1 # benchmark
2 [![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark)
3 [![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master)
4 [![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark)
5
6 A library to support the benchmarking of functions, similar to unit-tests.
7
8 Discussion group: https://groups.google.com/d/forum/benchmark-discuss
9
10 IRC channel: https://freenode.net #googlebenchmark
11
12 [Known issues and common problems](#known-issues)
13
14 [Additional Tooling Documentation](docs/tools.md)
15
16
17 ## Building
18
19 The basic steps for configuring and building the library look like this:
20
21 ```bash
22 $ git clone https://github.com/google/benchmark.git
23 # Benchmark requires GTest as a dependency. Add the source tree as a subdirectory.
24 $ git clone https://github.com/google/googletest.git benchmark/googletest
25 $ mkdir build && cd build
26 $ cmake -G <generator> [options] ../benchmark
27 # Assuming a makefile generator was used
28 $ make
29 ```
30
31 Note that Google Benchmark requires GTest to build and run the tests. This
32 dependency can be provided three ways:
33
34 * Checkout the GTest sources into `benchmark/googletest`.
35 * Otherwise, if `-DBENCHMARK_DOWNLOAD_DEPENDENCIES=ON` is specified during
36 configuration, the library will automatically download and build any required
37 dependencies.
38 * Otherwise, if nothing is done, CMake will use `find_package(GTest REQUIRED)`
39 to resolve the required GTest dependency.
40
41
42 ## Installation Guide
43
44 For Ubuntu and Debian Based System
45
46 First make sure you have git and cmake installed (If not please install it)
47
48 ```
49 sudo apt-get install git
50 sudo apt-get install cmake
51 ```
52
53 Now, let's clone the repository and build it
54
55 ```
56 git clone https://github.com/google/benchmark.git
57 cd benchmark
58 mkdir build
59 cd build
60 cmake .. -DCMAKE_BUILD_TYPE=RELEASE
61 make
62 ```
63
64 We need to install the library globally now
65
66 ```
67 sudo make install
68 ```
69
70 Now you have google/benchmark installed in your machine
71 Note: Don't forget to link to pthread library while building
72
73 ## Stable and Experimental Library Versions
74
75 The main branch contains the latest stable version of the benchmarking library;
76 the API of which can be considered largely stable, with source breaking changes
77 being made only upon the release of a new major version.
78
79 Newer, experimental, features are implemented and tested on the
80 [`v2` branch](https://github.com/google/benchmark/tree/v2). Users who wish
81 to use, test, and provide feedback on the new features are encouraged to try
82 this branch. However, this branch provides no stability guarantees and reserves
83 the right to change and break the API at any time.
84
85
86 ## Example usage
87 ### Basic usage
88 Define a function that executes the code to be measured.
89
90 ```c++
91 #include <benchmark/benchmark.h>
92
93 static void BM_StringCreation(benchmark::State& state) {
94 for (auto _ : state)
95 std::string empty_string;
96 }
97 // Register the function as a benchmark
98 BENCHMARK(BM_StringCreation);
99
100 // Define another benchmark
101 static void BM_StringCopy(benchmark::State& state) {
102 std::string x = "hello";
103 for (auto _ : state)
104 std::string copy(x);
105 }
106 BENCHMARK(BM_StringCopy);
107
108 BENCHMARK_MAIN();
109 ```
110
111 Don't forget to inform your linker to add benchmark library e.g. through `-lbenchmark` compilation flag.
112
113 The benchmark library will reporting the timing for the code within the `for(...)` loop.
114
115 ### Passing arguments
116 Sometimes a family of benchmarks can be implemented with just one routine that
117 takes an extra argument to specify which one of the family of benchmarks to
118 run. For example, the following code defines a family of benchmarks for
119 measuring the speed of `memcpy()` calls of different lengths:
120
121 ```c++
122 static void BM_memcpy(benchmark::State& state) {
123 char* src = new char[state.range(0)];
124 char* dst = new char[state.range(0)];
125 memset(src, 'x', state.range(0));
126 for (auto _ : state)
127 memcpy(dst, src, state.range(0));
128 state.SetBytesProcessed(int64_t(state.iterations()) *
129 int64_t(state.range(0)));
130 delete[] src;
131 delete[] dst;
132 }
133 BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
134 ```
135
136 The preceding code is quite repetitive, and can be replaced with the following
137 short-hand. The following invocation will pick a few appropriate arguments in
138 the specified range and will generate a benchmark for each such argument.
139
140 ```c++
141 BENCHMARK(BM_memcpy)->Range(8, 8<<10);
142 ```
143
144 By default the arguments in the range are generated in multiples of eight and
145 the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
146 range multiplier is changed to multiples of two.
147
148 ```c++
149 BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
150 ```
151 Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
152
153 You might have a benchmark that depends on two or more inputs. For example, the
154 following code defines a family of benchmarks for measuring the speed of set
155 insertion.
156
157 ```c++
158 static void BM_SetInsert(benchmark::State& state) {
159 std::set<int> data;
160 for (auto _ : state) {
161 state.PauseTiming();
162 data = ConstructRandomSet(state.range(0));
163 state.ResumeTiming();
164 for (int j = 0; j < state.range(1); ++j)
165 data.insert(RandomNumber());
166 }
167 }
168 BENCHMARK(BM_SetInsert)
169 ->Args({1<<10, 128})
170 ->Args({2<<10, 128})
171 ->Args({4<<10, 128})
172 ->Args({8<<10, 128})
173 ->Args({1<<10, 512})
174 ->Args({2<<10, 512})
175 ->Args({4<<10, 512})
176 ->Args({8<<10, 512});
177 ```
178
179 The preceding code is quite repetitive, and can be replaced with the following
180 short-hand. The following macro will pick a few appropriate arguments in the
181 product of the two specified ranges and will generate a benchmark for each such
182 pair.
183
184 ```c++
185 BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
186 ```
187
188 For more complex patterns of inputs, passing a custom function to `Apply` allows
189 programmatic specification of an arbitrary set of arguments on which to run the
190 benchmark. The following example enumerates a dense range on one parameter,
191 and a sparse range on the second.
192
193 ```c++
194 static void CustomArguments(benchmark::internal::Benchmark* b) {
195 for (int i = 0; i <= 10; ++i)
196 for (int j = 32; j <= 1024*1024; j *= 8)
197 b->Args({i, j});
198 }
199 BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
200 ```
201
202 ### Calculate asymptotic complexity (Big O)
203 Asymptotic complexity might be calculated for a family of benchmarks. The
204 following code will calculate the coefficient for the high-order term in the
205 running time and the normalized root-mean square error of string comparison.
206
207 ```c++
208 static void BM_StringCompare(benchmark::State& state) {
209 std::string s1(state.range(0), '-');
210 std::string s2(state.range(0), '-');
211 for (auto _ : state) {
212 benchmark::DoNotOptimize(s1.compare(s2));
213 }
214 state.SetComplexityN(state.range(0));
215 }
216 BENCHMARK(BM_StringCompare)
217 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
218 ```
219
220 As shown in the following invocation, asymptotic complexity might also be
221 calculated automatically.
222
223 ```c++
224 BENCHMARK(BM_StringCompare)
225 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
226 ```
227
228 The following code will specify asymptotic complexity with a lambda function,
229 that might be used to customize high-order term calculation.
230
231 ```c++
232 BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
233 ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; });
234 ```
235
236 ### Templated benchmarks
237 Templated benchmarks work the same way: This example produces and consumes
238 messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the
239 absence of multiprogramming.
240
241 ```c++
242 template <class Q> int BM_Sequential(benchmark::State& state) {
243 Q q;
244 typename Q::value_type v;
245 for (auto _ : state) {
246 for (int i = state.range(0); i--; )
247 q.push(v);
248 for (int e = state.range(0); e--; )
249 q.Wait(&v);
250 }
251 // actually messages, not bytes:
252 state.SetBytesProcessed(
253 static_cast<int64_t>(state.iterations())*state.range(0));
254 }
255 BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
256 ```
257
258 Three macros are provided for adding benchmark templates.
259
260 ```c++
261 #ifdef BENCHMARK_HAS_CXX11
262 #define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters.
263 #else // C++ < C++11
264 #define BENCHMARK_TEMPLATE(func, arg1)
265 #endif
266 #define BENCHMARK_TEMPLATE1(func, arg1)
267 #define BENCHMARK_TEMPLATE2(func, arg1, arg2)
268 ```
269
270 ### A Faster KeepRunning loop
271
272 In C++11 mode, a ranged-based for loop should be used in preference to
273 the `KeepRunning` loop for running the benchmarks. For example:
274
275 ```c++
276 static void BM_Fast(benchmark::State &state) {
277 for (auto _ : state) {
278 FastOperation();
279 }
280 }
281 BENCHMARK(BM_Fast);
282 ```
283
284 The reason the ranged-for loop is faster than using `KeepRunning`, is
285 because `KeepRunning` requires a memory load and store of the iteration count
286 ever iteration, whereas the ranged-for variant is able to keep the iteration count
287 in a register.
288
289 For example, an empty inner loop of using the ranged-based for method looks like:
290
291 ```asm
292 # Loop Init
293 mov rbx, qword ptr [r14 + 104]
294 call benchmark::State::StartKeepRunning()
295 test rbx, rbx
296 je .LoopEnd
297 .LoopHeader: # =>This Inner Loop Header: Depth=1
298 add rbx, -1
299 jne .LoopHeader
300 .LoopEnd:
301 ```
302
303 Compared to an empty `KeepRunning` loop, which looks like:
304
305 ```asm
306 .LoopHeader: # in Loop: Header=BB0_3 Depth=1
307 cmp byte ptr [rbx], 1
308 jne .LoopInit
309 .LoopBody: # =>This Inner Loop Header: Depth=1
310 mov rax, qword ptr [rbx + 8]
311 lea rcx, [rax + 1]
312 mov qword ptr [rbx + 8], rcx
313 cmp rax, qword ptr [rbx + 104]
314 jb .LoopHeader
315 jmp .LoopEnd
316 .LoopInit:
317 mov rdi, rbx
318 call benchmark::State::StartKeepRunning()
319 jmp .LoopBody
320 .LoopEnd:
321 ```
322
323 Unless C++03 compatibility is required, the ranged-for variant of writing
324 the benchmark loop should be preferred.
325
326 ## Passing arbitrary arguments to a benchmark
327 In C++11 it is possible to define a benchmark that takes an arbitrary number
328 of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
329 macro creates a benchmark that invokes `func` with the `benchmark::State` as
330 the first argument followed by the specified `args...`.
331 The `test_case_name` is appended to the name of the benchmark and
332 should describe the values passed.
333
334 ```c++
335 template <class ...ExtraArgs>
336 void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
337 [...]
338 }
339 // Registers a benchmark named "BM_takes_args/int_string_test" that passes
340 // the specified values to `extra_args`.
341 BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
342 ```
343 Note that elements of `...args` may refer to global variables. Users should
344 avoid modifying global state inside of a benchmark.
345
346 ## Using RegisterBenchmark(name, fn, args...)
347
348 The `RegisterBenchmark(name, func, args...)` function provides an alternative
349 way to create and register benchmarks.
350 `RegisterBenchmark(name, func, args...)` creates, registers, and returns a
351 pointer to a new benchmark with the specified `name` that invokes
352 `func(st, args...)` where `st` is a `benchmark::State` object.
353
354 Unlike the `BENCHMARK` registration macros, which can only be used at the global
355 scope, the `RegisterBenchmark` can be called anywhere. This allows for
356 benchmark tests to be registered programmatically.
357
358 Additionally `RegisterBenchmark` allows any callable object to be registered
359 as a benchmark. Including capturing lambdas and function objects.
360
361 For Example:
362 ```c++
363 auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
364
365 int main(int argc, char** argv) {
366 for (auto& test_input : { /* ... */ })
367 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
368 benchmark::Initialize(&argc, argv);
369 benchmark::RunSpecifiedBenchmarks();
370 }
371 ```
372
373 ### Multithreaded benchmarks
374 In a multithreaded test (benchmark invoked by multiple threads simultaneously),
375 it is guaranteed that none of the threads will start until all have reached
376 the start of the benchmark loop, and all will have finished before any thread
377 exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
378 API) As such, any global setup or teardown can be wrapped in a check against the thread
379 index:
380
381 ```c++
382 static void BM_MultiThreaded(benchmark::State& state) {
383 if (state.thread_index == 0) {
384 // Setup code here.
385 }
386 for (auto _ : state) {
387 // Run the test as normal.
388 }
389 if (state.thread_index == 0) {
390 // Teardown code here.
391 }
392 }
393 BENCHMARK(BM_MultiThreaded)->Threads(2);
394 ```
395
396 If the benchmarked code itself uses threads and you want to compare it to
397 single-threaded code, you may want to use real-time ("wallclock") measurements
398 for latency comparisons:
399
400 ```c++
401 BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
402 ```
403
404 Without `UseRealTime`, CPU time is used by default.
405
406
407 ## Manual timing
408 For benchmarking something for which neither CPU time nor real-time are
409 correct or accurate enough, completely manual timing is supported using
410 the `UseManualTime` function.
411
412 When `UseManualTime` is used, the benchmarked code must call
413 `SetIterationTime` once per iteration of the benchmark loop to
414 report the manually measured time.
415
416 An example use case for this is benchmarking GPU execution (e.g. OpenCL
417 or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
418 be accurately measured using CPU time or real-time. Instead, they can be
419 measured accurately using a dedicated API, and these measurement results
420 can be reported back with `SetIterationTime`.
421
422 ```c++
423 static void BM_ManualTiming(benchmark::State& state) {
424 int microseconds = state.range(0);
425 std::chrono::duration<double, std::micro> sleep_duration {
426 static_cast<double>(microseconds)
427 };
428
429 for (auto _ : state) {
430 auto start = std::chrono::high_resolution_clock::now();
431 // Simulate some useful workload with a sleep
432 std::this_thread::sleep_for(sleep_duration);
433 auto end = std::chrono::high_resolution_clock::now();
434
435 auto elapsed_seconds =
436 std::chrono::duration_cast<std::chrono::duration<double>>(
437 end - start);
438
439 state.SetIterationTime(elapsed_seconds.count());
440 }
441 }
442 BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
443 ```
444
445 ### Preventing optimisation
446 To prevent a value or expression from being optimized away by the compiler
447 the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
448 functions can be used.
449
450 ```c++
451 static void BM_test(benchmark::State& state) {
452 for (auto _ : state) {
453 int x = 0;
454 for (int i=0; i < 64; ++i) {
455 benchmark::DoNotOptimize(x += i);
456 }
457 }
458 }
459 ```
460
461 `DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either
462 memory or a register. For GNU based compilers it acts as read/write barrier
463 for global memory. More specifically it forces the compiler to flush pending
464 writes to memory and reload any other values as necessary.
465
466 Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
467 in any way. `<expr>` may even be removed entirely when the result is already
468 known. For example:
469
470 ```c++
471 /* Example 1: `<expr>` is removed entirely. */
472 int foo(int x) { return x + 42; }
473 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
474
475 /* Example 2: Result of '<expr>' is only reused */
476 int bar(int) __attribute__((const));
477 while (...) DoNotOptimize(bar(0)); // Optimized to:
478 // int __result__ = bar(0);
479 // while (...) DoNotOptimize(__result__);
480 ```
481
482 The second tool for preventing optimizations is `ClobberMemory()`. In essence
483 `ClobberMemory()` forces the compiler to perform all pending writes to global
484 memory. Memory managed by block scope objects must be "escaped" using
485 `DoNotOptimize(...)` before it can be clobbered. In the below example
486 `ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
487 away.
488
489 ```c++
490 static void BM_vector_push_back(benchmark::State& state) {
491 for (auto _ : state) {
492 std::vector<int> v;
493 v.reserve(1);
494 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
495 v.push_back(42);
496 benchmark::ClobberMemory(); // Force 42 to be written to memory.
497 }
498 }
499 ```
500
501 Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
502
503 ### Set time unit manually
504 If a benchmark runs a few milliseconds it may be hard to visually compare the
505 measured times, since the output data is given in nanoseconds per default. In
506 order to manually set the time unit, you can specify it manually:
507
508 ```c++
509 BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
510 ```
511
512 ## Controlling number of iterations
513 In all cases, the number of iterations for which the benchmark is run is
514 governed by the amount of time the benchmark takes. Concretely, the number of
515 iterations is at least one, not more than 1e9, until CPU time is greater than
516 the minimum time, or the wallclock time is 5x minimum time. The minimum time is
517 set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on
518 the registered benchmark object.
519
520 ## Reporting the mean, median and standard deviation by repeated benchmarks
521 By default each benchmark is run once and that single result is reported.
522 However benchmarks are often noisy and a single result may not be representative
523 of the overall behavior. For this reason it's possible to repeatedly rerun the
524 benchmark.
525
526 The number of runs of each benchmark is specified globally by the
527 `--benchmark_repetitions` flag or on a per benchmark basis by calling
528 `Repetitions` on the registered benchmark object. When a benchmark is run more
529 than once the mean, median and standard deviation of the runs will be reported.
530
531 Additionally the `--benchmark_report_aggregates_only={true|false}` flag or
532 `ReportAggregatesOnly(bool)` function can be used to change how repeated tests
533 are reported. By default the result of each repeated run is reported. When this
534 option is `true` only the mean, median and standard deviation of the runs is reported.
535 Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides
536 the value of the flag for that benchmark.
537
538 ## User-defined statistics for repeated benchmarks
539 While having mean, median and standard deviation is nice, this may not be
540 enough for everyone. For example you may want to know what is the largest
541 observation, e.g. because you have some real-time constraints. This is easy.
542 The following code will specify a custom statistic to be calculated, defined
543 by a lambda function.
544
545 ```c++
546 void BM_spin_empty(benchmark::State& state) {
547 for (auto _ : state) {
548 for (int x = 0; x < state.range(0); ++x) {
549 benchmark::DoNotOptimize(x);
550 }
551 }
552 }
553
554 BENCHMARK(BM_spin_empty)
555 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
556 return *(std::max_element(std::begin(v), std::end(v)));
557 })
558 ->Arg(512);
559 ```
560
561 ## Fixtures
562 Fixture tests are created by
563 first defining a type that derives from `::benchmark::Fixture` and then
564 creating/registering the tests using the following macros:
565
566 * `BENCHMARK_F(ClassName, Method)`
567 * `BENCHMARK_DEFINE_F(ClassName, Method)`
568 * `BENCHMARK_REGISTER_F(ClassName, Method)`
569
570 For Example:
571
572 ```c++
573 class MyFixture : public benchmark::Fixture {};
574
575 BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
576 for (auto _ : st) {
577 ...
578 }
579 }
580
581 BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
582 for (auto _ : st) {
583 ...
584 }
585 }
586 /* BarTest is NOT registered */
587 BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
588 /* BarTest is now registered */
589 ```
590
591 ### Templated fixtures
592 Also you can create templated fixture by using the following macros:
593
594 * `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
595 * `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
596
597 For example:
598 ```c++
599 template<typename T>
600 class MyFixture : public benchmark::Fixture {};
601
602 BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
603 for (auto _ : st) {
604 ...
605 }
606 }
607
608 BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
609 for (auto _ : st) {
610 ...
611 }
612 }
613
614 BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
615 ```
616
617 ## User-defined counters
618
619 You can add your own counters with user-defined names. The example below
620 will add columns "Foo", "Bar" and "Baz" in its output:
621
622 ```c++
623 static void UserCountersExample1(benchmark::State& state) {
624 double numFoos = 0, numBars = 0, numBazs = 0;
625 for (auto _ : state) {
626 // ... count Foo,Bar,Baz events
627 }
628 state.counters["Foo"] = numFoos;
629 state.counters["Bar"] = numBars;
630 state.counters["Baz"] = numBazs;
631 }
632 ```
633
634 The `state.counters` object is a `std::map` with `std::string` keys
635 and `Counter` values. The latter is a `double`-like class, via an implicit
636 conversion to `double&`. Thus you can use all of the standard arithmetic
637 assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
638
639 In multithreaded benchmarks, each counter is set on the calling thread only.
640 When the benchmark finishes, the counters from each thread will be summed;
641 the resulting sum is the value which will be shown for the benchmark.
642
643 The `Counter` constructor accepts two parameters: the value as a `double`
644 and a bit flag which allows you to show counters as rates and/or as
645 per-thread averages:
646
647 ```c++
648 // sets a simple counter
649 state.counters["Foo"] = numFoos;
650
651 // Set the counter as a rate. It will be presented divided
652 // by the duration of the benchmark.
653 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
654
655 // Set the counter as a thread-average quantity. It will
656 // be presented divided by the number of threads.
657 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
658
659 // There's also a combined flag:
660 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
661 ```
662
663 When you're compiling in C++11 mode or later you can use `insert()` with
664 `std::initializer_list`:
665
666 ```c++
667 // With C++11, this can be done:
668 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
669 // ... instead of:
670 state.counters["Foo"] = numFoos;
671 state.counters["Bar"] = numBars;
672 state.counters["Baz"] = numBazs;
673 ```
674
675 ### Counter reporting
676
677 When using the console reporter, by default, user counters are are printed at
678 the end after the table, the same way as ``bytes_processed`` and
679 ``items_processed``. This is best for cases in which there are few counters,
680 or where there are only a couple of lines per benchmark. Here's an example of
681 the default output:
682
683 ```
684 ------------------------------------------------------------------------------
685 Benchmark Time CPU Iterations UserCounters...
686 ------------------------------------------------------------------------------
687 BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8
688 BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m
689 BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2
690 BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4
691 BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8
692 BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16
693 BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32
694 BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4
695 BM_Factorial 26 ns 26 ns 26608979 40320
696 BM_Factorial/real_time 26 ns 26 ns 26587936 40320
697 BM_CalculatePiRange/1 16 ns 16 ns 45704255 0
698 BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374
699 BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746
700 BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355
701 ```
702
703 If this doesn't suit you, you can print each counter as a table column by
704 passing the flag `--benchmark_counters_tabular=true` to the benchmark
705 application. This is best for cases in which there are a lot of counters, or
706 a lot of lines per individual benchmark. Note that this will trigger a
707 reprinting of the table header any time the counter set changes between
708 individual benchmarks. Here's an example of corresponding output when
709 `--benchmark_counters_tabular=true` is passed:
710
711 ```
712 ---------------------------------------------------------------------------------------
713 Benchmark Time CPU Iterations Bar Bat Baz Foo
714 ---------------------------------------------------------------------------------------
715 BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8
716 BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1
717 BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2
718 BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4
719 BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8
720 BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16
721 BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32
722 BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4
723 --------------------------------------------------------------
724 Benchmark Time CPU Iterations
725 --------------------------------------------------------------
726 BM_Factorial 26 ns 26 ns 26392245 40320
727 BM_Factorial/real_time 26 ns 26 ns 26494107 40320
728 BM_CalculatePiRange/1 15 ns 15 ns 45571597 0
729 BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374
730 BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746
731 BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355
732 BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184
733 BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162
734 BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416
735 BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159
736 BM_CalculatePi/threads:8 2255 ns 9943 ns 70936
737 ```
738 Note above the additional header printed when the benchmark changes from
739 ``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
740 not have the same counter set as ``BM_UserCounter``.
741
742 ## Exiting Benchmarks in Error
743
744 When errors caused by external influences, such as file I/O and network
745 communication, occur within a benchmark the
746 `State::SkipWithError(const char* msg)` function can be used to skip that run
747 of benchmark and report the error. Note that only future iterations of the
748 `KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
749 Users must explicitly exit the loop, otherwise all iterations will be performed.
750 Users may explicitly return to exit the benchmark immediately.
751
752 The `SkipWithError(...)` function may be used at any point within the benchmark,
753 including before and after the benchmark loop.
754
755 For example:
756
757 ```c++
758 static void BM_test(benchmark::State& state) {
759 auto resource = GetResource();
760 if (!resource.good()) {
761 state.SkipWithError("Resource is not good!");
762 // KeepRunning() loop will not be entered.
763 }
764 for (state.KeepRunning()) {
765 auto data = resource.read_data();
766 if (!resource.good()) {
767 state.SkipWithError("Failed to read data!");
768 break; // Needed to skip the rest of the iteration.
769 }
770 do_stuff(data);
771 }
772 }
773
774 static void BM_test_ranged_fo(benchmark::State & state) {
775 state.SkipWithError("test will not be entered");
776 for (auto _ : state) {
777 state.SkipWithError("Failed!");
778 break; // REQUIRED to prevent all further iterations.
779 }
780 }
781 ```
782
783 ## Running a subset of the benchmarks
784
785 The `--benchmark_filter=<regex>` option can be used to only run the benchmarks
786 which match the specified `<regex>`. For example:
787
788 ```bash
789 $ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
790 Run on (1 X 2300 MHz CPU )
791 2016-06-25 19:34:24
792 Benchmark Time CPU Iterations
793 ----------------------------------------------------
794 BM_memcpy/32 11 ns 11 ns 79545455
795 BM_memcpy/32k 2181 ns 2185 ns 324074
796 BM_memcpy/32 12 ns 12 ns 54687500
797 BM_memcpy/32k 1834 ns 1837 ns 357143
798 ```
799
800
801 ## Output Formats
802 The library supports multiple output formats. Use the
803 `--benchmark_format=<console|json|csv>` flag to set the format type. `console`
804 is the default format.
805
806 The Console format is intended to be a human readable format. By default
807 the format generates color output. Context is output on stderr and the
808 tabular data on stdout. Example tabular output looks like:
809 ```
810 Benchmark Time(ns) CPU(ns) Iterations
811 ----------------------------------------------------------------------
812 BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
813 BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
814 BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
815 ```
816
817 The JSON format outputs human readable json split into two top level attributes.
818 The `context` attribute contains information about the run in general, including
819 information about the CPU and the date.
820 The `benchmarks` attribute contains a list of ever benchmark run. Example json
821 output looks like:
822 ```json
823 {
824 "context": {
825 "date": "2015/03/17-18:40:25",
826 "num_cpus": 40,
827 "mhz_per_cpu": 2801,
828 "cpu_scaling_enabled": false,
829 "build_type": "debug"
830 },
831 "benchmarks": [
832 {
833 "name": "BM_SetInsert/1024/1",
834 "iterations": 94877,
835 "real_time": 29275,
836 "cpu_time": 29836,
837 "bytes_per_second": 134066,
838 "items_per_second": 33516
839 },
840 {
841 "name": "BM_SetInsert/1024/8",
842 "iterations": 21609,
843 "real_time": 32317,
844 "cpu_time": 32429,
845 "bytes_per_second": 986770,
846 "items_per_second": 246693
847 },
848 {
849 "name": "BM_SetInsert/1024/10",
850 "iterations": 21393,
851 "real_time": 32724,
852 "cpu_time": 33355,
853 "bytes_per_second": 1199226,
854 "items_per_second": 299807
855 }
856 ]
857 }
858 ```
859
860 The CSV format outputs comma-separated values. The `context` is output on stderr
861 and the CSV itself on stdout. Example CSV output looks like:
862 ```
863 name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
864 "BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
865 "BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
866 "BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
867 ```
868
869 ## Output Files
870 The library supports writing the output of the benchmark to a file specified
871 by `--benchmark_out=<filename>`. The format of the output can be specified
872 using `--benchmark_out_format={json|console|csv}`. Specifying
873 `--benchmark_out` does not suppress the console output.
874
875 ## Debug vs Release
876 By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use:
877
878 ```
879 cmake -DCMAKE_BUILD_TYPE=Release
880 ```
881
882 To enable link-time optimisation, use
883
884 ```
885 cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true
886 ```
887
888 If you are using gcc, you might need to set `GCC_AR` and `GCC_RANLIB` cmake cache variables, if autodetection fails.
889 If you are using clang, you may need to set `LLVMAR_EXECUTABLE`, `LLVMNM_EXECUTABLE` and `LLVMRANLIB_EXECUTABLE` cmake cache variables.
890
891 ## Linking against the library
892 When using gcc, it is necessary to link against pthread to avoid runtime exceptions.
893 This is due to how gcc implements std::thread.
894 See [issue #67](https://github.com/google/benchmark/issues/67) for more details.
895
896 ## Compiler Support
897
898 Google Benchmark uses C++11 when building the library. As such we require
899 a modern C++ toolchain, both compiler and standard library.
900
901 The following minimum versions are strongly recommended build the library:
902
903 * GCC 4.8
904 * Clang 3.4
905 * Visual Studio 2013
906 * Intel 2015 Update 1
907
908 Anything older *may* work.
909
910 Note: Using the library and its headers in C++03 is supported. C++11 is only
911 required to build the library.
912
913 ## Disable CPU frequency scaling
914 If you see this error:
915 ```
916 ***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
917 ```
918 you might want to disable the CPU frequency scaling while running the benchmark:
919 ```bash
920 sudo cpupower frequency-set --governor performance
921 ./mybench
922 sudo cpupower frequency-set --governor powersave
923 ```
924
925 # Known Issues
926
927 ### Windows
928
929 * Users must manually link `shlwapi.lib`. Failure to do so may result
930 in unresolved symbols.
931
932