Home | History | Annotate | Download | only in fio
      1 #include <stdlib.h>
      2 
      3 #include "fio.h"
      4 #include "steadystate.h"
      5 #include "helper_thread.h"
      6 
      7 bool steadystate_enabled = false;
      8 
      9 static void steadystate_alloc(struct thread_data *td)
     10 {
     11 	td->ss.bw_data = calloc(td->ss.dur, sizeof(uint64_t));
     12 	td->ss.iops_data = calloc(td->ss.dur, sizeof(uint64_t));
     13 
     14 	td->ss.state |= __FIO_SS_DATA;
     15 }
     16 
     17 void steadystate_setup(void)
     18 {
     19 	int i, prev_groupid;
     20 	struct thread_data *td, *prev_td;
     21 
     22 	if (!steadystate_enabled)
     23 		return;
     24 
     25 	/*
     26 	 * if group reporting is enabled, identify the last td
     27 	 * for each group and use it for storing steady state
     28 	 * data
     29 	 */
     30 	prev_groupid = -1;
     31 	prev_td = NULL;
     32 	for_each_td(td, i) {
     33 		if (!td->ss.dur)
     34 			continue;
     35 
     36 		if (!td->o.group_reporting) {
     37 			steadystate_alloc(td);
     38 			continue;
     39 		}
     40 
     41 		if (prev_groupid != td->groupid) {
     42 			if (prev_td != NULL) {
     43 				steadystate_alloc(prev_td);
     44 			}
     45 			prev_groupid = td->groupid;
     46 		}
     47 		prev_td = td;
     48 	}
     49 
     50 	if (prev_td != NULL && prev_td->o.group_reporting) {
     51 		steadystate_alloc(prev_td);
     52 	}
     53 }
     54 
     55 static bool steadystate_slope(uint64_t iops, uint64_t bw,
     56 			      struct thread_data *td)
     57 {
     58 	int i, j;
     59 	double result;
     60 	struct steadystate_data *ss = &td->ss;
     61 	uint64_t new_val;
     62 
     63 	ss->bw_data[ss->tail] = bw;
     64 	ss->iops_data[ss->tail] = iops;
     65 
     66 	if (ss->state & __FIO_SS_IOPS)
     67 		new_val = iops;
     68 	else
     69 		new_val = bw;
     70 
     71 	if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
     72 		if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
     73 			/* first time through */
     74 			for(i = 0, ss->sum_y = 0; i < ss->dur; i++) {
     75 				if (ss->state & __FIO_SS_IOPS)
     76 					ss->sum_y += ss->iops_data[i];
     77 				else
     78 					ss->sum_y += ss->bw_data[i];
     79 				j = (ss->head + i) % ss->dur;
     80 				if (ss->state & __FIO_SS_IOPS)
     81 					ss->sum_xy += i * ss->iops_data[j];
     82 				else
     83 					ss->sum_xy += i * ss->bw_data[j];
     84 			}
     85 			ss->state |= __FIO_SS_BUFFER_FULL;
     86 		} else {		/* easy to update the sums */
     87 			ss->sum_y -= ss->oldest_y;
     88 			ss->sum_y += new_val;
     89 			ss->sum_xy = ss->sum_xy - ss->sum_y + ss->dur * new_val;
     90 		}
     91 
     92 		if (ss->state & __FIO_SS_IOPS)
     93 			ss->oldest_y = ss->iops_data[ss->head];
     94 		else
     95 			ss->oldest_y = ss->bw_data[ss->head];
     96 
     97 		/*
     98 		 * calculate slope as (sum_xy - sum_x * sum_y / n) / (sum_(x^2)
     99 		 * - (sum_x)^2 / n) This code assumes that all x values are
    100 		 * equally spaced when they are often off by a few milliseconds.
    101 		 * This assumption greatly simplifies the calculations.
    102 		 */
    103 		ss->slope = (ss->sum_xy - (double) ss->sum_x * ss->sum_y / ss->dur) /
    104 				(ss->sum_x_sq - (double) ss->sum_x * ss->sum_x / ss->dur);
    105 		if (ss->state & __FIO_SS_PCT)
    106 			ss->criterion = 100.0 * ss->slope / (ss->sum_y / ss->dur);
    107 		else
    108 			ss->criterion = ss->slope;
    109 
    110 		dprint(FD_STEADYSTATE, "sum_y: %llu, sum_xy: %llu, slope: %f, "
    111 					"criterion: %f, limit: %f\n",
    112 					(unsigned long long) ss->sum_y,
    113 					(unsigned long long) ss->sum_xy,
    114 					ss->slope, ss->criterion, ss->limit);
    115 
    116 		result = ss->criterion * (ss->criterion < 0.0 ? -1.0 : 1.0);
    117 		if (result < ss->limit)
    118 			return true;
    119 	}
    120 
    121 	ss->tail = (ss->tail + 1) % ss->dur;
    122 	if (ss->tail <= ss->head)
    123 		ss->head = (ss->head + 1) % ss->dur;
    124 
    125 	return false;
    126 }
    127 
    128 static bool steadystate_deviation(uint64_t iops, uint64_t bw,
    129 				  struct thread_data *td)
    130 {
    131 	int i;
    132 	double diff;
    133 	double mean;
    134 
    135 	struct steadystate_data *ss = &td->ss;
    136 
    137 	ss->bw_data[ss->tail] = bw;
    138 	ss->iops_data[ss->tail] = iops;
    139 
    140 	if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
    141 		if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
    142 			/* first time through */
    143 			for(i = 0, ss->sum_y = 0; i < ss->dur; i++)
    144 				if (ss->state & __FIO_SS_IOPS)
    145 					ss->sum_y += ss->iops_data[i];
    146 				else
    147 					ss->sum_y += ss->bw_data[i];
    148 			ss->state |= __FIO_SS_BUFFER_FULL;
    149 		} else {		/* easy to update the sum */
    150 			ss->sum_y -= ss->oldest_y;
    151 			if (ss->state & __FIO_SS_IOPS)
    152 				ss->sum_y += ss->iops_data[ss->tail];
    153 			else
    154 				ss->sum_y += ss->bw_data[ss->tail];
    155 		}
    156 
    157 		if (ss->state & __FIO_SS_IOPS)
    158 			ss->oldest_y = ss->iops_data[ss->head];
    159 		else
    160 			ss->oldest_y = ss->bw_data[ss->head];
    161 
    162 		mean = (double) ss->sum_y / ss->dur;
    163 		ss->deviation = 0.0;
    164 
    165 		for (i = 0; i < ss->dur; i++) {
    166 			if (ss->state & __FIO_SS_IOPS)
    167 				diff = ss->iops_data[i] - mean;
    168 			else
    169 				diff = ss->bw_data[i] - mean;
    170 			ss->deviation = max(ss->deviation, diff * (diff < 0.0 ? -1.0 : 1.0));
    171 		}
    172 
    173 		if (ss->state & __FIO_SS_PCT)
    174 			ss->criterion = 100.0 * ss->deviation / mean;
    175 		else
    176 			ss->criterion = ss->deviation;
    177 
    178 		dprint(FD_STEADYSTATE, "sum_y: %llu, mean: %f, max diff: %f, "
    179 					"objective: %f, limit: %f\n",
    180 					(unsigned long long) ss->sum_y, mean,
    181 					ss->deviation, ss->criterion, ss->limit);
    182 
    183 		if (ss->criterion < ss->limit)
    184 			return true;
    185 	}
    186 
    187 	ss->tail = (ss->tail + 1) % ss->dur;
    188 	if (ss->tail <= ss->head)
    189 		ss->head = (ss->head + 1) % ss->dur;
    190 
    191 	return false;
    192 }
    193 
    194 void steadystate_check(void)
    195 {
    196 	int i, j, ddir, prev_groupid, group_ramp_time_over = 0;
    197 	unsigned long rate_time;
    198 	struct thread_data *td, *td2;
    199 	struct timeval now;
    200 	uint64_t group_bw = 0, group_iops = 0;
    201 	uint64_t td_iops, td_bytes;
    202 	bool ret;
    203 
    204 	prev_groupid = -1;
    205 	for_each_td(td, i) {
    206 		struct steadystate_data *ss = &td->ss;
    207 
    208 		if (!ss->dur || td->runstate <= TD_SETTING_UP ||
    209 		    td->runstate >= TD_EXITED || !ss->state ||
    210 		    ss->state & __FIO_SS_ATTAINED)
    211 			continue;
    212 
    213 		td_iops = 0;
    214 		td_bytes = 0;
    215 		if (!td->o.group_reporting ||
    216 		    (td->o.group_reporting && td->groupid != prev_groupid)) {
    217 			group_bw = 0;
    218 			group_iops = 0;
    219 			group_ramp_time_over = 0;
    220 		}
    221 		prev_groupid = td->groupid;
    222 
    223 		fio_gettime(&now, NULL);
    224 		if (ss->ramp_time && !(ss->state & __FIO_SS_RAMP_OVER)) {
    225 			/*
    226 			 * Begin recording data one second after ss->ramp_time
    227 			 * has elapsed
    228 			 */
    229 			if (utime_since(&td->epoch, &now) >= (ss->ramp_time + 1000000L))
    230 				ss->state |= __FIO_SS_RAMP_OVER;
    231 		}
    232 
    233 		td_io_u_lock(td);
    234 		for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
    235 			td_iops += td->io_blocks[ddir];
    236 			td_bytes += td->io_bytes[ddir];
    237 		}
    238 		td_io_u_unlock(td);
    239 
    240 		rate_time = mtime_since(&ss->prev_time, &now);
    241 		memcpy(&ss->prev_time, &now, sizeof(now));
    242 
    243 		/*
    244 		 * Begin monitoring when job starts but don't actually use
    245 		 * data in checking stopping criterion until ss->ramp_time is
    246 		 * over. This ensures that we will have a sane value in
    247 		 * prev_iops/bw the first time through after ss->ramp_time
    248 		 * is done.
    249 		 */
    250 		if (ss->state & __FIO_SS_RAMP_OVER) {
    251 			group_bw += 1000 * (td_bytes - ss->prev_bytes) / rate_time;
    252 			group_iops += 1000 * (td_iops - ss->prev_iops) / rate_time;
    253 			++group_ramp_time_over;
    254 		}
    255 		ss->prev_iops = td_iops;
    256 		ss->prev_bytes = td_bytes;
    257 
    258 		if (td->o.group_reporting && !(ss->state & __FIO_SS_DATA))
    259 			continue;
    260 
    261 		/*
    262 		 * Don't begin checking criterion until ss->ramp_time is over
    263 		 * for at least one thread in group
    264 		 */
    265 		if (!group_ramp_time_over)
    266 			continue;
    267 
    268 		dprint(FD_STEADYSTATE, "steadystate_check() thread: %d, "
    269 					"groupid: %u, rate_msec: %ld, "
    270 					"iops: %llu, bw: %llu, head: %d, tail: %d\n",
    271 					i, td->groupid, rate_time,
    272 					(unsigned long long) group_iops,
    273 					(unsigned long long) group_bw,
    274 					ss->head, ss->tail);
    275 
    276 		if (ss->state & __FIO_SS_SLOPE)
    277 			ret = steadystate_slope(group_iops, group_bw, td);
    278 		else
    279 			ret = steadystate_deviation(group_iops, group_bw, td);
    280 
    281 		if (ret) {
    282 			if (td->o.group_reporting) {
    283 				for_each_td(td2, j) {
    284 					if (td2->groupid == td->groupid) {
    285 						td2->ss.state |= __FIO_SS_ATTAINED;
    286 						fio_mark_td_terminate(td2);
    287 					}
    288 				}
    289 			} else {
    290 				ss->state |= __FIO_SS_ATTAINED;
    291 				fio_mark_td_terminate(td);
    292 			}
    293 		}
    294 	}
    295 }
    296 
    297 int td_steadystate_init(struct thread_data *td)
    298 {
    299 	struct steadystate_data *ss = &td->ss;
    300 	struct thread_options *o = &td->o;
    301 	struct thread_data *td2;
    302 	int j;
    303 
    304 	memset(ss, 0, sizeof(*ss));
    305 
    306 	if (o->ss_dur) {
    307 		steadystate_enabled = true;
    308 		o->ss_dur /= 1000000L;
    309 
    310 		/* put all steady state info in one place */
    311 		ss->dur = o->ss_dur;
    312 		ss->limit = o->ss_limit.u.f;
    313 		ss->ramp_time = o->ss_ramp_time;
    314 
    315 		ss->state = o->ss_state;
    316 		if (!td->ss.ramp_time)
    317 			ss->state |= __FIO_SS_RAMP_OVER;
    318 
    319 		ss->sum_x = o->ss_dur * (o->ss_dur - 1) / 2;
    320 		ss->sum_x_sq = (o->ss_dur - 1) * (o->ss_dur) * (2*o->ss_dur - 1) / 6;
    321 	}
    322 
    323 	/* make sure that ss options are consistent within reporting group */
    324 	for_each_td(td2, j) {
    325 		if (td2->groupid == td->groupid) {
    326 			struct steadystate_data *ss2 = &td2->ss;
    327 
    328 			if (ss2->dur != ss->dur ||
    329 			    ss2->limit != ss->limit ||
    330 			    ss2->ramp_time != ss->ramp_time ||
    331 			    ss2->state != ss->state ||
    332 			    ss2->sum_x != ss->sum_x ||
    333 			    ss2->sum_x_sq != ss->sum_x_sq) {
    334 				td_verror(td, EINVAL, "job rejected: steadystate options must be consistent within reporting groups");
    335 				return 1;
    336 			}
    337 		}
    338 	}
    339 
    340 	return 0;
    341 }
    342 
    343 uint64_t steadystate_bw_mean(struct thread_stat *ts)
    344 {
    345 	int i;
    346 	uint64_t sum;
    347 
    348 	for (i = 0, sum = 0; i < ts->ss_dur; i++)
    349 		sum += ts->ss_bw_data[i];
    350 
    351 	return sum / ts->ss_dur;
    352 }
    353 
    354 uint64_t steadystate_iops_mean(struct thread_stat *ts)
    355 {
    356 	int i;
    357 	uint64_t sum;
    358 
    359 	for (i = 0, sum = 0; i < ts->ss_dur; i++)
    360 		sum += ts->ss_iops_data[i];
    361 
    362 	return sum / ts->ss_dur;
    363 }
    364