Home | History | Annotate | Download | only in fec
      1 /* The guts of the Reed-Solomon decoder, meant to be #included
      2  * into a function body with the following typedefs, macros and variables supplied
      3  * according to the code parameters:
      4 
      5  * data_t - a typedef for the data symbol
      6  * data_t data[] - array of NN data and parity symbols to be corrected in place
      7  * retval - an integer lvalue into which the decoder's return code is written
      8  * NROOTS - the number of roots in the RS code generator polynomial,
      9  *          which is the same as the number of parity symbols in a block.
     10             Integer variable or literal.
     11  * NN - the total number of symbols in a RS block. Integer variable or literal.
     12  * PAD - the number of pad symbols in a block. Integer variable or literal.
     13  * ALPHA_TO - The address of an array of NN elements to convert Galois field
     14  *            elements in index (log) form to polynomial form. Read only.
     15  * INDEX_OF - The address of an array of NN elements to convert Galois field
     16  *            elements in polynomial form to index (log) form. Read only.
     17  * MODNN - a function to reduce its argument modulo NN. May be inline or a macro.
     18  * FCR - An integer literal or variable specifying the first consecutive root of the
     19  *       Reed-Solomon generator polynomial. Integer variable or literal.
     20  * PRIM - The primitive root of the generator poly. Integer variable or literal.
     21  * DEBUG - If set to 1 or more, do various internal consistency checking. Leave this
     22  *         undefined for production code
     23 
     24  * The memset(), memmove(), and memcpy() functions are used. The appropriate header
     25  * file declaring these functions (usually <string.h>) must be included by the calling
     26  * program.
     27  */
     28 
     29 
     30 #if !defined(NROOTS)
     31 #error "NROOTS not defined"
     32 #endif
     33 
     34 #if !defined(NN)
     35 #error "NN not defined"
     36 #endif
     37 
     38 #if !defined(PAD)
     39 #error "PAD not defined"
     40 #endif
     41 
     42 #if !defined(ALPHA_TO)
     43 #error "ALPHA_TO not defined"
     44 #endif
     45 
     46 #if !defined(INDEX_OF)
     47 #error "INDEX_OF not defined"
     48 #endif
     49 
     50 #if !defined(MODNN)
     51 #error "MODNN not defined"
     52 #endif
     53 
     54 #if !defined(FCR)
     55 #error "FCR not defined"
     56 #endif
     57 
     58 #if !defined(PRIM)
     59 #error "PRIM not defined"
     60 #endif
     61 
     62 #if !defined(NULL)
     63 #define NULL ((void *)0)
     64 #endif
     65 
     66 #undef MIN
     67 #define	MIN(a,b)	((a) < (b) ? (a) : (b))
     68 #undef A0
     69 #define A0 (NN)
     70 
     71 {
     72   int deg_lambda, el, deg_omega;
     73   int i, j, r,k;
     74   data_t u,q,tmp,num1,num2,den,discr_r;
     75   data_t lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
     76 					 * and syndrome poly */
     77   data_t b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
     78   data_t root[NROOTS], reg[NROOTS+1], loc[NROOTS];
     79   int syn_error, count;
     80 
     81   /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
     82   for(i=0;i<NROOTS;i++)
     83     s[i] = data[0];
     84 
     85   for(j=1;j<NN-PAD;j++){
     86     for(i=0;i<NROOTS;i++){
     87       if(s[i] == 0){
     88 	s[i] = data[j];
     89       } else {
     90 	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
     91       }
     92     }
     93   }
     94 
     95   /* Convert syndromes to index form, checking for nonzero condition */
     96   syn_error = 0;
     97   for(i=0;i<NROOTS;i++){
     98     syn_error |= s[i];
     99     s[i] = INDEX_OF[s[i]];
    100   }
    101 
    102   if (!syn_error) {
    103     /* if syndrome is zero, data[] is a codeword and there are no
    104      * errors to correct. So return data[] unmodified
    105      */
    106     count = 0;
    107     goto finish;
    108   }
    109   memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
    110   lambda[0] = 1;
    111 
    112   if (no_eras > 0) {
    113     /* Init lambda to be the erasure locator polynomial */
    114     lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
    115     for (i = 1; i < no_eras; i++) {
    116       u = MODNN(PRIM*(NN-1-eras_pos[i]));
    117       for (j = i+1; j > 0; j--) {
    118 	tmp = INDEX_OF[lambda[j - 1]];
    119 	if(tmp != A0)
    120 	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
    121       }
    122     }
    123 
    124 #if DEBUG >= 1
    125     /* Test code that verifies the erasure locator polynomial just constructed
    126        Needed only for decoder debugging. */
    127 
    128     /* find roots of the erasure location polynomial */
    129     for(i=1;i<=no_eras;i++)
    130       reg[i] = INDEX_OF[lambda[i]];
    131 
    132     count = 0;
    133     for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
    134       q = 1;
    135       for (j = 1; j <= no_eras; j++)
    136 	if (reg[j] != A0) {
    137 	  reg[j] = MODNN(reg[j] + j);
    138 	  q ^= ALPHA_TO[reg[j]];
    139 	}
    140       if (q != 0)
    141 	continue;
    142       /* store root and error location number indices */
    143       root[count] = i;
    144       loc[count] = k;
    145       count++;
    146     }
    147     if (count != no_eras) {
    148       printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
    149       count = -1;
    150       goto finish;
    151     }
    152 #if DEBUG >= 2
    153     printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
    154     for (i = 0; i < count; i++)
    155       printf("%d ", loc[i]);
    156     printf("\n");
    157 #endif
    158 #endif
    159   }
    160   for(i=0;i<NROOTS+1;i++)
    161     b[i] = INDEX_OF[lambda[i]];
    162 
    163   /*
    164    * Begin Berlekamp-Massey algorithm to determine error+erasure
    165    * locator polynomial
    166    */
    167   r = no_eras;
    168   el = no_eras;
    169   while (++r <= NROOTS) {	/* r is the step number */
    170     /* Compute discrepancy at the r-th step in poly-form */
    171     discr_r = 0;
    172     for (i = 0; i < r; i++){
    173       if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
    174 	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
    175       }
    176     }
    177     discr_r = INDEX_OF[discr_r];	/* Index form */
    178     if (discr_r == A0) {
    179       /* 2 lines below: B(x) <-- x*B(x) */
    180       memmove(&b[1],b,NROOTS*sizeof(b[0]));
    181       b[0] = A0;
    182     } else {
    183       /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
    184       t[0] = lambda[0];
    185       for (i = 0 ; i < NROOTS; i++) {
    186 	if(b[i] != A0)
    187 	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
    188 	else
    189 	  t[i+1] = lambda[i+1];
    190       }
    191       if (2 * el <= r + no_eras - 1) {
    192 	el = r + no_eras - el;
    193 	/*
    194 	 * 2 lines below: B(x) <-- inv(discr_r) *
    195 	 * lambda(x)
    196 	 */
    197 	for (i = 0; i <= NROOTS; i++)
    198 	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
    199       } else {
    200 	/* 2 lines below: B(x) <-- x*B(x) */
    201 	memmove(&b[1],b,NROOTS*sizeof(b[0]));
    202 	b[0] = A0;
    203       }
    204       memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
    205     }
    206   }
    207 
    208   /* Convert lambda to index form and compute deg(lambda(x)) */
    209   deg_lambda = 0;
    210   for(i=0;i<NROOTS+1;i++){
    211     lambda[i] = INDEX_OF[lambda[i]];
    212     if(lambda[i] != A0)
    213       deg_lambda = i;
    214   }
    215   /* Find roots of the error+erasure locator polynomial by Chien search */
    216   memcpy(&reg[1],&lambda[1],NROOTS*sizeof(reg[0]));
    217   count = 0;		/* Number of roots of lambda(x) */
    218   for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
    219     q = 1; /* lambda[0] is always 0 */
    220     for (j = deg_lambda; j > 0; j--){
    221       if (reg[j] != A0) {
    222 	reg[j] = MODNN(reg[j] + j);
    223 	q ^= ALPHA_TO[reg[j]];
    224       }
    225     }
    226     if (q != 0)
    227       continue; /* Not a root */
    228     /* store root (index-form) and error location number */
    229 #if DEBUG>=2
    230     printf("count %d root %d loc %d\n",count,i,k);
    231 #endif
    232     root[count] = i;
    233     loc[count] = k;
    234     /* If we've already found max possible roots,
    235      * abort the search to save time
    236      */
    237     if(++count == deg_lambda)
    238       break;
    239   }
    240   if (deg_lambda != count) {
    241     /*
    242      * deg(lambda) unequal to number of roots => uncorrectable
    243      * error detected
    244      */
    245     count = -1;
    246     goto finish;
    247   }
    248   /*
    249    * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
    250    * x**NROOTS). in index form. Also find deg(omega).
    251    */
    252   deg_omega = deg_lambda-1;
    253   for (i = 0; i <= deg_omega;i++){
    254     tmp = 0;
    255     for(j=i;j >= 0; j--){
    256       if ((s[i - j] != A0) && (lambda[j] != A0))
    257 	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
    258     }
    259     omega[i] = INDEX_OF[tmp];
    260   }
    261 
    262   /*
    263    * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
    264    * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
    265    */
    266   for (j = count-1; j >=0; j--) {
    267     num1 = 0;
    268     for (i = deg_omega; i >= 0; i--) {
    269       if (omega[i] != A0)
    270 	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
    271     }
    272     num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
    273     den = 0;
    274 
    275     /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
    276     for (i = MIN(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
    277       if(lambda[i+1] != A0)
    278 	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
    279     }
    280 #if DEBUG >= 1
    281     if (den == 0) {
    282       printf("\n ERROR: denominator = 0\n");
    283       count = -1;
    284       goto finish;
    285     }
    286 #endif
    287     /* Apply error to data */
    288     if (num1 != 0 && loc[j] >= PAD) {
    289       data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
    290     }
    291   }
    292  finish:
    293   if(eras_pos != NULL){
    294     for(i=0;i<count;i++)
    295       eras_pos[i] = loc[i];
    296   }
    297   retval = count;
    298 }
    299