Home | History | Annotate | Download | only in fio
      1 #include <unistd.h>
      2 #include <fcntl.h>
      3 #include <string.h>
      4 #include <signal.h>
      5 #include <time.h>
      6 #include <assert.h>
      7 
      8 #include "fio.h"
      9 #include "hash.h"
     10 #include "verify.h"
     11 #include "trim.h"
     12 #include "lib/rand.h"
     13 #include "lib/axmap.h"
     14 #include "err.h"
     15 #include "lib/pow2.h"
     16 #include "minmax.h"
     17 
     18 struct io_completion_data {
     19 	int nr;				/* input */
     20 
     21 	int error;			/* output */
     22 	uint64_t bytes_done[DDIR_RWDIR_CNT];	/* output */
     23 	struct timeval time;		/* output */
     24 };
     25 
     26 /*
     27  * The ->io_axmap contains a map of blocks we have or have not done io
     28  * to yet. Used to make sure we cover the entire range in a fair fashion.
     29  */
     30 static bool random_map_free(struct fio_file *f, const uint64_t block)
     31 {
     32 	return !axmap_isset(f->io_axmap, block);
     33 }
     34 
     35 /*
     36  * Mark a given offset as used in the map.
     37  */
     38 static void mark_random_map(struct thread_data *td, struct io_u *io_u)
     39 {
     40 	unsigned int min_bs = td->o.rw_min_bs;
     41 	struct fio_file *f = io_u->file;
     42 	unsigned int nr_blocks;
     43 	uint64_t block;
     44 
     45 	block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
     46 	nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
     47 
     48 	if (!(io_u->flags & IO_U_F_BUSY_OK))
     49 		nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
     50 
     51 	if ((nr_blocks * min_bs) < io_u->buflen)
     52 		io_u->buflen = nr_blocks * min_bs;
     53 }
     54 
     55 static uint64_t last_block(struct thread_data *td, struct fio_file *f,
     56 			   enum fio_ddir ddir)
     57 {
     58 	uint64_t max_blocks;
     59 	uint64_t max_size;
     60 
     61 	assert(ddir_rw(ddir));
     62 
     63 	/*
     64 	 * Hmm, should we make sure that ->io_size <= ->real_file_size?
     65 	 * -> not for now since there is code assuming it could go either.
     66 	 */
     67 	max_size = f->io_size;
     68 	if (max_size > f->real_file_size)
     69 		max_size = f->real_file_size;
     70 
     71 	if (td->o.zone_range)
     72 		max_size = td->o.zone_range;
     73 
     74 	if (td->o.min_bs[ddir] > td->o.ba[ddir])
     75 		max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
     76 
     77 	max_blocks = max_size / (uint64_t) td->o.ba[ddir];
     78 	if (!max_blocks)
     79 		return 0;
     80 
     81 	return max_blocks;
     82 }
     83 
     84 struct rand_off {
     85 	struct flist_head list;
     86 	uint64_t off;
     87 };
     88 
     89 static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
     90 				  enum fio_ddir ddir, uint64_t *b,
     91 				  uint64_t lastb)
     92 {
     93 	uint64_t r;
     94 
     95 	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
     96 	    td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
     97 
     98 		r = __rand(&td->random_state);
     99 
    100 		dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
    101 
    102 		*b = lastb * (r / (rand_max(&td->random_state) + 1.0));
    103 	} else {
    104 		uint64_t off = 0;
    105 
    106 		assert(fio_file_lfsr(f));
    107 
    108 		if (lfsr_next(&f->lfsr, &off))
    109 			return 1;
    110 
    111 		*b = off;
    112 	}
    113 
    114 	/*
    115 	 * if we are not maintaining a random map, we are done.
    116 	 */
    117 	if (!file_randommap(td, f))
    118 		goto ret;
    119 
    120 	/*
    121 	 * calculate map offset and check if it's free
    122 	 */
    123 	if (random_map_free(f, *b))
    124 		goto ret;
    125 
    126 	dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
    127 						(unsigned long long) *b);
    128 
    129 	*b = axmap_next_free(f->io_axmap, *b);
    130 	if (*b == (uint64_t) -1ULL)
    131 		return 1;
    132 ret:
    133 	return 0;
    134 }
    135 
    136 static int __get_next_rand_offset_zipf(struct thread_data *td,
    137 				       struct fio_file *f, enum fio_ddir ddir,
    138 				       uint64_t *b)
    139 {
    140 	*b = zipf_next(&f->zipf);
    141 	return 0;
    142 }
    143 
    144 static int __get_next_rand_offset_pareto(struct thread_data *td,
    145 					 struct fio_file *f, enum fio_ddir ddir,
    146 					 uint64_t *b)
    147 {
    148 	*b = pareto_next(&f->zipf);
    149 	return 0;
    150 }
    151 
    152 static int __get_next_rand_offset_gauss(struct thread_data *td,
    153 					struct fio_file *f, enum fio_ddir ddir,
    154 					uint64_t *b)
    155 {
    156 	*b = gauss_next(&f->gauss);
    157 	return 0;
    158 }
    159 
    160 static int __get_next_rand_offset_zoned(struct thread_data *td,
    161 					struct fio_file *f, enum fio_ddir ddir,
    162 					uint64_t *b)
    163 {
    164 	unsigned int v, send, stotal;
    165 	uint64_t offset, lastb;
    166 	static int warned;
    167 	struct zone_split_index *zsi;
    168 
    169 	lastb = last_block(td, f, ddir);
    170 	if (!lastb)
    171 		return 1;
    172 
    173 	if (!td->o.zone_split_nr[ddir]) {
    174 bail:
    175 		return __get_next_rand_offset(td, f, ddir, b, lastb);
    176 	}
    177 
    178 	/*
    179 	 * Generate a value, v, between 1 and 100, both inclusive
    180 	 */
    181 	v = rand32_between(&td->zone_state, 1, 100);
    182 
    183 	zsi = &td->zone_state_index[ddir][v - 1];
    184 	stotal = zsi->size_perc_prev;
    185 	send = zsi->size_perc;
    186 
    187 	/*
    188 	 * Should never happen
    189 	 */
    190 	if (send == -1U) {
    191 		if (!warned) {
    192 			log_err("fio: bug in zoned generation\n");
    193 			warned = 1;
    194 		}
    195 		goto bail;
    196 	}
    197 
    198 	/*
    199 	 * 'send' is some percentage below or equal to 100 that
    200 	 * marks the end of the current IO range. 'stotal' marks
    201 	 * the start, in percent.
    202 	 */
    203 	if (stotal)
    204 		offset = stotal * lastb / 100ULL;
    205 	else
    206 		offset = 0;
    207 
    208 	lastb = lastb * (send - stotal) / 100ULL;
    209 
    210 	/*
    211 	 * Generate index from 0..send-of-lastb
    212 	 */
    213 	if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
    214 		return 1;
    215 
    216 	/*
    217 	 * Add our start offset, if any
    218 	 */
    219 	if (offset)
    220 		*b += offset;
    221 
    222 	return 0;
    223 }
    224 
    225 static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
    226 {
    227 	struct rand_off *r1 = flist_entry(a, struct rand_off, list);
    228 	struct rand_off *r2 = flist_entry(b, struct rand_off, list);
    229 
    230 	return r1->off - r2->off;
    231 }
    232 
    233 static int get_off_from_method(struct thread_data *td, struct fio_file *f,
    234 			       enum fio_ddir ddir, uint64_t *b)
    235 {
    236 	if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
    237 		uint64_t lastb;
    238 
    239 		lastb = last_block(td, f, ddir);
    240 		if (!lastb)
    241 			return 1;
    242 
    243 		return __get_next_rand_offset(td, f, ddir, b, lastb);
    244 	} else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
    245 		return __get_next_rand_offset_zipf(td, f, ddir, b);
    246 	else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
    247 		return __get_next_rand_offset_pareto(td, f, ddir, b);
    248 	else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
    249 		return __get_next_rand_offset_gauss(td, f, ddir, b);
    250 	else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
    251 		return __get_next_rand_offset_zoned(td, f, ddir, b);
    252 
    253 	log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
    254 	return 1;
    255 }
    256 
    257 /*
    258  * Sort the reads for a verify phase in batches of verifysort_nr, if
    259  * specified.
    260  */
    261 static inline bool should_sort_io(struct thread_data *td)
    262 {
    263 	if (!td->o.verifysort_nr || !td->o.do_verify)
    264 		return false;
    265 	if (!td_random(td))
    266 		return false;
    267 	if (td->runstate != TD_VERIFYING)
    268 		return false;
    269 	if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
    270 	    td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
    271 		return false;
    272 
    273 	return true;
    274 }
    275 
    276 static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
    277 {
    278 	unsigned int v;
    279 
    280 	if (td->o.perc_rand[ddir] == 100)
    281 		return true;
    282 
    283 	v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
    284 
    285 	return v <= td->o.perc_rand[ddir];
    286 }
    287 
    288 static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
    289 				enum fio_ddir ddir, uint64_t *b)
    290 {
    291 	struct rand_off *r;
    292 	int i, ret = 1;
    293 
    294 	if (!should_sort_io(td))
    295 		return get_off_from_method(td, f, ddir, b);
    296 
    297 	if (!flist_empty(&td->next_rand_list)) {
    298 fetch:
    299 		r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
    300 		flist_del(&r->list);
    301 		*b = r->off;
    302 		free(r);
    303 		return 0;
    304 	}
    305 
    306 	for (i = 0; i < td->o.verifysort_nr; i++) {
    307 		r = malloc(sizeof(*r));
    308 
    309 		ret = get_off_from_method(td, f, ddir, &r->off);
    310 		if (ret) {
    311 			free(r);
    312 			break;
    313 		}
    314 
    315 		flist_add(&r->list, &td->next_rand_list);
    316 	}
    317 
    318 	if (ret && !i)
    319 		return ret;
    320 
    321 	assert(!flist_empty(&td->next_rand_list));
    322 	flist_sort(NULL, &td->next_rand_list, flist_cmp);
    323 	goto fetch;
    324 }
    325 
    326 static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
    327 			       enum fio_ddir ddir, uint64_t *b)
    328 {
    329 	if (!get_next_rand_offset(td, f, ddir, b))
    330 		return 0;
    331 
    332 	if (td->o.time_based ||
    333 	    (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
    334 		fio_file_reset(td, f);
    335 		if (!get_next_rand_offset(td, f, ddir, b))
    336 			return 0;
    337 	}
    338 
    339 	dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
    340 			f->file_name, (unsigned long long) f->last_pos[ddir],
    341 			(unsigned long long) f->real_file_size);
    342 	return 1;
    343 }
    344 
    345 static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
    346 			       enum fio_ddir ddir, uint64_t *offset)
    347 {
    348 	struct thread_options *o = &td->o;
    349 
    350 	assert(ddir_rw(ddir));
    351 
    352 	if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
    353 	    o->time_based) {
    354 		struct thread_options *o = &td->o;
    355 		uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
    356 
    357 		if (io_size > f->last_pos[ddir])
    358 			f->last_pos[ddir] = 0;
    359 		else
    360 			f->last_pos[ddir] = f->last_pos[ddir] - io_size;
    361 	}
    362 
    363 	if (f->last_pos[ddir] < f->real_file_size) {
    364 		uint64_t pos;
    365 
    366 		if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
    367 			if (f->real_file_size > f->io_size)
    368 				f->last_pos[ddir] = f->io_size;
    369 			else
    370 				f->last_pos[ddir] = f->real_file_size;
    371 		}
    372 
    373 		pos = f->last_pos[ddir] - f->file_offset;
    374 		if (pos && o->ddir_seq_add) {
    375 			pos += o->ddir_seq_add;
    376 
    377 			/*
    378 			 * If we reach beyond the end of the file
    379 			 * with holed IO, wrap around to the
    380 			 * beginning again. If we're doing backwards IO,
    381 			 * wrap to the end.
    382 			 */
    383 			if (pos >= f->real_file_size) {
    384 				if (o->ddir_seq_add > 0)
    385 					pos = f->file_offset;
    386 				else {
    387 					if (f->real_file_size > f->io_size)
    388 						pos = f->io_size;
    389 					else
    390 						pos = f->real_file_size;
    391 
    392 					pos += o->ddir_seq_add;
    393 				}
    394 			}
    395 		}
    396 
    397 		*offset = pos;
    398 		return 0;
    399 	}
    400 
    401 	return 1;
    402 }
    403 
    404 static int get_next_block(struct thread_data *td, struct io_u *io_u,
    405 			  enum fio_ddir ddir, int rw_seq,
    406 			  unsigned int *is_random)
    407 {
    408 	struct fio_file *f = io_u->file;
    409 	uint64_t b, offset;
    410 	int ret;
    411 
    412 	assert(ddir_rw(ddir));
    413 
    414 	b = offset = -1ULL;
    415 
    416 	if (rw_seq) {
    417 		if (td_random(td)) {
    418 			if (should_do_random(td, ddir)) {
    419 				ret = get_next_rand_block(td, f, ddir, &b);
    420 				*is_random = 1;
    421 			} else {
    422 				*is_random = 0;
    423 				io_u_set(td, io_u, IO_U_F_BUSY_OK);
    424 				ret = get_next_seq_offset(td, f, ddir, &offset);
    425 				if (ret)
    426 					ret = get_next_rand_block(td, f, ddir, &b);
    427 			}
    428 		} else {
    429 			*is_random = 0;
    430 			ret = get_next_seq_offset(td, f, ddir, &offset);
    431 		}
    432 	} else {
    433 		io_u_set(td, io_u, IO_U_F_BUSY_OK);
    434 		*is_random = 0;
    435 
    436 		if (td->o.rw_seq == RW_SEQ_SEQ) {
    437 			ret = get_next_seq_offset(td, f, ddir, &offset);
    438 			if (ret) {
    439 				ret = get_next_rand_block(td, f, ddir, &b);
    440 				*is_random = 0;
    441 			}
    442 		} else if (td->o.rw_seq == RW_SEQ_IDENT) {
    443 			if (f->last_start[ddir] != -1ULL)
    444 				offset = f->last_start[ddir] - f->file_offset;
    445 			else
    446 				offset = 0;
    447 			ret = 0;
    448 		} else {
    449 			log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
    450 			ret = 1;
    451 		}
    452 	}
    453 
    454 	if (!ret) {
    455 		if (offset != -1ULL)
    456 			io_u->offset = offset;
    457 		else if (b != -1ULL)
    458 			io_u->offset = b * td->o.ba[ddir];
    459 		else {
    460 			log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
    461 			ret = 1;
    462 		}
    463 	}
    464 
    465 	return ret;
    466 }
    467 
    468 /*
    469  * For random io, generate a random new block and see if it's used. Repeat
    470  * until we find a free one. For sequential io, just return the end of
    471  * the last io issued.
    472  */
    473 static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
    474 			     unsigned int *is_random)
    475 {
    476 	struct fio_file *f = io_u->file;
    477 	enum fio_ddir ddir = io_u->ddir;
    478 	int rw_seq_hit = 0;
    479 
    480 	assert(ddir_rw(ddir));
    481 
    482 	if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
    483 		rw_seq_hit = 1;
    484 		td->ddir_seq_nr = td->o.ddir_seq_nr;
    485 	}
    486 
    487 	if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
    488 		return 1;
    489 
    490 	if (io_u->offset >= f->io_size) {
    491 		dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
    492 					(unsigned long long) io_u->offset,
    493 					(unsigned long long) f->io_size);
    494 		return 1;
    495 	}
    496 
    497 	io_u->offset += f->file_offset;
    498 	if (io_u->offset >= f->real_file_size) {
    499 		dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
    500 					(unsigned long long) io_u->offset,
    501 					(unsigned long long) f->real_file_size);
    502 		return 1;
    503 	}
    504 
    505 	return 0;
    506 }
    507 
    508 static int get_next_offset(struct thread_data *td, struct io_u *io_u,
    509 			   unsigned int *is_random)
    510 {
    511 	if (td->flags & TD_F_PROFILE_OPS) {
    512 		struct prof_io_ops *ops = &td->prof_io_ops;
    513 
    514 		if (ops->fill_io_u_off)
    515 			return ops->fill_io_u_off(td, io_u, is_random);
    516 	}
    517 
    518 	return __get_next_offset(td, io_u, is_random);
    519 }
    520 
    521 static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
    522 			     unsigned int buflen)
    523 {
    524 	struct fio_file *f = io_u->file;
    525 
    526 	return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
    527 }
    528 
    529 static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
    530 				      unsigned int is_random)
    531 {
    532 	int ddir = io_u->ddir;
    533 	unsigned int buflen = 0;
    534 	unsigned int minbs, maxbs;
    535 	uint64_t frand_max, r;
    536 	bool power_2;
    537 
    538 	assert(ddir_rw(ddir));
    539 
    540 	if (td->o.bs_is_seq_rand)
    541 		ddir = is_random ? DDIR_WRITE: DDIR_READ;
    542 
    543 	minbs = td->o.min_bs[ddir];
    544 	maxbs = td->o.max_bs[ddir];
    545 
    546 	if (minbs == maxbs)
    547 		return minbs;
    548 
    549 	/*
    550 	 * If we can't satisfy the min block size from here, then fail
    551 	 */
    552 	if (!io_u_fits(td, io_u, minbs))
    553 		return 0;
    554 
    555 	frand_max = rand_max(&td->bsrange_state);
    556 	do {
    557 		r = __rand(&td->bsrange_state);
    558 
    559 		if (!td->o.bssplit_nr[ddir]) {
    560 			buflen = 1 + (unsigned int) ((double) maxbs *
    561 					(r / (frand_max + 1.0)));
    562 			if (buflen < minbs)
    563 				buflen = minbs;
    564 		} else {
    565 			long long perc = 0;
    566 			unsigned int i;
    567 
    568 			for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
    569 				struct bssplit *bsp = &td->o.bssplit[ddir][i];
    570 
    571 				buflen = bsp->bs;
    572 				perc += bsp->perc;
    573 				if (!perc)
    574 					break;
    575 				if ((r / perc <= frand_max / 100ULL) &&
    576 				    io_u_fits(td, io_u, buflen))
    577 					break;
    578 			}
    579 		}
    580 
    581 		power_2 = is_power_of_2(minbs);
    582 		if (!td->o.bs_unaligned && power_2)
    583 			buflen &= ~(minbs - 1);
    584 		else if (!td->o.bs_unaligned && !power_2)
    585 			buflen -= buflen % minbs;
    586 	} while (!io_u_fits(td, io_u, buflen));
    587 
    588 	return buflen;
    589 }
    590 
    591 static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
    592 				    unsigned int is_random)
    593 {
    594 	if (td->flags & TD_F_PROFILE_OPS) {
    595 		struct prof_io_ops *ops = &td->prof_io_ops;
    596 
    597 		if (ops->fill_io_u_size)
    598 			return ops->fill_io_u_size(td, io_u, is_random);
    599 	}
    600 
    601 	return __get_next_buflen(td, io_u, is_random);
    602 }
    603 
    604 static void set_rwmix_bytes(struct thread_data *td)
    605 {
    606 	unsigned int diff;
    607 
    608 	/*
    609 	 * we do time or byte based switch. this is needed because
    610 	 * buffered writes may issue a lot quicker than they complete,
    611 	 * whereas reads do not.
    612 	 */
    613 	diff = td->o.rwmix[td->rwmix_ddir ^ 1];
    614 	td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
    615 }
    616 
    617 static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
    618 {
    619 	unsigned int v;
    620 
    621 	v = rand32_between(&td->rwmix_state, 1, 100);
    622 
    623 	if (v <= td->o.rwmix[DDIR_READ])
    624 		return DDIR_READ;
    625 
    626 	return DDIR_WRITE;
    627 }
    628 
    629 int io_u_quiesce(struct thread_data *td)
    630 {
    631 	int completed = 0;
    632 
    633 	/*
    634 	 * We are going to sleep, ensure that we flush anything pending as
    635 	 * not to skew our latency numbers.
    636 	 *
    637 	 * Changed to only monitor 'in flight' requests here instead of the
    638 	 * td->cur_depth, b/c td->cur_depth does not accurately represent
    639 	 * io's that have been actually submitted to an async engine,
    640 	 * and cur_depth is meaningless for sync engines.
    641 	 */
    642 	if (td->io_u_queued || td->cur_depth) {
    643 		int fio_unused ret;
    644 
    645 		ret = td_io_commit(td);
    646 	}
    647 
    648 	while (td->io_u_in_flight) {
    649 		int ret;
    650 
    651 		ret = io_u_queued_complete(td, 1);
    652 		if (ret > 0)
    653 			completed += ret;
    654 	}
    655 
    656 	if (td->flags & TD_F_REGROW_LOGS)
    657 		regrow_logs(td);
    658 
    659 	return completed;
    660 }
    661 
    662 static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
    663 {
    664 	enum fio_ddir odir = ddir ^ 1;
    665 	long usec;
    666 	uint64_t now;
    667 
    668 	assert(ddir_rw(ddir));
    669 	now = utime_since_now(&td->start);
    670 
    671 	/*
    672 	 * if rate_next_io_time is in the past, need to catch up to rate
    673 	 */
    674 	if (td->rate_next_io_time[ddir] <= now)
    675 		return ddir;
    676 
    677 	/*
    678 	 * We are ahead of rate in this direction. See if we
    679 	 * should switch.
    680 	 */
    681 	if (td_rw(td) && td->o.rwmix[odir]) {
    682 		/*
    683 		 * Other direction is behind rate, switch
    684 		 */
    685 		if (td->rate_next_io_time[odir] <= now)
    686 			return odir;
    687 
    688 		/*
    689 		 * Both directions are ahead of rate. sleep the min
    690 		 * switch if necissary
    691 		 */
    692 		if (td->rate_next_io_time[ddir] <=
    693 			td->rate_next_io_time[odir]) {
    694 			usec = td->rate_next_io_time[ddir] - now;
    695 		} else {
    696 			usec = td->rate_next_io_time[odir] - now;
    697 			ddir = odir;
    698 		}
    699 	} else
    700 		usec = td->rate_next_io_time[ddir] - now;
    701 
    702 	if (td->o.io_submit_mode == IO_MODE_INLINE)
    703 		io_u_quiesce(td);
    704 
    705 	usec = usec_sleep(td, usec);
    706 
    707 	return ddir;
    708 }
    709 
    710 /*
    711  * Return the data direction for the next io_u. If the job is a
    712  * mixed read/write workload, check the rwmix cycle and switch if
    713  * necessary.
    714  */
    715 static enum fio_ddir get_rw_ddir(struct thread_data *td)
    716 {
    717 	enum fio_ddir ddir;
    718 
    719 	/*
    720 	 * See if it's time to fsync/fdatasync/sync_file_range first,
    721 	 * and if not then move on to check regular I/Os.
    722 	 */
    723 	if (should_fsync(td)) {
    724 		if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
    725 		    !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
    726 			return DDIR_SYNC;
    727 
    728 		if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
    729 		    !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
    730 			return DDIR_DATASYNC;
    731 
    732 		if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
    733 		    !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
    734 			return DDIR_SYNC_FILE_RANGE;
    735 	}
    736 
    737 	if (td_rw(td)) {
    738 		/*
    739 		 * Check if it's time to seed a new data direction.
    740 		 */
    741 		if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
    742 			/*
    743 			 * Put a top limit on how many bytes we do for
    744 			 * one data direction, to avoid overflowing the
    745 			 * ranges too much
    746 			 */
    747 			ddir = get_rand_ddir(td);
    748 
    749 			if (ddir != td->rwmix_ddir)
    750 				set_rwmix_bytes(td);
    751 
    752 			td->rwmix_ddir = ddir;
    753 		}
    754 		ddir = td->rwmix_ddir;
    755 	} else if (td_read(td))
    756 		ddir = DDIR_READ;
    757 	else if (td_write(td))
    758 		ddir = DDIR_WRITE;
    759 	else if (td_trim(td))
    760 		ddir = DDIR_TRIM;
    761 	else
    762 		ddir = DDIR_INVAL;
    763 
    764 	td->rwmix_ddir = rate_ddir(td, ddir);
    765 	return td->rwmix_ddir;
    766 }
    767 
    768 static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
    769 {
    770 	enum fio_ddir ddir = get_rw_ddir(td);
    771 
    772 	if (td_trimwrite(td)) {
    773 		struct fio_file *f = io_u->file;
    774 		if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
    775 			ddir = DDIR_TRIM;
    776 		else
    777 			ddir = DDIR_WRITE;
    778 	}
    779 
    780 	io_u->ddir = io_u->acct_ddir = ddir;
    781 
    782 	if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
    783 	    td->o.barrier_blocks &&
    784 	   !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
    785 	     td->io_issues[DDIR_WRITE])
    786 		io_u_set(td, io_u, IO_U_F_BARRIER);
    787 }
    788 
    789 void put_file_log(struct thread_data *td, struct fio_file *f)
    790 {
    791 	unsigned int ret = put_file(td, f);
    792 
    793 	if (ret)
    794 		td_verror(td, ret, "file close");
    795 }
    796 
    797 void put_io_u(struct thread_data *td, struct io_u *io_u)
    798 {
    799 	if (td->parent)
    800 		td = td->parent;
    801 
    802 	td_io_u_lock(td);
    803 
    804 	if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
    805 		put_file_log(td, io_u->file);
    806 
    807 	io_u->file = NULL;
    808 	io_u_set(td, io_u, IO_U_F_FREE);
    809 
    810 	if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
    811 		td->cur_depth--;
    812 		assert(!(td->flags & TD_F_CHILD));
    813 	}
    814 	io_u_qpush(&td->io_u_freelist, io_u);
    815 	td_io_u_unlock(td);
    816 	td_io_u_free_notify(td);
    817 }
    818 
    819 void clear_io_u(struct thread_data *td, struct io_u *io_u)
    820 {
    821 	io_u_clear(td, io_u, IO_U_F_FLIGHT);
    822 	put_io_u(td, io_u);
    823 }
    824 
    825 void requeue_io_u(struct thread_data *td, struct io_u **io_u)
    826 {
    827 	struct io_u *__io_u = *io_u;
    828 	enum fio_ddir ddir = acct_ddir(__io_u);
    829 
    830 	dprint(FD_IO, "requeue %p\n", __io_u);
    831 
    832 	if (td->parent)
    833 		td = td->parent;
    834 
    835 	td_io_u_lock(td);
    836 
    837 	io_u_set(td, __io_u, IO_U_F_FREE);
    838 	if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
    839 		td->io_issues[ddir]--;
    840 
    841 	io_u_clear(td, __io_u, IO_U_F_FLIGHT);
    842 	if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
    843 		td->cur_depth--;
    844 		assert(!(td->flags & TD_F_CHILD));
    845 	}
    846 
    847 	io_u_rpush(&td->io_u_requeues, __io_u);
    848 	td_io_u_unlock(td);
    849 	td_io_u_free_notify(td);
    850 	*io_u = NULL;
    851 }
    852 
    853 static int fill_io_u(struct thread_data *td, struct io_u *io_u)
    854 {
    855 	unsigned int is_random;
    856 
    857 	if (td_ioengine_flagged(td, FIO_NOIO))
    858 		goto out;
    859 
    860 	set_rw_ddir(td, io_u);
    861 
    862 	/*
    863 	 * fsync() or fdatasync() or trim etc, we are done
    864 	 */
    865 	if (!ddir_rw(io_u->ddir))
    866 		goto out;
    867 
    868 	/*
    869 	 * See if it's time to switch to a new zone
    870 	 */
    871 	if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
    872 		struct fio_file *f = io_u->file;
    873 
    874 		td->zone_bytes = 0;
    875 		f->file_offset += td->o.zone_range + td->o.zone_skip;
    876 
    877 		/*
    878 		 * Wrap from the beginning, if we exceed the file size
    879 		 */
    880 		if (f->file_offset >= f->real_file_size)
    881 			f->file_offset = f->real_file_size - f->file_offset;
    882 		f->last_pos[io_u->ddir] = f->file_offset;
    883 		td->io_skip_bytes += td->o.zone_skip;
    884 	}
    885 
    886 	/*
    887 	 * No log, let the seq/rand engine retrieve the next buflen and
    888 	 * position.
    889 	 */
    890 	if (get_next_offset(td, io_u, &is_random)) {
    891 		dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
    892 		return 1;
    893 	}
    894 
    895 	io_u->buflen = get_next_buflen(td, io_u, is_random);
    896 	if (!io_u->buflen) {
    897 		dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
    898 		return 1;
    899 	}
    900 
    901 	if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
    902 		dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
    903 			io_u);
    904 		dprint(FD_IO, "  offset=%llu/buflen=%lu > %llu\n",
    905 			(unsigned long long) io_u->offset, io_u->buflen,
    906 			(unsigned long long) io_u->file->real_file_size);
    907 		return 1;
    908 	}
    909 
    910 	/*
    911 	 * mark entry before potentially trimming io_u
    912 	 */
    913 	if (td_random(td) && file_randommap(td, io_u->file))
    914 		mark_random_map(td, io_u);
    915 
    916 out:
    917 	dprint_io_u(io_u, "fill_io_u");
    918 	td->zone_bytes += io_u->buflen;
    919 	return 0;
    920 }
    921 
    922 static void __io_u_mark_map(unsigned int *map, unsigned int nr)
    923 {
    924 	int idx = 0;
    925 
    926 	switch (nr) {
    927 	default:
    928 		idx = 6;
    929 		break;
    930 	case 33 ... 64:
    931 		idx = 5;
    932 		break;
    933 	case 17 ... 32:
    934 		idx = 4;
    935 		break;
    936 	case 9 ... 16:
    937 		idx = 3;
    938 		break;
    939 	case 5 ... 8:
    940 		idx = 2;
    941 		break;
    942 	case 1 ... 4:
    943 		idx = 1;
    944 	case 0:
    945 		break;
    946 	}
    947 
    948 	map[idx]++;
    949 }
    950 
    951 void io_u_mark_submit(struct thread_data *td, unsigned int nr)
    952 {
    953 	__io_u_mark_map(td->ts.io_u_submit, nr);
    954 	td->ts.total_submit++;
    955 }
    956 
    957 void io_u_mark_complete(struct thread_data *td, unsigned int nr)
    958 {
    959 	__io_u_mark_map(td->ts.io_u_complete, nr);
    960 	td->ts.total_complete++;
    961 }
    962 
    963 void io_u_mark_depth(struct thread_data *td, unsigned int nr)
    964 {
    965 	int idx = 0;
    966 
    967 	switch (td->cur_depth) {
    968 	default:
    969 		idx = 6;
    970 		break;
    971 	case 32 ... 63:
    972 		idx = 5;
    973 		break;
    974 	case 16 ... 31:
    975 		idx = 4;
    976 		break;
    977 	case 8 ... 15:
    978 		idx = 3;
    979 		break;
    980 	case 4 ... 7:
    981 		idx = 2;
    982 		break;
    983 	case 2 ... 3:
    984 		idx = 1;
    985 	case 1:
    986 		break;
    987 	}
    988 
    989 	td->ts.io_u_map[idx] += nr;
    990 }
    991 
    992 static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
    993 {
    994 	int idx = 0;
    995 
    996 	assert(usec < 1000);
    997 
    998 	switch (usec) {
    999 	case 750 ... 999:
   1000 		idx = 9;
   1001 		break;
   1002 	case 500 ... 749:
   1003 		idx = 8;
   1004 		break;
   1005 	case 250 ... 499:
   1006 		idx = 7;
   1007 		break;
   1008 	case 100 ... 249:
   1009 		idx = 6;
   1010 		break;
   1011 	case 50 ... 99:
   1012 		idx = 5;
   1013 		break;
   1014 	case 20 ... 49:
   1015 		idx = 4;
   1016 		break;
   1017 	case 10 ... 19:
   1018 		idx = 3;
   1019 		break;
   1020 	case 4 ... 9:
   1021 		idx = 2;
   1022 		break;
   1023 	case 2 ... 3:
   1024 		idx = 1;
   1025 	case 0 ... 1:
   1026 		break;
   1027 	}
   1028 
   1029 	assert(idx < FIO_IO_U_LAT_U_NR);
   1030 	td->ts.io_u_lat_u[idx]++;
   1031 }
   1032 
   1033 static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
   1034 {
   1035 	int idx = 0;
   1036 
   1037 	switch (msec) {
   1038 	default:
   1039 		idx = 11;
   1040 		break;
   1041 	case 1000 ... 1999:
   1042 		idx = 10;
   1043 		break;
   1044 	case 750 ... 999:
   1045 		idx = 9;
   1046 		break;
   1047 	case 500 ... 749:
   1048 		idx = 8;
   1049 		break;
   1050 	case 250 ... 499:
   1051 		idx = 7;
   1052 		break;
   1053 	case 100 ... 249:
   1054 		idx = 6;
   1055 		break;
   1056 	case 50 ... 99:
   1057 		idx = 5;
   1058 		break;
   1059 	case 20 ... 49:
   1060 		idx = 4;
   1061 		break;
   1062 	case 10 ... 19:
   1063 		idx = 3;
   1064 		break;
   1065 	case 4 ... 9:
   1066 		idx = 2;
   1067 		break;
   1068 	case 2 ... 3:
   1069 		idx = 1;
   1070 	case 0 ... 1:
   1071 		break;
   1072 	}
   1073 
   1074 	assert(idx < FIO_IO_U_LAT_M_NR);
   1075 	td->ts.io_u_lat_m[idx]++;
   1076 }
   1077 
   1078 static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
   1079 {
   1080 	if (usec < 1000)
   1081 		io_u_mark_lat_usec(td, usec);
   1082 	else
   1083 		io_u_mark_lat_msec(td, usec / 1000);
   1084 }
   1085 
   1086 static unsigned int __get_next_fileno_rand(struct thread_data *td)
   1087 {
   1088 	unsigned long fileno;
   1089 
   1090 	if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
   1091 		uint64_t frand_max = rand_max(&td->next_file_state);
   1092 		unsigned long r;
   1093 
   1094 		r = __rand(&td->next_file_state);
   1095 		return (unsigned int) ((double) td->o.nr_files
   1096 				* (r / (frand_max + 1.0)));
   1097 	}
   1098 
   1099 	if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
   1100 		fileno = zipf_next(&td->next_file_zipf);
   1101 	else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
   1102 		fileno = pareto_next(&td->next_file_zipf);
   1103 	else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
   1104 		fileno = gauss_next(&td->next_file_gauss);
   1105 	else {
   1106 		log_err("fio: bad file service type: %d\n", td->o.file_service_type);
   1107 		assert(0);
   1108 		return 0;
   1109 	}
   1110 
   1111 	return fileno >> FIO_FSERVICE_SHIFT;
   1112 }
   1113 
   1114 /*
   1115  * Get next file to service by choosing one at random
   1116  */
   1117 static struct fio_file *get_next_file_rand(struct thread_data *td,
   1118 					   enum fio_file_flags goodf,
   1119 					   enum fio_file_flags badf)
   1120 {
   1121 	struct fio_file *f;
   1122 	int fno;
   1123 
   1124 	do {
   1125 		int opened = 0;
   1126 
   1127 		fno = __get_next_fileno_rand(td);
   1128 
   1129 		f = td->files[fno];
   1130 		if (fio_file_done(f))
   1131 			continue;
   1132 
   1133 		if (!fio_file_open(f)) {
   1134 			int err;
   1135 
   1136 			if (td->nr_open_files >= td->o.open_files)
   1137 				return ERR_PTR(-EBUSY);
   1138 
   1139 			err = td_io_open_file(td, f);
   1140 			if (err)
   1141 				continue;
   1142 			opened = 1;
   1143 		}
   1144 
   1145 		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
   1146 			dprint(FD_FILE, "get_next_file_rand: %p\n", f);
   1147 			return f;
   1148 		}
   1149 		if (opened)
   1150 			td_io_close_file(td, f);
   1151 	} while (1);
   1152 }
   1153 
   1154 /*
   1155  * Get next file to service by doing round robin between all available ones
   1156  */
   1157 static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
   1158 					 int badf)
   1159 {
   1160 	unsigned int old_next_file = td->next_file;
   1161 	struct fio_file *f;
   1162 
   1163 	do {
   1164 		int opened = 0;
   1165 
   1166 		f = td->files[td->next_file];
   1167 
   1168 		td->next_file++;
   1169 		if (td->next_file >= td->o.nr_files)
   1170 			td->next_file = 0;
   1171 
   1172 		dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
   1173 		if (fio_file_done(f)) {
   1174 			f = NULL;
   1175 			continue;
   1176 		}
   1177 
   1178 		if (!fio_file_open(f)) {
   1179 			int err;
   1180 
   1181 			if (td->nr_open_files >= td->o.open_files)
   1182 				return ERR_PTR(-EBUSY);
   1183 
   1184 			err = td_io_open_file(td, f);
   1185 			if (err) {
   1186 				dprint(FD_FILE, "error %d on open of %s\n",
   1187 					err, f->file_name);
   1188 				f = NULL;
   1189 				continue;
   1190 			}
   1191 			opened = 1;
   1192 		}
   1193 
   1194 		dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
   1195 								f->flags);
   1196 		if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
   1197 			break;
   1198 
   1199 		if (opened)
   1200 			td_io_close_file(td, f);
   1201 
   1202 		f = NULL;
   1203 	} while (td->next_file != old_next_file);
   1204 
   1205 	dprint(FD_FILE, "get_next_file_rr: %p\n", f);
   1206 	return f;
   1207 }
   1208 
   1209 static struct fio_file *__get_next_file(struct thread_data *td)
   1210 {
   1211 	struct fio_file *f;
   1212 
   1213 	assert(td->o.nr_files <= td->files_index);
   1214 
   1215 	if (td->nr_done_files >= td->o.nr_files) {
   1216 		dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
   1217 				" nr_files=%d\n", td->nr_open_files,
   1218 						  td->nr_done_files,
   1219 						  td->o.nr_files);
   1220 		return NULL;
   1221 	}
   1222 
   1223 	f = td->file_service_file;
   1224 	if (f && fio_file_open(f) && !fio_file_closing(f)) {
   1225 		if (td->o.file_service_type == FIO_FSERVICE_SEQ)
   1226 			goto out;
   1227 		if (td->file_service_left--)
   1228 			goto out;
   1229 	}
   1230 
   1231 	if (td->o.file_service_type == FIO_FSERVICE_RR ||
   1232 	    td->o.file_service_type == FIO_FSERVICE_SEQ)
   1233 		f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
   1234 	else
   1235 		f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
   1236 
   1237 	if (IS_ERR(f))
   1238 		return f;
   1239 
   1240 	td->file_service_file = f;
   1241 	td->file_service_left = td->file_service_nr - 1;
   1242 out:
   1243 	if (f)
   1244 		dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
   1245 	else
   1246 		dprint(FD_FILE, "get_next_file: NULL\n");
   1247 	return f;
   1248 }
   1249 
   1250 static struct fio_file *get_next_file(struct thread_data *td)
   1251 {
   1252 	if (td->flags & TD_F_PROFILE_OPS) {
   1253 		struct prof_io_ops *ops = &td->prof_io_ops;
   1254 
   1255 		if (ops->get_next_file)
   1256 			return ops->get_next_file(td);
   1257 	}
   1258 
   1259 	return __get_next_file(td);
   1260 }
   1261 
   1262 static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
   1263 {
   1264 	struct fio_file *f;
   1265 
   1266 	do {
   1267 		f = get_next_file(td);
   1268 		if (IS_ERR_OR_NULL(f))
   1269 			return PTR_ERR(f);
   1270 
   1271 		io_u->file = f;
   1272 		get_file(f);
   1273 
   1274 		if (!fill_io_u(td, io_u))
   1275 			break;
   1276 
   1277 		put_file_log(td, f);
   1278 		td_io_close_file(td, f);
   1279 		io_u->file = NULL;
   1280 		if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
   1281 			fio_file_reset(td, f);
   1282 		else {
   1283 			fio_file_set_done(f);
   1284 			td->nr_done_files++;
   1285 			dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
   1286 					td->nr_done_files, td->o.nr_files);
   1287 		}
   1288 	} while (1);
   1289 
   1290 	return 0;
   1291 }
   1292 
   1293 static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
   1294 		      unsigned long tusec, unsigned long max_usec)
   1295 {
   1296 	if (!td->error)
   1297 		log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
   1298 	td_verror(td, ETIMEDOUT, "max latency exceeded");
   1299 	icd->error = ETIMEDOUT;
   1300 }
   1301 
   1302 static void lat_new_cycle(struct thread_data *td)
   1303 {
   1304 	fio_gettime(&td->latency_ts, NULL);
   1305 	td->latency_ios = ddir_rw_sum(td->io_blocks);
   1306 	td->latency_failed = 0;
   1307 }
   1308 
   1309 /*
   1310  * We had an IO outside the latency target. Reduce the queue depth. If we
   1311  * are at QD=1, then it's time to give up.
   1312  */
   1313 static bool __lat_target_failed(struct thread_data *td)
   1314 {
   1315 	if (td->latency_qd == 1)
   1316 		return true;
   1317 
   1318 	td->latency_qd_high = td->latency_qd;
   1319 
   1320 	if (td->latency_qd == td->latency_qd_low)
   1321 		td->latency_qd_low--;
   1322 
   1323 	td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
   1324 
   1325 	dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
   1326 
   1327 	/*
   1328 	 * When we ramp QD down, quiesce existing IO to prevent
   1329 	 * a storm of ramp downs due to pending higher depth.
   1330 	 */
   1331 	io_u_quiesce(td);
   1332 	lat_new_cycle(td);
   1333 	return false;
   1334 }
   1335 
   1336 static bool lat_target_failed(struct thread_data *td)
   1337 {
   1338 	if (td->o.latency_percentile.u.f == 100.0)
   1339 		return __lat_target_failed(td);
   1340 
   1341 	td->latency_failed++;
   1342 	return false;
   1343 }
   1344 
   1345 void lat_target_init(struct thread_data *td)
   1346 {
   1347 	td->latency_end_run = 0;
   1348 
   1349 	if (td->o.latency_target) {
   1350 		dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
   1351 		fio_gettime(&td->latency_ts, NULL);
   1352 		td->latency_qd = 1;
   1353 		td->latency_qd_high = td->o.iodepth;
   1354 		td->latency_qd_low = 1;
   1355 		td->latency_ios = ddir_rw_sum(td->io_blocks);
   1356 	} else
   1357 		td->latency_qd = td->o.iodepth;
   1358 }
   1359 
   1360 void lat_target_reset(struct thread_data *td)
   1361 {
   1362 	if (!td->latency_end_run)
   1363 		lat_target_init(td);
   1364 }
   1365 
   1366 static void lat_target_success(struct thread_data *td)
   1367 {
   1368 	const unsigned int qd = td->latency_qd;
   1369 	struct thread_options *o = &td->o;
   1370 
   1371 	td->latency_qd_low = td->latency_qd;
   1372 
   1373 	/*
   1374 	 * If we haven't failed yet, we double up to a failing value instead
   1375 	 * of bisecting from highest possible queue depth. If we have set
   1376 	 * a limit other than td->o.iodepth, bisect between that.
   1377 	 */
   1378 	if (td->latency_qd_high != o->iodepth)
   1379 		td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
   1380 	else
   1381 		td->latency_qd *= 2;
   1382 
   1383 	if (td->latency_qd > o->iodepth)
   1384 		td->latency_qd = o->iodepth;
   1385 
   1386 	dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
   1387 
   1388 	/*
   1389 	 * Same as last one, we are done. Let it run a latency cycle, so
   1390 	 * we get only the results from the targeted depth.
   1391 	 */
   1392 	if (td->latency_qd == qd) {
   1393 		if (td->latency_end_run) {
   1394 			dprint(FD_RATE, "We are done\n");
   1395 			td->done = 1;
   1396 		} else {
   1397 			dprint(FD_RATE, "Quiesce and final run\n");
   1398 			io_u_quiesce(td);
   1399 			td->latency_end_run = 1;
   1400 			reset_all_stats(td);
   1401 			reset_io_stats(td);
   1402 		}
   1403 	}
   1404 
   1405 	lat_new_cycle(td);
   1406 }
   1407 
   1408 /*
   1409  * Check if we can bump the queue depth
   1410  */
   1411 void lat_target_check(struct thread_data *td)
   1412 {
   1413 	uint64_t usec_window;
   1414 	uint64_t ios;
   1415 	double success_ios;
   1416 
   1417 	usec_window = utime_since_now(&td->latency_ts);
   1418 	if (usec_window < td->o.latency_window)
   1419 		return;
   1420 
   1421 	ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
   1422 	success_ios = (double) (ios - td->latency_failed) / (double) ios;
   1423 	success_ios *= 100.0;
   1424 
   1425 	dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
   1426 
   1427 	if (success_ios >= td->o.latency_percentile.u.f)
   1428 		lat_target_success(td);
   1429 	else
   1430 		__lat_target_failed(td);
   1431 }
   1432 
   1433 /*
   1434  * If latency target is enabled, we might be ramping up or down and not
   1435  * using the full queue depth available.
   1436  */
   1437 bool queue_full(const struct thread_data *td)
   1438 {
   1439 	const int qempty = io_u_qempty(&td->io_u_freelist);
   1440 
   1441 	if (qempty)
   1442 		return true;
   1443 	if (!td->o.latency_target)
   1444 		return false;
   1445 
   1446 	return td->cur_depth >= td->latency_qd;
   1447 }
   1448 
   1449 struct io_u *__get_io_u(struct thread_data *td)
   1450 {
   1451 	struct io_u *io_u = NULL;
   1452 
   1453 	if (td->stop_io)
   1454 		return NULL;
   1455 
   1456 	td_io_u_lock(td);
   1457 
   1458 again:
   1459 	if (!io_u_rempty(&td->io_u_requeues))
   1460 		io_u = io_u_rpop(&td->io_u_requeues);
   1461 	else if (!queue_full(td)) {
   1462 		io_u = io_u_qpop(&td->io_u_freelist);
   1463 
   1464 		io_u->file = NULL;
   1465 		io_u->buflen = 0;
   1466 		io_u->resid = 0;
   1467 		io_u->end_io = NULL;
   1468 	}
   1469 
   1470 	if (io_u) {
   1471 		assert(io_u->flags & IO_U_F_FREE);
   1472 		io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
   1473 				 IO_U_F_TRIMMED | IO_U_F_BARRIER |
   1474 				 IO_U_F_VER_LIST);
   1475 
   1476 		io_u->error = 0;
   1477 		io_u->acct_ddir = -1;
   1478 		td->cur_depth++;
   1479 		assert(!(td->flags & TD_F_CHILD));
   1480 		io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
   1481 		io_u->ipo = NULL;
   1482 	} else if (td_async_processing(td)) {
   1483 		/*
   1484 		 * We ran out, wait for async verify threads to finish and
   1485 		 * return one
   1486 		 */
   1487 		assert(!(td->flags & TD_F_CHILD));
   1488 		assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
   1489 		goto again;
   1490 	}
   1491 
   1492 	td_io_u_unlock(td);
   1493 	return io_u;
   1494 }
   1495 
   1496 static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
   1497 {
   1498 	if (!(td->flags & TD_F_TRIM_BACKLOG))
   1499 		return false;
   1500 
   1501 	if (td->trim_entries) {
   1502 		int get_trim = 0;
   1503 
   1504 		if (td->trim_batch) {
   1505 			td->trim_batch--;
   1506 			get_trim = 1;
   1507 		} else if (!(td->io_hist_len % td->o.trim_backlog) &&
   1508 			 td->last_ddir != DDIR_READ) {
   1509 			td->trim_batch = td->o.trim_batch;
   1510 			if (!td->trim_batch)
   1511 				td->trim_batch = td->o.trim_backlog;
   1512 			get_trim = 1;
   1513 		}
   1514 
   1515 		if (get_trim && get_next_trim(td, io_u))
   1516 			return true;
   1517 	}
   1518 
   1519 	return false;
   1520 }
   1521 
   1522 static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
   1523 {
   1524 	if (!(td->flags & TD_F_VER_BACKLOG))
   1525 		return false;
   1526 
   1527 	if (td->io_hist_len) {
   1528 		int get_verify = 0;
   1529 
   1530 		if (td->verify_batch)
   1531 			get_verify = 1;
   1532 		else if (!(td->io_hist_len % td->o.verify_backlog) &&
   1533 			 td->last_ddir != DDIR_READ) {
   1534 			td->verify_batch = td->o.verify_batch;
   1535 			if (!td->verify_batch)
   1536 				td->verify_batch = td->o.verify_backlog;
   1537 			get_verify = 1;
   1538 		}
   1539 
   1540 		if (get_verify && !get_next_verify(td, io_u)) {
   1541 			td->verify_batch--;
   1542 			return true;
   1543 		}
   1544 	}
   1545 
   1546 	return false;
   1547 }
   1548 
   1549 /*
   1550  * Fill offset and start time into the buffer content, to prevent too
   1551  * easy compressible data for simple de-dupe attempts. Do this for every
   1552  * 512b block in the range, since that should be the smallest block size
   1553  * we can expect from a device.
   1554  */
   1555 static void small_content_scramble(struct io_u *io_u)
   1556 {
   1557 	unsigned int i, nr_blocks = io_u->buflen / 512;
   1558 	uint64_t boffset;
   1559 	unsigned int offset;
   1560 	void *p, *end;
   1561 
   1562 	if (!nr_blocks)
   1563 		return;
   1564 
   1565 	p = io_u->xfer_buf;
   1566 	boffset = io_u->offset;
   1567 	io_u->buf_filled_len = 0;
   1568 
   1569 	for (i = 0; i < nr_blocks; i++) {
   1570 		/*
   1571 		 * Fill the byte offset into a "random" start offset of
   1572 		 * the buffer, given by the product of the usec time
   1573 		 * and the actual offset.
   1574 		 */
   1575 		offset = (io_u->start_time.tv_usec ^ boffset) & 511;
   1576 		offset &= ~(sizeof(uint64_t) - 1);
   1577 		if (offset >= 512 - sizeof(uint64_t))
   1578 			offset -= sizeof(uint64_t);
   1579 		memcpy(p + offset, &boffset, sizeof(boffset));
   1580 
   1581 		end = p + 512 - sizeof(io_u->start_time);
   1582 		memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
   1583 		p += 512;
   1584 		boffset += 512;
   1585 	}
   1586 }
   1587 
   1588 /*
   1589  * Return an io_u to be processed. Gets a buflen and offset, sets direction,
   1590  * etc. The returned io_u is fully ready to be prepped and submitted.
   1591  */
   1592 struct io_u *get_io_u(struct thread_data *td)
   1593 {
   1594 	struct fio_file *f;
   1595 	struct io_u *io_u;
   1596 	int do_scramble = 0;
   1597 	long ret = 0;
   1598 
   1599 	io_u = __get_io_u(td);
   1600 	if (!io_u) {
   1601 		dprint(FD_IO, "__get_io_u failed\n");
   1602 		return NULL;
   1603 	}
   1604 
   1605 	if (check_get_verify(td, io_u))
   1606 		goto out;
   1607 	if (check_get_trim(td, io_u))
   1608 		goto out;
   1609 
   1610 	/*
   1611 	 * from a requeue, io_u already setup
   1612 	 */
   1613 	if (io_u->file)
   1614 		goto out;
   1615 
   1616 	/*
   1617 	 * If using an iolog, grab next piece if any available.
   1618 	 */
   1619 	if (td->flags & TD_F_READ_IOLOG) {
   1620 		if (read_iolog_get(td, io_u))
   1621 			goto err_put;
   1622 	} else if (set_io_u_file(td, io_u)) {
   1623 		ret = -EBUSY;
   1624 		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
   1625 		goto err_put;
   1626 	}
   1627 
   1628 	f = io_u->file;
   1629 	if (!f) {
   1630 		dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
   1631 		goto err_put;
   1632 	}
   1633 
   1634 	assert(fio_file_open(f));
   1635 
   1636 	if (ddir_rw(io_u->ddir)) {
   1637 		if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
   1638 			dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
   1639 			goto err_put;
   1640 		}
   1641 
   1642 		f->last_start[io_u->ddir] = io_u->offset;
   1643 		f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
   1644 
   1645 		if (io_u->ddir == DDIR_WRITE) {
   1646 			if (td->flags & TD_F_REFILL_BUFFERS) {
   1647 				io_u_fill_buffer(td, io_u,
   1648 					td->o.min_bs[DDIR_WRITE],
   1649 					io_u->buflen);
   1650 			} else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
   1651 				   !(td->flags & TD_F_COMPRESS))
   1652 				do_scramble = 1;
   1653 			if (td->flags & TD_F_VER_NONE) {
   1654 				populate_verify_io_u(td, io_u);
   1655 				do_scramble = 0;
   1656 			}
   1657 		} else if (io_u->ddir == DDIR_READ) {
   1658 			/*
   1659 			 * Reset the buf_filled parameters so next time if the
   1660 			 * buffer is used for writes it is refilled.
   1661 			 */
   1662 			io_u->buf_filled_len = 0;
   1663 		}
   1664 	}
   1665 
   1666 	/*
   1667 	 * Set io data pointers.
   1668 	 */
   1669 	io_u->xfer_buf = io_u->buf;
   1670 	io_u->xfer_buflen = io_u->buflen;
   1671 
   1672 out:
   1673 	assert(io_u->file);
   1674 	if (!td_io_prep(td, io_u)) {
   1675 		if (!td->o.disable_lat)
   1676 			fio_gettime(&io_u->start_time, NULL);
   1677 
   1678 		if (do_scramble)
   1679 			small_content_scramble(io_u);
   1680 
   1681 		return io_u;
   1682 	}
   1683 err_put:
   1684 	dprint(FD_IO, "get_io_u failed\n");
   1685 	put_io_u(td, io_u);
   1686 	return ERR_PTR(ret);
   1687 }
   1688 
   1689 static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
   1690 {
   1691 	enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
   1692 
   1693 	if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
   1694 		return;
   1695 
   1696 	log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
   1697 		io_u->file ? " on file " : "",
   1698 		io_u->file ? io_u->file->file_name : "",
   1699 		strerror(io_u->error),
   1700 		io_ddir_name(io_u->ddir),
   1701 		io_u->offset, io_u->xfer_buflen);
   1702 
   1703 	if (td->io_ops->errdetails) {
   1704 		char *err = td->io_ops->errdetails(io_u);
   1705 
   1706 		log_err("fio: %s\n", err);
   1707 		free(err);
   1708 	}
   1709 
   1710 	if (!td->error)
   1711 		td_verror(td, io_u->error, "io_u error");
   1712 }
   1713 
   1714 void io_u_log_error(struct thread_data *td, struct io_u *io_u)
   1715 {
   1716 	__io_u_log_error(td, io_u);
   1717 	if (td->parent)
   1718 		__io_u_log_error(td->parent, io_u);
   1719 }
   1720 
   1721 static inline bool gtod_reduce(struct thread_data *td)
   1722 {
   1723 	return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
   1724 			|| td->o.gtod_reduce;
   1725 }
   1726 
   1727 static void account_io_completion(struct thread_data *td, struct io_u *io_u,
   1728 				  struct io_completion_data *icd,
   1729 				  const enum fio_ddir idx, unsigned int bytes)
   1730 {
   1731 	const int no_reduce = !gtod_reduce(td);
   1732 	unsigned long lusec = 0;
   1733 
   1734 	if (td->parent)
   1735 		td = td->parent;
   1736 
   1737 	if (!td->o.stats)
   1738 		return;
   1739 
   1740 	if (no_reduce)
   1741 		lusec = utime_since(&io_u->issue_time, &icd->time);
   1742 
   1743 	if (!td->o.disable_lat) {
   1744 		unsigned long tusec;
   1745 
   1746 		tusec = utime_since(&io_u->start_time, &icd->time);
   1747 		add_lat_sample(td, idx, tusec, bytes, io_u->offset);
   1748 
   1749 		if (td->flags & TD_F_PROFILE_OPS) {
   1750 			struct prof_io_ops *ops = &td->prof_io_ops;
   1751 
   1752 			if (ops->io_u_lat)
   1753 				icd->error = ops->io_u_lat(td, tusec);
   1754 		}
   1755 
   1756 		if (td->o.max_latency && tusec > td->o.max_latency)
   1757 			lat_fatal(td, icd, tusec, td->o.max_latency);
   1758 		if (td->o.latency_target && tusec > td->o.latency_target) {
   1759 			if (lat_target_failed(td))
   1760 				lat_fatal(td, icd, tusec, td->o.latency_target);
   1761 		}
   1762 	}
   1763 
   1764 	if (ddir_rw(idx)) {
   1765 		if (!td->o.disable_clat) {
   1766 			add_clat_sample(td, idx, lusec, bytes, io_u->offset);
   1767 			io_u_mark_latency(td, lusec);
   1768 		}
   1769 
   1770 		if (!td->o.disable_bw && per_unit_log(td->bw_log))
   1771 			add_bw_sample(td, io_u, bytes, lusec);
   1772 
   1773 		if (no_reduce && per_unit_log(td->iops_log))
   1774 			add_iops_sample(td, io_u, bytes);
   1775 	}
   1776 
   1777 	if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
   1778 		uint32_t *info = io_u_block_info(td, io_u);
   1779 		if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
   1780 			if (io_u->ddir == DDIR_TRIM) {
   1781 				*info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
   1782 						BLOCK_INFO_TRIMS(*info) + 1);
   1783 			} else if (io_u->ddir == DDIR_WRITE) {
   1784 				*info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
   1785 								*info);
   1786 			}
   1787 		}
   1788 	}
   1789 }
   1790 
   1791 static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
   1792 				uint64_t offset, unsigned int bytes)
   1793 {
   1794 	int idx;
   1795 
   1796 	if (!f)
   1797 		return;
   1798 
   1799 	if (f->first_write == -1ULL || offset < f->first_write)
   1800 		f->first_write = offset;
   1801 	if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
   1802 		f->last_write = offset + bytes;
   1803 
   1804 	if (!f->last_write_comp)
   1805 		return;
   1806 
   1807 	idx = f->last_write_idx++;
   1808 	f->last_write_comp[idx] = offset;
   1809 	if (f->last_write_idx == td->o.iodepth)
   1810 		f->last_write_idx = 0;
   1811 }
   1812 
   1813 static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
   1814 			 struct io_completion_data *icd)
   1815 {
   1816 	struct io_u *io_u = *io_u_ptr;
   1817 	enum fio_ddir ddir = io_u->ddir;
   1818 	struct fio_file *f = io_u->file;
   1819 
   1820 	dprint_io_u(io_u, "io complete");
   1821 
   1822 	assert(io_u->flags & IO_U_F_FLIGHT);
   1823 	io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
   1824 
   1825 	/*
   1826 	 * Mark IO ok to verify
   1827 	 */
   1828 	if (io_u->ipo) {
   1829 		/*
   1830 		 * Remove errored entry from the verification list
   1831 		 */
   1832 		if (io_u->error)
   1833 			unlog_io_piece(td, io_u);
   1834 		else {
   1835 			io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
   1836 			write_barrier();
   1837 		}
   1838 	}
   1839 
   1840 	if (ddir_sync(ddir)) {
   1841 		td->last_was_sync = 1;
   1842 		if (f) {
   1843 			f->first_write = -1ULL;
   1844 			f->last_write = -1ULL;
   1845 		}
   1846 		return;
   1847 	}
   1848 
   1849 	td->last_was_sync = 0;
   1850 	td->last_ddir = ddir;
   1851 
   1852 	if (!io_u->error && ddir_rw(ddir)) {
   1853 		unsigned int bytes = io_u->buflen - io_u->resid;
   1854 		int ret;
   1855 
   1856 		td->io_blocks[ddir]++;
   1857 		td->this_io_blocks[ddir]++;
   1858 		td->io_bytes[ddir] += bytes;
   1859 
   1860 		if (!(io_u->flags & IO_U_F_VER_LIST))
   1861 			td->this_io_bytes[ddir] += bytes;
   1862 
   1863 		if (ddir == DDIR_WRITE)
   1864 			file_log_write_comp(td, f, io_u->offset, bytes);
   1865 
   1866 		if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
   1867 					   td->runstate == TD_VERIFYING))
   1868 			account_io_completion(td, io_u, icd, ddir, bytes);
   1869 
   1870 		icd->bytes_done[ddir] += bytes;
   1871 
   1872 		if (io_u->end_io) {
   1873 			ret = io_u->end_io(td, io_u_ptr);
   1874 			io_u = *io_u_ptr;
   1875 			if (ret && !icd->error)
   1876 				icd->error = ret;
   1877 		}
   1878 	} else if (io_u->error) {
   1879 		icd->error = io_u->error;
   1880 		io_u_log_error(td, io_u);
   1881 	}
   1882 	if (icd->error) {
   1883 		enum error_type_bit eb = td_error_type(ddir, icd->error);
   1884 
   1885 		if (!td_non_fatal_error(td, eb, icd->error))
   1886 			return;
   1887 
   1888 		/*
   1889 		 * If there is a non_fatal error, then add to the error count
   1890 		 * and clear all the errors.
   1891 		 */
   1892 		update_error_count(td, icd->error);
   1893 		td_clear_error(td);
   1894 		icd->error = 0;
   1895 		if (io_u)
   1896 			io_u->error = 0;
   1897 	}
   1898 }
   1899 
   1900 static void init_icd(struct thread_data *td, struct io_completion_data *icd,
   1901 		     int nr)
   1902 {
   1903 	int ddir;
   1904 
   1905 	if (!gtod_reduce(td))
   1906 		fio_gettime(&icd->time, NULL);
   1907 
   1908 	icd->nr = nr;
   1909 
   1910 	icd->error = 0;
   1911 	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
   1912 		icd->bytes_done[ddir] = 0;
   1913 }
   1914 
   1915 static void ios_completed(struct thread_data *td,
   1916 			  struct io_completion_data *icd)
   1917 {
   1918 	struct io_u *io_u;
   1919 	int i;
   1920 
   1921 	for (i = 0; i < icd->nr; i++) {
   1922 		io_u = td->io_ops->event(td, i);
   1923 
   1924 		io_completed(td, &io_u, icd);
   1925 
   1926 		if (io_u)
   1927 			put_io_u(td, io_u);
   1928 	}
   1929 }
   1930 
   1931 /*
   1932  * Complete a single io_u for the sync engines.
   1933  */
   1934 int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
   1935 {
   1936 	struct io_completion_data icd;
   1937 	int ddir;
   1938 
   1939 	init_icd(td, &icd, 1);
   1940 	io_completed(td, &io_u, &icd);
   1941 
   1942 	if (io_u)
   1943 		put_io_u(td, io_u);
   1944 
   1945 	if (icd.error) {
   1946 		td_verror(td, icd.error, "io_u_sync_complete");
   1947 		return -1;
   1948 	}
   1949 
   1950 	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
   1951 		td->bytes_done[ddir] += icd.bytes_done[ddir];
   1952 
   1953 	return 0;
   1954 }
   1955 
   1956 /*
   1957  * Called to complete min_events number of io for the async engines.
   1958  */
   1959 int io_u_queued_complete(struct thread_data *td, int min_evts)
   1960 {
   1961 	struct io_completion_data icd;
   1962 	struct timespec *tvp = NULL;
   1963 	int ret, ddir;
   1964 	struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
   1965 
   1966 	dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
   1967 
   1968 	if (!min_evts)
   1969 		tvp = &ts;
   1970 	else if (min_evts > td->cur_depth)
   1971 		min_evts = td->cur_depth;
   1972 
   1973 	/* No worries, td_io_getevents fixes min and max if they are
   1974 	 * set incorrectly */
   1975 	ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
   1976 	if (ret < 0) {
   1977 		td_verror(td, -ret, "td_io_getevents");
   1978 		return ret;
   1979 	} else if (!ret)
   1980 		return ret;
   1981 
   1982 	init_icd(td, &icd, ret);
   1983 	ios_completed(td, &icd);
   1984 	if (icd.error) {
   1985 		td_verror(td, icd.error, "io_u_queued_complete");
   1986 		return -1;
   1987 	}
   1988 
   1989 	for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
   1990 		td->bytes_done[ddir] += icd.bytes_done[ddir];
   1991 
   1992 	return ret;
   1993 }
   1994 
   1995 /*
   1996  * Call when io_u is really queued, to update the submission latency.
   1997  */
   1998 void io_u_queued(struct thread_data *td, struct io_u *io_u)
   1999 {
   2000 	if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
   2001 		unsigned long slat_time;
   2002 
   2003 		slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
   2004 
   2005 		if (td->parent)
   2006 			td = td->parent;
   2007 
   2008 		add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
   2009 				io_u->offset);
   2010 	}
   2011 }
   2012 
   2013 /*
   2014  * See if we should reuse the last seed, if dedupe is enabled
   2015  */
   2016 static struct frand_state *get_buf_state(struct thread_data *td)
   2017 {
   2018 	unsigned int v;
   2019 
   2020 	if (!td->o.dedupe_percentage)
   2021 		return &td->buf_state;
   2022 	else if (td->o.dedupe_percentage == 100) {
   2023 		frand_copy(&td->buf_state_prev, &td->buf_state);
   2024 		return &td->buf_state;
   2025 	}
   2026 
   2027 	v = rand32_between(&td->dedupe_state, 1, 100);
   2028 
   2029 	if (v <= td->o.dedupe_percentage)
   2030 		return &td->buf_state_prev;
   2031 
   2032 	return &td->buf_state;
   2033 }
   2034 
   2035 static void save_buf_state(struct thread_data *td, struct frand_state *rs)
   2036 {
   2037 	if (td->o.dedupe_percentage == 100)
   2038 		frand_copy(rs, &td->buf_state_prev);
   2039 	else if (rs == &td->buf_state)
   2040 		frand_copy(&td->buf_state_prev, rs);
   2041 }
   2042 
   2043 void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
   2044 		    unsigned int max_bs)
   2045 {
   2046 	struct thread_options *o = &td->o;
   2047 
   2048 	if (o->mem_type == MEM_CUDA_MALLOC)
   2049 		return;
   2050 
   2051 	if (o->compress_percentage || o->dedupe_percentage) {
   2052 		unsigned int perc = td->o.compress_percentage;
   2053 		struct frand_state *rs;
   2054 		unsigned int left = max_bs;
   2055 		unsigned int this_write;
   2056 
   2057 		do {
   2058 			rs = get_buf_state(td);
   2059 
   2060 			min_write = min(min_write, left);
   2061 
   2062 			if (perc) {
   2063 				this_write = min_not_zero(min_write,
   2064 							td->o.compress_chunk);
   2065 
   2066 				fill_random_buf_percentage(rs, buf, perc,
   2067 					this_write, this_write,
   2068 					o->buffer_pattern,
   2069 					o->buffer_pattern_bytes);
   2070 			} else {
   2071 				fill_random_buf(rs, buf, min_write);
   2072 				this_write = min_write;
   2073 			}
   2074 
   2075 			buf += this_write;
   2076 			left -= this_write;
   2077 			save_buf_state(td, rs);
   2078 		} while (left);
   2079 	} else if (o->buffer_pattern_bytes)
   2080 		fill_buffer_pattern(td, buf, max_bs);
   2081 	else if (o->zero_buffers)
   2082 		memset(buf, 0, max_bs);
   2083 	else
   2084 		fill_random_buf(get_buf_state(td), buf, max_bs);
   2085 }
   2086 
   2087 /*
   2088  * "randomly" fill the buffer contents
   2089  */
   2090 void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
   2091 		      unsigned int min_write, unsigned int max_bs)
   2092 {
   2093 	io_u->buf_filled_len = 0;
   2094 	fill_io_buffer(td, io_u->buf, min_write, max_bs);
   2095 }
   2096 
   2097 static int do_sync_file_range(const struct thread_data *td,
   2098 			      struct fio_file *f)
   2099 {
   2100 	off64_t offset, nbytes;
   2101 
   2102 	offset = f->first_write;
   2103 	nbytes = f->last_write - f->first_write;
   2104 
   2105 	if (!nbytes)
   2106 		return 0;
   2107 
   2108 	return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
   2109 }
   2110 
   2111 int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
   2112 {
   2113 	int ret;
   2114 
   2115 	if (io_u->ddir == DDIR_SYNC) {
   2116 		ret = fsync(io_u->file->fd);
   2117 	} else if (io_u->ddir == DDIR_DATASYNC) {
   2118 #ifdef CONFIG_FDATASYNC
   2119 		ret = fdatasync(io_u->file->fd);
   2120 #else
   2121 		ret = io_u->xfer_buflen;
   2122 		io_u->error = EINVAL;
   2123 #endif
   2124 	} else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
   2125 		ret = do_sync_file_range(td, io_u->file);
   2126 	else {
   2127 		ret = io_u->xfer_buflen;
   2128 		io_u->error = EINVAL;
   2129 	}
   2130 
   2131 	if (ret < 0)
   2132 		io_u->error = errno;
   2133 
   2134 	return ret;
   2135 }
   2136 
   2137 int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
   2138 {
   2139 #ifndef FIO_HAVE_TRIM
   2140 	io_u->error = EINVAL;
   2141 	return 0;
   2142 #else
   2143 	struct fio_file *f = io_u->file;
   2144 	int ret;
   2145 
   2146 	ret = os_trim(f->fd, io_u->offset, io_u->xfer_buflen);
   2147 	if (!ret)
   2148 		return io_u->xfer_buflen;
   2149 
   2150 	io_u->error = ret;
   2151 	return 0;
   2152 #endif
   2153 }
   2154