Home | History | Annotate | Download | only in fio
      1 #ifndef _LINUX_HASH_H
      2 #define _LINUX_HASH_H
      3 
      4 #include <inttypes.h>
      5 #include "arch/arch.h"
      6 
      7 /* Fast hashing routine for a long.
      8    (C) 2002 William Lee Irwin III, IBM */
      9 
     10 /*
     11  * Knuth recommends primes in approximately golden ratio to the maximum
     12  * integer representable by a machine word for multiplicative hashing.
     13  * Chuck Lever verified the effectiveness of this technique:
     14  * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf
     15  *
     16  * These primes are chosen to be bit-sparse, that is operations on
     17  * them can use shifts and additions instead of multiplications for
     18  * machines where multiplications are slow.
     19  */
     20 
     21 #if BITS_PER_LONG == 32
     22 /* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
     23 #define GOLDEN_RATIO_PRIME 0x9e370001UL
     24 #elif BITS_PER_LONG == 64
     25 /*  2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
     26 #define GOLDEN_RATIO_PRIME 0x9e37fffffffc0001UL
     27 #else
     28 #error Define GOLDEN_RATIO_PRIME for your wordsize.
     29 #endif
     30 
     31 /*
     32  * The above primes are actively bad for hashing, since they are
     33  * too sparse. The 32-bit one is mostly ok, the 64-bit one causes
     34  * real problems. Besides, the "prime" part is pointless for the
     35  * multiplicative hash.
     36  *
     37  * Although a random odd number will do, it turns out that the golden
     38  * ratio phi = (sqrt(5)-1)/2, or its negative, has particularly nice
     39  * properties.
     40  *
     41  * These are the negative, (1 - phi) = (phi^2) = (3 - sqrt(5))/2.
     42  * (See Knuth vol 3, section 6.4, exercise 9.)
     43  */
     44 #define GOLDEN_RATIO_32 0x61C88647
     45 #define GOLDEN_RATIO_64 0x61C8864680B583EBull
     46 
     47 static inline unsigned long __hash_long(uint64_t val)
     48 {
     49 	uint64_t hash = val;
     50 
     51 #if BITS_PER_LONG == 64
     52 	hash *= GOLDEN_RATIO_64;
     53 #else
     54 	/*  Sigh, gcc can't optimise this alone like it does for 32 bits. */
     55 	uint64_t n = hash;
     56 	n <<= 18;
     57 	hash -= n;
     58 	n <<= 33;
     59 	hash -= n;
     60 	n <<= 3;
     61 	hash += n;
     62 	n <<= 3;
     63 	hash -= n;
     64 	n <<= 4;
     65 	hash += n;
     66 	n <<= 2;
     67 	hash += n;
     68 #endif
     69 
     70 	return hash;
     71 }
     72 
     73 static inline unsigned long hash_long(unsigned long val, unsigned int bits)
     74 {
     75 	/* High bits are more random, so use them. */
     76 	return __hash_long(val) >> (BITS_PER_LONG - bits);
     77 }
     78 
     79 static inline uint64_t __hash_u64(uint64_t val)
     80 {
     81 	return val * GOLDEN_RATIO_64;
     82 }
     83 
     84 static inline unsigned long hash_ptr(void *ptr, unsigned int bits)
     85 {
     86 	return hash_long((uintptr_t)ptr, bits);
     87 }
     88 
     89 /*
     90  * Bob Jenkins jhash
     91  */
     92 
     93 #define JHASH_INITVAL	GOLDEN_RATIO_32
     94 
     95 static inline uint32_t rol32(uint32_t word, uint32_t shift)
     96 {
     97 	return (word << shift) | (word >> (32 - shift));
     98 }
     99 
    100 /* __jhash_mix -- mix 3 32-bit values reversibly. */
    101 #define __jhash_mix(a, b, c)			\
    102 {						\
    103 	a -= c;  a ^= rol32(c, 4);  c += b;	\
    104 	b -= a;  b ^= rol32(a, 6);  a += c;	\
    105 	c -= b;  c ^= rol32(b, 8);  b += a;	\
    106 	a -= c;  a ^= rol32(c, 16); c += b;	\
    107 	b -= a;  b ^= rol32(a, 19); a += c;	\
    108 	c -= b;  c ^= rol32(b, 4);  b += a;	\
    109 }
    110 
    111 /* __jhash_final - final mixing of 3 32-bit values (a,b,c) into c */
    112 #define __jhash_final(a, b, c)			\
    113 {						\
    114 	c ^= b; c -= rol32(b, 14);		\
    115 	a ^= c; a -= rol32(c, 11);		\
    116 	b ^= a; b -= rol32(a, 25);		\
    117 	c ^= b; c -= rol32(b, 16);		\
    118 	a ^= c; a -= rol32(c, 4);		\
    119 	b ^= a; b -= rol32(a, 14);		\
    120 	c ^= b; c -= rol32(b, 24);		\
    121 }
    122 
    123 static inline uint32_t jhash(const void *key, uint32_t length, uint32_t initval)
    124 {
    125 	const uint8_t *k = key;
    126 	uint32_t a, b, c;
    127 
    128 	/* Set up the internal state */
    129 	a = b = c = JHASH_INITVAL + length + initval;
    130 
    131 	/* All but the last block: affect some 32 bits of (a,b,c) */
    132 	while (length > 12) {
    133 		a += *k;
    134 		b += *(k + 4);
    135 		c += *(k + 8);
    136 		__jhash_mix(a, b, c);
    137 		length -= 12;
    138 		k += 12;
    139 	}
    140 
    141 	/* Last block: affect all 32 bits of (c) */
    142 	/* All the case statements fall through */
    143 	switch (length) {
    144 	case 12: c += (uint32_t) k[11] << 24;
    145 	case 11: c += (uint32_t) k[10] << 16;
    146 	case 10: c += (uint32_t) k[9] << 8;
    147 	case 9:  c += k[8];
    148 	case 8:  b += (uint32_t) k[7] << 24;
    149 	case 7:  b += (uint32_t) k[6] << 16;
    150 	case 6:  b += (uint32_t) k[5] << 8;
    151 	case 5:  b += k[4];
    152 	case 4:  a += (uint32_t) k[3] << 24;
    153 	case 3:  a += (uint32_t) k[2] << 16;
    154 	case 2:  a += (uint32_t) k[1] << 8;
    155 	case 1:  a += k[0];
    156 		 __jhash_final(a, b, c);
    157 	case 0: /* Nothing left to add */
    158 		break;
    159 	}
    160 
    161 	return c;
    162 }
    163 
    164 #endif /* _LINUX_HASH_H */
    165