Home | History | Annotate | Download | only in internal
      1 /***************************************************************************/
      2 /*                                                                         */
      3 /*  ftcalc.h                                                               */
      4 /*                                                                         */
      5 /*    Arithmetic computations (specification).                             */
      6 /*                                                                         */
      7 /*  Copyright 1996-2018 by                                                 */
      8 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
      9 /*                                                                         */
     10 /*  This file is part of the FreeType project, and may only be used,       */
     11 /*  modified, and distributed under the terms of the FreeType project      */
     12 /*  license, LICENSE.TXT.  By continuing to use, modify, or distribute     */
     13 /*  this file you indicate that you have read the license and              */
     14 /*  understand and accept it fully.                                        */
     15 /*                                                                         */
     16 /***************************************************************************/
     17 
     18 
     19 #ifndef FTCALC_H_
     20 #define FTCALC_H_
     21 
     22 
     23 #include <ft2build.h>
     24 #include FT_FREETYPE_H
     25 
     26 
     27 FT_BEGIN_HEADER
     28 
     29 
     30   /*************************************************************************/
     31   /*                                                                       */
     32   /* FT_MulDiv() and FT_MulFix() are declared in freetype.h.               */
     33   /*                                                                       */
     34   /*************************************************************************/
     35 
     36 #ifndef  FT_CONFIG_OPTION_NO_ASSEMBLER
     37   /* Provide assembler fragments for performance-critical functions. */
     38   /* These must be defined `static __inline__' with GCC.             */
     39 
     40 #if defined( __CC_ARM ) || defined( __ARMCC__ )  /* RVCT */
     41 
     42 #define FT_MULFIX_ASSEMBLER  FT_MulFix_arm
     43 
     44   /* documentation is in freetype.h */
     45 
     46   static __inline FT_Int32
     47   FT_MulFix_arm( FT_Int32  a,
     48                  FT_Int32  b )
     49   {
     50     FT_Int32  t, t2;
     51 
     52 
     53     __asm
     54     {
     55       smull t2, t,  b,  a           /* (lo=t2,hi=t) = a*b */
     56       mov   a,  t,  asr #31         /* a   = (hi >> 31) */
     57       add   a,  a,  #0x8000         /* a  += 0x8000 */
     58       adds  t2, t2, a               /* t2 += a */
     59       adc   t,  t,  #0              /* t  += carry */
     60       mov   a,  t2, lsr #16         /* a   = t2 >> 16 */
     61       orr   a,  a,  t,  lsl #16     /* a  |= t << 16 */
     62     }
     63     return a;
     64   }
     65 
     66 #endif /* __CC_ARM || __ARMCC__ */
     67 
     68 
     69 #ifdef __GNUC__
     70 
     71 #if defined( __arm__ )                                 && \
     72     ( !defined( __thumb__ ) || defined( __thumb2__ ) ) && \
     73     !( defined( __CC_ARM ) || defined( __ARMCC__ ) )
     74 
     75 #define FT_MULFIX_ASSEMBLER  FT_MulFix_arm
     76 
     77   /* documentation is in freetype.h */
     78 
     79   static __inline__ FT_Int32
     80   FT_MulFix_arm( FT_Int32  a,
     81                  FT_Int32  b )
     82   {
     83     FT_Int32  t, t2;
     84 
     85 
     86     __asm__ __volatile__ (
     87       "smull  %1, %2, %4, %3\n\t"       /* (lo=%1,hi=%2) = a*b */
     88       "mov    %0, %2, asr #31\n\t"      /* %0  = (hi >> 31) */
     89 #if defined( __clang__ ) && defined( __thumb2__ )
     90       "add.w  %0, %0, #0x8000\n\t"      /* %0 += 0x8000 */
     91 #else
     92       "add    %0, %0, #0x8000\n\t"      /* %0 += 0x8000 */
     93 #endif
     94       "adds   %1, %1, %0\n\t"           /* %1 += %0 */
     95       "adc    %2, %2, #0\n\t"           /* %2 += carry */
     96       "mov    %0, %1, lsr #16\n\t"      /* %0  = %1 >> 16 */
     97       "orr    %0, %0, %2, lsl #16\n\t"  /* %0 |= %2 << 16 */
     98       : "=r"(a), "=&r"(t2), "=&r"(t)
     99       : "r"(a), "r"(b)
    100       : "cc" );
    101     return a;
    102   }
    103 
    104 #endif /* __arm__                      && */
    105        /* ( __thumb2__ || !__thumb__ ) && */
    106        /* !( __CC_ARM || __ARMCC__ )      */
    107 
    108 
    109 #if defined( __i386__ )
    110 
    111 #define FT_MULFIX_ASSEMBLER  FT_MulFix_i386
    112 
    113   /* documentation is in freetype.h */
    114 
    115   static __inline__ FT_Int32
    116   FT_MulFix_i386( FT_Int32  a,
    117                   FT_Int32  b )
    118   {
    119     FT_Int32  result;
    120 
    121 
    122     __asm__ __volatile__ (
    123       "imul  %%edx\n"
    124       "movl  %%edx, %%ecx\n"
    125       "sarl  $31, %%ecx\n"
    126       "addl  $0x8000, %%ecx\n"
    127       "addl  %%ecx, %%eax\n"
    128       "adcl  $0, %%edx\n"
    129       "shrl  $16, %%eax\n"
    130       "shll  $16, %%edx\n"
    131       "addl  %%edx, %%eax\n"
    132       : "=a"(result), "=d"(b)
    133       : "a"(a), "d"(b)
    134       : "%ecx", "cc" );
    135     return result;
    136   }
    137 
    138 #endif /* i386 */
    139 
    140 #endif /* __GNUC__ */
    141 
    142 
    143 #ifdef _MSC_VER /* Visual C++ */
    144 
    145 #ifdef _M_IX86
    146 
    147 #define FT_MULFIX_ASSEMBLER  FT_MulFix_i386
    148 
    149   /* documentation is in freetype.h */
    150 
    151   static __inline FT_Int32
    152   FT_MulFix_i386( FT_Int32  a,
    153                   FT_Int32  b )
    154   {
    155     FT_Int32  result;
    156 
    157     __asm
    158     {
    159       mov eax, a
    160       mov edx, b
    161       imul edx
    162       mov ecx, edx
    163       sar ecx, 31
    164       add ecx, 8000h
    165       add eax, ecx
    166       adc edx, 0
    167       shr eax, 16
    168       shl edx, 16
    169       add eax, edx
    170       mov result, eax
    171     }
    172     return result;
    173   }
    174 
    175 #endif /* _M_IX86 */
    176 
    177 #endif /* _MSC_VER */
    178 
    179 
    180 #if defined( __GNUC__ ) && defined( __x86_64__ )
    181 
    182 #define FT_MULFIX_ASSEMBLER  FT_MulFix_x86_64
    183 
    184   static __inline__ FT_Int32
    185   FT_MulFix_x86_64( FT_Int32  a,
    186                     FT_Int32  b )
    187   {
    188     /* Temporarily disable the warning that C90 doesn't support */
    189     /* `long long'.                                             */
    190 #if __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 6 )
    191 #pragma GCC diagnostic push
    192 #pragma GCC diagnostic ignored "-Wlong-long"
    193 #endif
    194 
    195 #if 1
    196     /* Technically not an assembly fragment, but GCC does a really good */
    197     /* job at inlining it and generating good machine code for it.      */
    198     long long  ret, tmp;
    199 
    200 
    201     ret  = (long long)a * b;
    202     tmp  = ret >> 63;
    203     ret += 0x8000 + tmp;
    204 
    205     return (FT_Int32)( ret >> 16 );
    206 #else
    207 
    208     /* For some reason, GCC 4.6 on Ubuntu 12.04 generates invalid machine  */
    209     /* code from the lines below.  The main issue is that `wide_a' is not  */
    210     /* properly initialized by sign-extending `a'.  Instead, the generated */
    211     /* machine code assumes that the register that contains `a' on input   */
    212     /* can be used directly as a 64-bit value, which is wrong most of the  */
    213     /* time.                                                               */
    214     long long  wide_a = (long long)a;
    215     long long  wide_b = (long long)b;
    216     long long  result;
    217 
    218 
    219     __asm__ __volatile__ (
    220       "imul %2, %1\n"
    221       "mov %1, %0\n"
    222       "sar $63, %0\n"
    223       "lea 0x8000(%1, %0), %0\n"
    224       "sar $16, %0\n"
    225       : "=&r"(result), "=&r"(wide_a)
    226       : "r"(wide_b)
    227       : "cc" );
    228 
    229     return (FT_Int32)result;
    230 #endif
    231 
    232 #if __GNUC__ > 4 || ( __GNUC__ == 4 && __GNUC_MINOR__ >= 6 )
    233 #pragma GCC diagnostic pop
    234 #endif
    235   }
    236 
    237 #endif /* __GNUC__ && __x86_64__ */
    238 
    239 #endif /* !FT_CONFIG_OPTION_NO_ASSEMBLER */
    240 
    241 
    242 #ifdef FT_CONFIG_OPTION_INLINE_MULFIX
    243 #ifdef FT_MULFIX_ASSEMBLER
    244 #define FT_MulFix( a, b )  FT_MULFIX_ASSEMBLER( (FT_Int32)(a), (FT_Int32)(b) )
    245 #endif
    246 #endif
    247 
    248 
    249   /*************************************************************************/
    250   /*                                                                       */
    251   /* <Function>                                                            */
    252   /*    FT_MulDiv_No_Round                                                 */
    253   /*                                                                       */
    254   /* <Description>                                                         */
    255   /*    A very simple function used to perform the computation `(a*b)/c'   */
    256   /*    (without rounding) with maximum accuracy (it uses a 64-bit         */
    257   /*    intermediate integer whenever necessary).                          */
    258   /*                                                                       */
    259   /*    This function isn't necessarily as fast as some processor specific */
    260   /*    operations, but is at least completely portable.                   */
    261   /*                                                                       */
    262   /* <Input>                                                               */
    263   /*    a :: The first multiplier.                                         */
    264   /*    b :: The second multiplier.                                        */
    265   /*    c :: The divisor.                                                  */
    266   /*                                                                       */
    267   /* <Return>                                                              */
    268   /*    The result of `(a*b)/c'.  This function never traps when trying to */
    269   /*    divide by zero; it simply returns `MaxInt' or `MinInt' depending   */
    270   /*    on the signs of `a' and `b'.                                       */
    271   /*                                                                       */
    272   FT_BASE( FT_Long )
    273   FT_MulDiv_No_Round( FT_Long  a,
    274                       FT_Long  b,
    275                       FT_Long  c );
    276 
    277 
    278   /*
    279    *  A variant of FT_Matrix_Multiply which scales its result afterwards.
    280    *  The idea is that both `a' and `b' are scaled by factors of 10 so that
    281    *  the values are as precise as possible to get a correct result during
    282    *  the 64bit multiplication.  Let `sa' and `sb' be the scaling factors of
    283    *  `a' and `b', respectively, then the scaling factor of the result is
    284    *  `sa*sb'.
    285    */
    286   FT_BASE( void )
    287   FT_Matrix_Multiply_Scaled( const FT_Matrix*  a,
    288                              FT_Matrix        *b,
    289                              FT_Long           scaling );
    290 
    291 
    292   /*
    293    *  A variant of FT_Vector_Transform.  See comments for
    294    *  FT_Matrix_Multiply_Scaled.
    295    */
    296   FT_BASE( void )
    297   FT_Vector_Transform_Scaled( FT_Vector*        vector,
    298                               const FT_Matrix*  matrix,
    299                               FT_Long           scaling );
    300 
    301 
    302   /*
    303    *  This function normalizes a vector and returns its original length.
    304    *  The normalized vector is a 16.16 fixed-point unit vector with length
    305    *  close to 0x10000.  The accuracy of the returned length is limited to
    306    *  16 bits also.  The function utilizes quick inverse square root
    307    *  approximation without divisions and square roots relying on Newton's
    308    *  iterations instead.
    309    */
    310   FT_BASE( FT_UInt32 )
    311   FT_Vector_NormLen( FT_Vector*  vector );
    312 
    313 
    314   /*
    315    *  Return -1, 0, or +1, depending on the orientation of a given corner.
    316    *  We use the Cartesian coordinate system, with positive vertical values
    317    *  going upwards.  The function returns +1 if the corner turns to the
    318    *  left, -1 to the right, and 0 for undecidable cases.
    319    */
    320   FT_BASE( FT_Int )
    321   ft_corner_orientation( FT_Pos  in_x,
    322                          FT_Pos  in_y,
    323                          FT_Pos  out_x,
    324                          FT_Pos  out_y );
    325 
    326 
    327   /*
    328    *  Return TRUE if a corner is flat or nearly flat.  This is equivalent to
    329    *  saying that the corner point is close to its neighbors, or inside an
    330    *  ellipse defined by the neighbor focal points to be more precise.
    331    */
    332   FT_BASE( FT_Int )
    333   ft_corner_is_flat( FT_Pos  in_x,
    334                      FT_Pos  in_y,
    335                      FT_Pos  out_x,
    336                      FT_Pos  out_y );
    337 
    338 
    339   /*
    340    *  Return the most significant bit index.
    341    */
    342 
    343 #ifndef  FT_CONFIG_OPTION_NO_ASSEMBLER
    344 #if defined( __GNUC__ )                                          && \
    345     ( __GNUC__ > 3 || ( __GNUC__ == 3 && __GNUC_MINOR__ >= 4 ) )
    346 
    347 #if FT_SIZEOF_INT == 4
    348 
    349 #define FT_MSB( x )  ( 31 - __builtin_clz( x ) )
    350 
    351 #elif FT_SIZEOF_LONG == 4
    352 
    353 #define FT_MSB( x )  ( 31 - __builtin_clzl( x ) )
    354 
    355 #endif
    356 
    357 #endif /* __GNUC__ */
    358 #endif /* !FT_CONFIG_OPTION_NO_ASSEMBLER */
    359 
    360 #ifndef FT_MSB
    361 
    362   FT_BASE( FT_Int )
    363   FT_MSB( FT_UInt32  z );
    364 
    365 #endif
    366 
    367 
    368   /*
    369    *  Return sqrt(x*x+y*y), which is the same as `FT_Vector_Length' but uses
    370    *  two fixed-point arguments instead.
    371    */
    372   FT_BASE( FT_Fixed )
    373   FT_Hypot( FT_Fixed  x,
    374             FT_Fixed  y );
    375 
    376 
    377 #if 0
    378 
    379   /*************************************************************************/
    380   /*                                                                       */
    381   /* <Function>                                                            */
    382   /*    FT_SqrtFixed                                                       */
    383   /*                                                                       */
    384   /* <Description>                                                         */
    385   /*    Computes the square root of a 16.16 fixed-point value.             */
    386   /*                                                                       */
    387   /* <Input>                                                               */
    388   /*    x :: The value to compute the root for.                            */
    389   /*                                                                       */
    390   /* <Return>                                                              */
    391   /*    The result of `sqrt(x)'.                                           */
    392   /*                                                                       */
    393   /* <Note>                                                                */
    394   /*    This function is not very fast.                                    */
    395   /*                                                                       */
    396   FT_BASE( FT_Int32 )
    397   FT_SqrtFixed( FT_Int32  x );
    398 
    399 #endif /* 0 */
    400 
    401 
    402 #define INT_TO_F26DOT6( x )    ( (FT_Long)(x) * 64  )    /* << 6  */
    403 #define INT_TO_F2DOT14( x )    ( (FT_Long)(x) * 16384 )  /* << 14 */
    404 #define INT_TO_FIXED( x )      ( (FT_Long)(x) * 65536 )  /* << 16 */
    405 #define F2DOT14_TO_FIXED( x )  ( (FT_Long)(x) * 4 )      /* << 2  */
    406 #define FIXED_TO_INT( x )      ( FT_RoundFix( x ) >> 16 )
    407 
    408 #define ROUND_F26DOT6( x )     ( x >= 0 ? (    ( (x) + 32 ) & -64 )     \
    409                                         : ( -( ( 32 - (x) ) & -64 ) ) )
    410 
    411   /*
    412    *  The following macros have two purposes.
    413    *
    414    *  . Tag places where overflow is expected and harmless.
    415    *
    416    *  . Avoid run-time sanitizer errors.
    417    *
    418    *  Use with care!
    419    */
    420 #define ADD_LONG( a, b )                             \
    421           (FT_Long)( (FT_ULong)(a) + (FT_ULong)(b) )
    422 #define SUB_LONG( a, b )                             \
    423           (FT_Long)( (FT_ULong)(a) - (FT_ULong)(b) )
    424 #define MUL_LONG( a, b )                             \
    425           (FT_Long)( (FT_ULong)(a) * (FT_ULong)(b) )
    426 #define NEG_LONG( a )                                \
    427           (FT_Long)( (FT_ULong)0 - (FT_ULong)(a) )
    428 
    429 #define ADD_INT32( a, b )                               \
    430           (FT_Int32)( (FT_UInt32)(a) + (FT_UInt32)(b) )
    431 #define SUB_INT32( a, b )                               \
    432           (FT_Int32)( (FT_UInt32)(a) - (FT_UInt32)(b) )
    433 #define MUL_INT32( a, b )                               \
    434           (FT_Int32)( (FT_UInt32)(a) * (FT_UInt32)(b) )
    435 #define NEG_INT32( a )                                  \
    436           (FT_Int32)( (FT_UInt32)0 - (FT_UInt32)(a) )
    437 
    438 
    439 FT_END_HEADER
    440 
    441 #endif /* FTCALC_H_ */
    442 
    443 
    444 /* END */
    445