.data(), d_out_min, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); 58 assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); 59 60 VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1); 61 VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0); 62 63 cudaFree(d_in); 64 cudaFree(d_out_max); 65 cudaFree(d_out_min); 66 } 67 68 template <int DataLayout> 69 void test_cuda_argmax_dim() 70 { 71 Tensor<float, 4, DataLayout> tensor(2,3,5,7); 72 std::vector<int> dims; 73 dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); 74 75 for (int dim = 0; dim < 4; ++dim) { 76 tensor.setRandom(); 77 tensor = (tensor + tensor.constant(0.5)).log(); 78 79 array<DenseIndex, 3> out_shape; 80 for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; 81 82 Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); 83 84 array<DenseIndex, 4> ix; 85 for (int i = 0; i < 2; ++i) { 86 for (int j = 0; j < 3; ++j) { 87 for (int k = 0; k < 5; ++k) { 88 for (int l = 0; l < 7; ++l) { 89 ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; 90 if (ix[dim] != 0) continue; 91 // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 92 tensor(ix) = 10.0; 93 } 94 } 95 } 96 } 97 98 std::size_t in_bytes = tensor.size() * sizeof(float); 99 std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); 100 101 float* d_in; 102 DenseIndex* d_out; 103 cudaMalloc((void**)(&d_in), in_bytes); 104 cudaMalloc((void**)(&d_out), out_bytes); 105 106 cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice); 107 108 Eigen::CudaStreamDevice stream; 109 Eigen::GpuDevice gpu_device(&stream); 110 111 Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); 112 Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); 113 114 gpu_out.device(gpu_device) = gpu_in.argmax(dim); 115 116 assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); 117 assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); 118 119 VERIFY_IS_EQUAL(tensor_arg.size(), 120 size_t(2*3*5*7 / tensor.dimension(dim))); 121 122 for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { 123 // Expect max to be in the first index of the reduced dimension 124 VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); 125 } 126 127 for (int i = 0; i < 2; ++i) { 128 for (int j = 0; j < 3; ++j) { 129 for (int k = 0; k < 5; ++k) { 130 for (int l = 0; l < 7; ++l) { 131 ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; 132 if (ix[dim] != tensor.dimension(dim) - 1) continue; 133 // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 134 tensor(ix) = 20.0; 135 } 136 } 137 } 138 } 139 140 cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice); 141 142 gpu_out.device(gpu_device) = gpu_in.argmax(dim); 143 144 assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); 145 assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); 146 147 for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { 148 // Expect max to be in the last index of the reduced dimension 149 VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); 150 } 151 152 cudaFree(d_in); 153 cudaFree(d_out); 154 } 155 } 156 157 template <int DataLayout> 158 void test_cuda_argmin_dim() 159 { 160 Tensor<float, 4, DataLayout> tensor(2,3,5,7); 161 std::vector<int> dims; 162 dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7); 163 164 for (int dim = 0; dim < 4; ++dim) { 165 tensor.setRandom(); 166 tensor = (tensor + tensor.constant(0.5)).log(); 167 168 array<DenseIndex, 3> out_shape; 169 for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1]; 170 171 Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape); 172 173 array<DenseIndex, 4> ix; 174 for (int i = 0; i < 2; ++i) { 175 for (int j = 0; j < 3; ++j) { 176 for (int k = 0; k < 5; ++k) { 177 for (int l = 0; l < 7; ++l) { 178 ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; 179 if (ix[dim] != 0) continue; 180 // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 181 tensor(ix) = -10.0; 182 } 183 } 184 } 185 } 186 187 std::size_t in_bytes = tensor.size() * sizeof(float); 188 std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex); 189 190 float* d_in; 191 DenseIndex* d_out; 192 cudaMalloc((void**)(&d_in), in_bytes); 193 cudaMalloc((void**)(&d_out), out_bytes); 194 195 cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice); 196 197 Eigen::CudaStreamDevice stream; 198 Eigen::GpuDevice gpu_device(&stream); 199 200 Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7)); 201 Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape); 202 203 gpu_out.device(gpu_device) = gpu_in.argmin(dim); 204 205 assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); 206 assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); 207 208 VERIFY_IS_EQUAL(tensor_arg.size(), 209 2*3*5*7 / tensor.dimension(dim)); 210 211 for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { 212 // Expect min to be in the first index of the reduced dimension 213 VERIFY_IS_EQUAL(tensor_arg.data()[n], 0); 214 } 215 216 for (int i = 0; i < 2; ++i) { 217 for (int j = 0; j < 3; ++j) { 218 for (int k = 0; k < 5; ++k) { 219 for (int l = 0; l < 7; ++l) { 220 ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; 221 if (ix[dim] != tensor.dimension(dim) - 1) continue; 222 // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 223 tensor(ix) = -20.0; 224 } 225 } 226 } 227 } 228 229 cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice); 230 231 gpu_out.device(gpu_device) = gpu_in.argmin(dim); 232 233 assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); 234 assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); 235 236 for (DenseIndex n = 0; n < tensor_arg.size(); ++n) { 237 // Expect max to be in the last index of the reduced dimension 238 VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1); 239 } 240 241 cudaFree(d_in); 242 cudaFree(d_out); 243 } 244 } 245 246 void test_cxx11_tensor_cuda() 247 { 248 CALL_SUBTEST_1(test_cuda_simple_argmax<RowMajor>()); 249 CALL_SUBTEST_1(test_cuda_simple_argmax<ColMajor>()); 250 CALL_SUBTEST_2(test_cuda_argmax_dim<RowMajor>()); 251 CALL_SUBTEST_2(test_cuda_argmax_dim<ColMajor>()); 252 CALL_SUBTEST_3(test_cuda_argmin_dim<RowMajor>()); 253 CALL_SUBTEST_3(test_cuda_argmin_dim<ColMajor>()); 254 } 255