Home | History | Annotate | Download | only in test
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Author: wan (at) google.com (Zhanyong Wan)
     31 //
     32 // Tests for Google Test itself.  This verifies that the basic constructs of
     33 // Google Test work.
     34 
     35 #include "gtest/gtest.h"
     36 
     37 // Verifies that the command line flag variables can be accessed
     38 // in code once <gtest/gtest.h> has been #included.
     39 // Do not move it after other #includes.
     40 TEST(CommandLineFlagsTest, CanBeAccessedInCodeOnceGTestHIsIncluded) {
     41   bool dummy = testing::GTEST_FLAG(also_run_disabled_tests)
     42       || testing::GTEST_FLAG(break_on_failure)
     43       || testing::GTEST_FLAG(catch_exceptions)
     44       || testing::GTEST_FLAG(color) != "unknown"
     45       || testing::GTEST_FLAG(filter) != "unknown"
     46       || testing::GTEST_FLAG(list_tests)
     47       || testing::GTEST_FLAG(output) != "unknown"
     48       || testing::GTEST_FLAG(print_time)
     49       || testing::GTEST_FLAG(random_seed)
     50       || testing::GTEST_FLAG(repeat) > 0
     51       || testing::GTEST_FLAG(show_internal_stack_frames)
     52       || testing::GTEST_FLAG(shuffle)
     53       || testing::GTEST_FLAG(stack_trace_depth) > 0
     54       || testing::GTEST_FLAG(stream_result_to) != "unknown"
     55       || testing::GTEST_FLAG(throw_on_failure);
     56   EXPECT_TRUE(dummy || !dummy);  // Suppresses warning that dummy is unused.
     57 }
     58 
     59 #include <limits.h>  // For INT_MAX.
     60 #include <stdlib.h>
     61 #include <string.h>
     62 #include <time.h>
     63 
     64 #include <map>
     65 #include <vector>
     66 #include <ostream>
     67 
     68 #include "gtest/gtest-spi.h"
     69 
     70 // Indicates that this translation unit is part of Google Test's
     71 // implementation.  It must come before gtest-internal-inl.h is
     72 // included, or there will be a compiler error.  This trick is to
     73 // prevent a user from accidentally including gtest-internal-inl.h in
     74 // their code.
     75 #define GTEST_IMPLEMENTATION_ 1
     76 #include "src/gtest-internal-inl.h"
     77 #undef GTEST_IMPLEMENTATION_
     78 
     79 namespace testing {
     80 namespace internal {
     81 
     82 #if GTEST_CAN_STREAM_RESULTS_
     83 
     84 class StreamingListenerTest : public Test {
     85  public:
     86   class FakeSocketWriter : public StreamingListener::AbstractSocketWriter {
     87    public:
     88     // Sends a string to the socket.
     89     virtual void Send(const std::string& message) { output_ += message; }
     90 
     91     std::string output_;
     92   };
     93 
     94   StreamingListenerTest()
     95       : fake_sock_writer_(new FakeSocketWriter),
     96         streamer_(fake_sock_writer_),
     97         test_info_obj_("FooTest", "Bar", NULL, NULL,
     98                        CodeLocation(__FILE__, __LINE__), 0, NULL) {}
     99 
    100  protected:
    101   std::string* output() { return &(fake_sock_writer_->output_); }
    102 
    103   FakeSocketWriter* const fake_sock_writer_;
    104   StreamingListener streamer_;
    105   UnitTest unit_test_;
    106   TestInfo test_info_obj_;  // The name test_info_ was taken by testing::Test.
    107 };
    108 
    109 TEST_F(StreamingListenerTest, OnTestProgramEnd) {
    110   *output() = "";
    111   streamer_.OnTestProgramEnd(unit_test_);
    112   EXPECT_EQ("event=TestProgramEnd&passed=1\n", *output());
    113 }
    114 
    115 TEST_F(StreamingListenerTest, OnTestIterationEnd) {
    116   *output() = "";
    117   streamer_.OnTestIterationEnd(unit_test_, 42);
    118   EXPECT_EQ("event=TestIterationEnd&passed=1&elapsed_time=0ms\n", *output());
    119 }
    120 
    121 TEST_F(StreamingListenerTest, OnTestCaseStart) {
    122   *output() = "";
    123   streamer_.OnTestCaseStart(TestCase("FooTest", "Bar", NULL, NULL));
    124   EXPECT_EQ("event=TestCaseStart&name=FooTest\n", *output());
    125 }
    126 
    127 TEST_F(StreamingListenerTest, OnTestCaseEnd) {
    128   *output() = "";
    129   streamer_.OnTestCaseEnd(TestCase("FooTest", "Bar", NULL, NULL));
    130   EXPECT_EQ("event=TestCaseEnd&passed=1&elapsed_time=0ms\n", *output());
    131 }
    132 
    133 TEST_F(StreamingListenerTest, OnTestStart) {
    134   *output() = "";
    135   streamer_.OnTestStart(test_info_obj_);
    136   EXPECT_EQ("event=TestStart&name=Bar\n", *output());
    137 }
    138 
    139 TEST_F(StreamingListenerTest, OnTestEnd) {
    140   *output() = "";
    141   streamer_.OnTestEnd(test_info_obj_);
    142   EXPECT_EQ("event=TestEnd&passed=1&elapsed_time=0ms\n", *output());
    143 }
    144 
    145 TEST_F(StreamingListenerTest, OnTestPartResult) {
    146   *output() = "";
    147   streamer_.OnTestPartResult(TestPartResult(
    148       TestPartResult::kFatalFailure, "foo.cc", 42, "failed=\n&%"));
    149 
    150   // Meta characters in the failure message should be properly escaped.
    151   EXPECT_EQ(
    152       "event=TestPartResult&file=foo.cc&line=42&message=failed%3D%0A%26%25\n",
    153       *output());
    154 }
    155 
    156 #endif  // GTEST_CAN_STREAM_RESULTS_
    157 
    158 // Provides access to otherwise private parts of the TestEventListeners class
    159 // that are needed to test it.
    160 class TestEventListenersAccessor {
    161  public:
    162   static TestEventListener* GetRepeater(TestEventListeners* listeners) {
    163     return listeners->repeater();
    164   }
    165 
    166   static void SetDefaultResultPrinter(TestEventListeners* listeners,
    167                                       TestEventListener* listener) {
    168     listeners->SetDefaultResultPrinter(listener);
    169   }
    170   static void SetDefaultXmlGenerator(TestEventListeners* listeners,
    171                                      TestEventListener* listener) {
    172     listeners->SetDefaultXmlGenerator(listener);
    173   }
    174 
    175   static bool EventForwardingEnabled(const TestEventListeners& listeners) {
    176     return listeners.EventForwardingEnabled();
    177   }
    178 
    179   static void SuppressEventForwarding(TestEventListeners* listeners) {
    180     listeners->SuppressEventForwarding();
    181   }
    182 };
    183 
    184 class UnitTestRecordPropertyTestHelper : public Test {
    185  protected:
    186   UnitTestRecordPropertyTestHelper() {}
    187 
    188   // Forwards to UnitTest::RecordProperty() to bypass access controls.
    189   void UnitTestRecordProperty(const char* key, const std::string& value) {
    190     unit_test_.RecordProperty(key, value);
    191   }
    192 
    193   UnitTest unit_test_;
    194 };
    195 
    196 }  // namespace internal
    197 }  // namespace testing
    198 
    199 using testing::AssertionFailure;
    200 using testing::AssertionResult;
    201 using testing::AssertionSuccess;
    202 using testing::DoubleLE;
    203 using testing::EmptyTestEventListener;
    204 using testing::Environment;
    205 using testing::FloatLE;
    206 using testing::GTEST_FLAG(also_run_disabled_tests);
    207 using testing::GTEST_FLAG(break_on_failure);
    208 using testing::GTEST_FLAG(catch_exceptions);
    209 using testing::GTEST_FLAG(color);
    210 using testing::GTEST_FLAG(death_test_use_fork);
    211 using testing::GTEST_FLAG(filter);
    212 using testing::GTEST_FLAG(list_tests);
    213 using testing::GTEST_FLAG(output);
    214 using testing::GTEST_FLAG(print_time);
    215 using testing::GTEST_FLAG(random_seed);
    216 using testing::GTEST_FLAG(repeat);
    217 using testing::GTEST_FLAG(show_internal_stack_frames);
    218 using testing::GTEST_FLAG(shuffle);
    219 using testing::GTEST_FLAG(stack_trace_depth);
    220 using testing::GTEST_FLAG(stream_result_to);
    221 using testing::GTEST_FLAG(throw_on_failure);
    222 using testing::IsNotSubstring;
    223 using testing::IsSubstring;
    224 using testing::Message;
    225 using testing::ScopedFakeTestPartResultReporter;
    226 using testing::StaticAssertTypeEq;
    227 using testing::Test;
    228 using testing::TestCase;
    229 using testing::TestEventListeners;
    230 using testing::TestInfo;
    231 using testing::TestPartResult;
    232 using testing::TestPartResultArray;
    233 using testing::TestProperty;
    234 using testing::TestResult;
    235 using testing::TimeInMillis;
    236 using testing::UnitTest;
    237 using testing::internal::AddReference;
    238 using testing::internal::AlwaysFalse;
    239 using testing::internal::AlwaysTrue;
    240 using testing::internal::AppendUserMessage;
    241 using testing::internal::ArrayAwareFind;
    242 using testing::internal::ArrayEq;
    243 using testing::internal::CodePointToUtf8;
    244 using testing::internal::CompileAssertTypesEqual;
    245 using testing::internal::CopyArray;
    246 using testing::internal::CountIf;
    247 using testing::internal::EqFailure;
    248 using testing::internal::FloatingPoint;
    249 using testing::internal::ForEach;
    250 using testing::internal::FormatEpochTimeInMillisAsIso8601;
    251 using testing::internal::FormatTimeInMillisAsSeconds;
    252 using testing::internal::GTestFlagSaver;
    253 using testing::internal::GetCurrentOsStackTraceExceptTop;
    254 using testing::internal::GetElementOr;
    255 using testing::internal::GetNextRandomSeed;
    256 using testing::internal::GetRandomSeedFromFlag;
    257 using testing::internal::GetTestTypeId;
    258 using testing::internal::GetTimeInMillis;
    259 using testing::internal::GetTypeId;
    260 using testing::internal::GetUnitTestImpl;
    261 using testing::internal::ImplicitlyConvertible;
    262 using testing::internal::Int32;
    263 using testing::internal::Int32FromEnvOrDie;
    264 using testing::internal::IsAProtocolMessage;
    265 using testing::internal::IsContainer;
    266 using testing::internal::IsContainerTest;
    267 using testing::internal::IsNotContainer;
    268 using testing::internal::NativeArray;
    269 using testing::internal::ParseInt32Flag;
    270 using testing::internal::RelationToSourceCopy;
    271 using testing::internal::RelationToSourceReference;
    272 using testing::internal::RemoveConst;
    273 using testing::internal::RemoveReference;
    274 using testing::internal::ShouldRunTestOnShard;
    275 using testing::internal::ShouldShard;
    276 using testing::internal::ShouldUseColor;
    277 using testing::internal::Shuffle;
    278 using testing::internal::ShuffleRange;
    279 using testing::internal::SkipPrefix;
    280 using testing::internal::StreamableToString;
    281 using testing::internal::String;
    282 using testing::internal::TestEventListenersAccessor;
    283 using testing::internal::TestResultAccessor;
    284 using testing::internal::UInt32;
    285 using testing::internal::WideStringToUtf8;
    286 using testing::internal::edit_distance::CalculateOptimalEdits;
    287 using testing::internal::edit_distance::CreateUnifiedDiff;
    288 using testing::internal::edit_distance::EditType;
    289 using testing::internal::kMaxRandomSeed;
    290 using testing::internal::kTestTypeIdInGoogleTest;
    291 using testing::kMaxStackTraceDepth;
    292 
    293 #if GTEST_HAS_STREAM_REDIRECTION
    294 using testing::internal::CaptureStdout;
    295 using testing::internal::GetCapturedStdout;
    296 #endif
    297 
    298 #if GTEST_IS_THREADSAFE
    299 using testing::internal::ThreadWithParam;
    300 #endif
    301 
    302 class TestingVector : public std::vector<int> {
    303 };
    304 
    305 ::std::ostream& operator<<(::std::ostream& os,
    306                            const TestingVector& vector) {
    307   os << "{ ";
    308   for (size_t i = 0; i < vector.size(); i++) {
    309     os << vector[i] << " ";
    310   }
    311   os << "}";
    312   return os;
    313 }
    314 
    315 // This line tests that we can define tests in an unnamed namespace.
    316 namespace {
    317 
    318 TEST(GetRandomSeedFromFlagTest, HandlesZero) {
    319   const int seed = GetRandomSeedFromFlag(0);
    320   EXPECT_LE(1, seed);
    321   EXPECT_LE(seed, static_cast<int>(kMaxRandomSeed));
    322 }
    323 
    324 TEST(GetRandomSeedFromFlagTest, PreservesValidSeed) {
    325   EXPECT_EQ(1, GetRandomSeedFromFlag(1));
    326   EXPECT_EQ(2, GetRandomSeedFromFlag(2));
    327   EXPECT_EQ(kMaxRandomSeed - 1, GetRandomSeedFromFlag(kMaxRandomSeed - 1));
    328   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    329             GetRandomSeedFromFlag(kMaxRandomSeed));
    330 }
    331 
    332 TEST(GetRandomSeedFromFlagTest, NormalizesInvalidSeed) {
    333   const int seed1 = GetRandomSeedFromFlag(-1);
    334   EXPECT_LE(1, seed1);
    335   EXPECT_LE(seed1, static_cast<int>(kMaxRandomSeed));
    336 
    337   const int seed2 = GetRandomSeedFromFlag(kMaxRandomSeed + 1);
    338   EXPECT_LE(1, seed2);
    339   EXPECT_LE(seed2, static_cast<int>(kMaxRandomSeed));
    340 }
    341 
    342 TEST(GetNextRandomSeedTest, WorksForValidInput) {
    343   EXPECT_EQ(2, GetNextRandomSeed(1));
    344   EXPECT_EQ(3, GetNextRandomSeed(2));
    345   EXPECT_EQ(static_cast<int>(kMaxRandomSeed),
    346             GetNextRandomSeed(kMaxRandomSeed - 1));
    347   EXPECT_EQ(1, GetNextRandomSeed(kMaxRandomSeed));
    348 
    349   // We deliberately don't test GetNextRandomSeed() with invalid
    350   // inputs, as that requires death tests, which are expensive.  This
    351   // is fine as GetNextRandomSeed() is internal and has a
    352   // straightforward definition.
    353 }
    354 
    355 static void ClearCurrentTestPartResults() {
    356   TestResultAccessor::ClearTestPartResults(
    357       GetUnitTestImpl()->current_test_result());
    358 }
    359 
    360 // Tests GetTypeId.
    361 
    362 TEST(GetTypeIdTest, ReturnsSameValueForSameType) {
    363   EXPECT_EQ(GetTypeId<int>(), GetTypeId<int>());
    364   EXPECT_EQ(GetTypeId<Test>(), GetTypeId<Test>());
    365 }
    366 
    367 class SubClassOfTest : public Test {};
    368 class AnotherSubClassOfTest : public Test {};
    369 
    370 TEST(GetTypeIdTest, ReturnsDifferentValuesForDifferentTypes) {
    371   EXPECT_NE(GetTypeId<int>(), GetTypeId<const int>());
    372   EXPECT_NE(GetTypeId<int>(), GetTypeId<char>());
    373   EXPECT_NE(GetTypeId<int>(), GetTestTypeId());
    374   EXPECT_NE(GetTypeId<SubClassOfTest>(), GetTestTypeId());
    375   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTestTypeId());
    376   EXPECT_NE(GetTypeId<AnotherSubClassOfTest>(), GetTypeId<SubClassOfTest>());
    377 }
    378 
    379 // Verifies that GetTestTypeId() returns the same value, no matter it
    380 // is called from inside Google Test or outside of it.
    381 TEST(GetTestTypeIdTest, ReturnsTheSameValueInsideOrOutsideOfGoogleTest) {
    382   EXPECT_EQ(kTestTypeIdInGoogleTest, GetTestTypeId());
    383 }
    384 
    385 // Tests FormatTimeInMillisAsSeconds().
    386 
    387 TEST(FormatTimeInMillisAsSecondsTest, FormatsZero) {
    388   EXPECT_EQ("0", FormatTimeInMillisAsSeconds(0));
    389 }
    390 
    391 TEST(FormatTimeInMillisAsSecondsTest, FormatsPositiveNumber) {
    392   EXPECT_EQ("0.003", FormatTimeInMillisAsSeconds(3));
    393   EXPECT_EQ("0.01", FormatTimeInMillisAsSeconds(10));
    394   EXPECT_EQ("0.2", FormatTimeInMillisAsSeconds(200));
    395   EXPECT_EQ("1.2", FormatTimeInMillisAsSeconds(1200));
    396   EXPECT_EQ("3", FormatTimeInMillisAsSeconds(3000));
    397 }
    398 
    399 TEST(FormatTimeInMillisAsSecondsTest, FormatsNegativeNumber) {
    400   EXPECT_EQ("-0.003", FormatTimeInMillisAsSeconds(-3));
    401   EXPECT_EQ("-0.01", FormatTimeInMillisAsSeconds(-10));
    402   EXPECT_EQ("-0.2", FormatTimeInMillisAsSeconds(-200));
    403   EXPECT_EQ("-1.2", FormatTimeInMillisAsSeconds(-1200));
    404   EXPECT_EQ("-3", FormatTimeInMillisAsSeconds(-3000));
    405 }
    406 
    407 // Tests FormatEpochTimeInMillisAsIso8601().  The correctness of conversion
    408 // for particular dates below was verified in Python using
    409 // datetime.datetime.fromutctimestamp(<timetamp>/1000).
    410 
    411 // FormatEpochTimeInMillisAsIso8601 depends on the current timezone, so we
    412 // have to set up a particular timezone to obtain predictable results.
    413 class FormatEpochTimeInMillisAsIso8601Test : public Test {
    414  public:
    415   // On Cygwin, GCC doesn't allow unqualified integer literals to exceed
    416   // 32 bits, even when 64-bit integer types are available.  We have to
    417   // force the constants to have a 64-bit type here.
    418   static const TimeInMillis kMillisPerSec = 1000;
    419 
    420  private:
    421   virtual void SetUp() {
    422     saved_tz_ = NULL;
    423 
    424     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* getenv, strdup: deprecated */)
    425     if (getenv("TZ"))
    426       saved_tz_ = strdup(getenv("TZ"));
    427     GTEST_DISABLE_MSC_WARNINGS_POP_()
    428 
    429     // Set up the time zone for FormatEpochTimeInMillisAsIso8601 to use.  We
    430     // cannot use the local time zone because the function's output depends
    431     // on the time zone.
    432     SetTimeZone("UTC+00");
    433   }
    434 
    435   virtual void TearDown() {
    436     SetTimeZone(saved_tz_);
    437     free(const_cast<char*>(saved_tz_));
    438     saved_tz_ = NULL;
    439   }
    440 
    441   static void SetTimeZone(const char* time_zone) {
    442     // tzset() distinguishes between the TZ variable being present and empty
    443     // and not being present, so we have to consider the case of time_zone
    444     // being NULL.
    445 #if _MSC_VER || GTEST_OS_WINDOWS_MINGW
    446     // ...Unless it's MSVC, whose standard library's _putenv doesn't
    447     // distinguish between an empty and a missing variable.
    448     const std::string env_var =
    449         std::string("TZ=") + (time_zone ? time_zone : "");
    450     _putenv(env_var.c_str());
    451     GTEST_DISABLE_MSC_WARNINGS_PUSH_(4996 /* deprecated function */)
    452     tzset();
    453     GTEST_DISABLE_MSC_WARNINGS_POP_()
    454 #else
    455     if (time_zone) {
    456       setenv(("TZ"), time_zone, 1);
    457     } else {
    458       unsetenv("TZ");
    459     }
    460     tzset();
    461 #endif
    462   }
    463 
    464   const char* saved_tz_;
    465 };
    466 
    467 const TimeInMillis FormatEpochTimeInMillisAsIso8601Test::kMillisPerSec;
    468 
    469 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsTwoDigitSegments) {
    470   EXPECT_EQ("2011-10-31T18:52:42",
    471             FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec));
    472 }
    473 
    474 TEST_F(FormatEpochTimeInMillisAsIso8601Test, MillisecondsDoNotAffectResult) {
    475   EXPECT_EQ(
    476       "2011-10-31T18:52:42",
    477       FormatEpochTimeInMillisAsIso8601(1320087162 * kMillisPerSec + 234));
    478 }
    479 
    480 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsLeadingZeroes) {
    481   EXPECT_EQ("2011-09-03T05:07:02",
    482             FormatEpochTimeInMillisAsIso8601(1315026422 * kMillisPerSec));
    483 }
    484 
    485 TEST_F(FormatEpochTimeInMillisAsIso8601Test, Prints24HourTime) {
    486   EXPECT_EQ("2011-09-28T17:08:22",
    487             FormatEpochTimeInMillisAsIso8601(1317229702 * kMillisPerSec));
    488 }
    489 
    490 TEST_F(FormatEpochTimeInMillisAsIso8601Test, PrintsEpochStart) {
    491   EXPECT_EQ("1970-01-01T00:00:00", FormatEpochTimeInMillisAsIso8601(0));
    492 }
    493 
    494 #if GTEST_CAN_COMPARE_NULL
    495 
    496 # ifdef __BORLANDC__
    497 // Silences warnings: "Condition is always true", "Unreachable code"
    498 #  pragma option push -w-ccc -w-rch
    499 # endif
    500 
    501 // Tests that GTEST_IS_NULL_LITERAL_(x) is true when x is a null
    502 // pointer literal.
    503 TEST(NullLiteralTest, IsTrueForNullLiterals) {
    504   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(NULL));
    505   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0));
    506   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0U));
    507   EXPECT_TRUE(GTEST_IS_NULL_LITERAL_(0L));
    508 }
    509 
    510 // Tests that GTEST_IS_NULL_LITERAL_(x) is false when x is not a null
    511 // pointer literal.
    512 TEST(NullLiteralTest, IsFalseForNonNullLiterals) {
    513   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(1));
    514   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(0.0));
    515   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_('a'));
    516   EXPECT_FALSE(GTEST_IS_NULL_LITERAL_(static_cast<void*>(NULL)));
    517 }
    518 
    519 # ifdef __BORLANDC__
    520 // Restores warnings after previous "#pragma option push" suppressed them.
    521 #  pragma option pop
    522 # endif
    523 
    524 #endif  // GTEST_CAN_COMPARE_NULL
    525 //
    526 // Tests CodePointToUtf8().
    527 
    528 // Tests that the NUL character L'\0' is encoded correctly.
    529 TEST(CodePointToUtf8Test, CanEncodeNul) {
    530   EXPECT_EQ("", CodePointToUtf8(L'\0'));
    531 }
    532 
    533 // Tests that ASCII characters are encoded correctly.
    534 TEST(CodePointToUtf8Test, CanEncodeAscii) {
    535   EXPECT_EQ("a", CodePointToUtf8(L'a'));
    536   EXPECT_EQ("Z", CodePointToUtf8(L'Z'));
    537   EXPECT_EQ("&", CodePointToUtf8(L'&'));
    538   EXPECT_EQ("\x7F", CodePointToUtf8(L'\x7F'));
    539 }
    540 
    541 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    542 // as 110xxxxx 10xxxxxx.
    543 TEST(CodePointToUtf8Test, CanEncode8To11Bits) {
    544   // 000 1101 0011 => 110-00011 10-010011
    545   EXPECT_EQ("\xC3\x93", CodePointToUtf8(L'\xD3'));
    546 
    547   // 101 0111 0110 => 110-10101 10-110110
    548   // Some compilers (e.g., GCC on MinGW) cannot handle non-ASCII codepoints
    549   // in wide strings and wide chars. In order to accomodate them, we have to
    550   // introduce such character constants as integers.
    551   EXPECT_EQ("\xD5\xB6",
    552             CodePointToUtf8(static_cast<wchar_t>(0x576)));
    553 }
    554 
    555 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    556 // as 1110xxxx 10xxxxxx 10xxxxxx.
    557 TEST(CodePointToUtf8Test, CanEncode12To16Bits) {
    558   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    559   EXPECT_EQ("\xE0\xA3\x93",
    560             CodePointToUtf8(static_cast<wchar_t>(0x8D3)));
    561 
    562   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    563   EXPECT_EQ("\xEC\x9D\x8D",
    564             CodePointToUtf8(static_cast<wchar_t>(0xC74D)));
    565 }
    566 
    567 #if !GTEST_WIDE_STRING_USES_UTF16_
    568 // Tests in this group require a wchar_t to hold > 16 bits, and thus
    569 // are skipped on Windows, Cygwin, and Symbian, where a wchar_t is
    570 // 16-bit wide. This code may not compile on those systems.
    571 
    572 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    573 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx.
    574 TEST(CodePointToUtf8Test, CanEncode17To21Bits) {
    575   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    576   EXPECT_EQ("\xF0\x90\xA3\x93", CodePointToUtf8(L'\x108D3'));
    577 
    578   // 0 0001 0000 0100 0000 0000 => 11110-000 10-010000 10-010000 10-000000
    579   EXPECT_EQ("\xF0\x90\x90\x80", CodePointToUtf8(L'\x10400'));
    580 
    581   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    582   EXPECT_EQ("\xF4\x88\x98\xB4", CodePointToUtf8(L'\x108634'));
    583 }
    584 
    585 // Tests that encoding an invalid code-point generates the expected result.
    586 TEST(CodePointToUtf8Test, CanEncodeInvalidCodePoint) {
    587   EXPECT_EQ("(Invalid Unicode 0x1234ABCD)", CodePointToUtf8(L'\x1234ABCD'));
    588 }
    589 
    590 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    591 
    592 // Tests WideStringToUtf8().
    593 
    594 // Tests that the NUL character L'\0' is encoded correctly.
    595 TEST(WideStringToUtf8Test, CanEncodeNul) {
    596   EXPECT_STREQ("", WideStringToUtf8(L"", 0).c_str());
    597   EXPECT_STREQ("", WideStringToUtf8(L"", -1).c_str());
    598 }
    599 
    600 // Tests that ASCII strings are encoded correctly.
    601 TEST(WideStringToUtf8Test, CanEncodeAscii) {
    602   EXPECT_STREQ("a", WideStringToUtf8(L"a", 1).c_str());
    603   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", 2).c_str());
    604   EXPECT_STREQ("a", WideStringToUtf8(L"a", -1).c_str());
    605   EXPECT_STREQ("ab", WideStringToUtf8(L"ab", -1).c_str());
    606 }
    607 
    608 // Tests that Unicode code-points that have 8 to 11 bits are encoded
    609 // as 110xxxxx 10xxxxxx.
    610 TEST(WideStringToUtf8Test, CanEncode8To11Bits) {
    611   // 000 1101 0011 => 110-00011 10-010011
    612   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", 1).c_str());
    613   EXPECT_STREQ("\xC3\x93", WideStringToUtf8(L"\xD3", -1).c_str());
    614 
    615   // 101 0111 0110 => 110-10101 10-110110
    616   const wchar_t s[] = { 0x576, '\0' };
    617   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, 1).c_str());
    618   EXPECT_STREQ("\xD5\xB6", WideStringToUtf8(s, -1).c_str());
    619 }
    620 
    621 // Tests that Unicode code-points that have 12 to 16 bits are encoded
    622 // as 1110xxxx 10xxxxxx 10xxxxxx.
    623 TEST(WideStringToUtf8Test, CanEncode12To16Bits) {
    624   // 0000 1000 1101 0011 => 1110-0000 10-100011 10-010011
    625   const wchar_t s1[] = { 0x8D3, '\0' };
    626   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, 1).c_str());
    627   EXPECT_STREQ("\xE0\xA3\x93", WideStringToUtf8(s1, -1).c_str());
    628 
    629   // 1100 0111 0100 1101 => 1110-1100 10-011101 10-001101
    630   const wchar_t s2[] = { 0xC74D, '\0' };
    631   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, 1).c_str());
    632   EXPECT_STREQ("\xEC\x9D\x8D", WideStringToUtf8(s2, -1).c_str());
    633 }
    634 
    635 // Tests that the conversion stops when the function encounters \0 character.
    636 TEST(WideStringToUtf8Test, StopsOnNulCharacter) {
    637   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABC\0XYZ", 100).c_str());
    638 }
    639 
    640 // Tests that the conversion stops when the function reaches the limit
    641 // specified by the 'length' parameter.
    642 TEST(WideStringToUtf8Test, StopsWhenLengthLimitReached) {
    643   EXPECT_STREQ("ABC", WideStringToUtf8(L"ABCDEF", 3).c_str());
    644 }
    645 
    646 #if !GTEST_WIDE_STRING_USES_UTF16_
    647 // Tests that Unicode code-points that have 17 to 21 bits are encoded
    648 // as 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx. This code may not compile
    649 // on the systems using UTF-16 encoding.
    650 TEST(WideStringToUtf8Test, CanEncode17To21Bits) {
    651   // 0 0001 0000 1000 1101 0011 => 11110-000 10-010000 10-100011 10-010011
    652   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", 1).c_str());
    653   EXPECT_STREQ("\xF0\x90\xA3\x93", WideStringToUtf8(L"\x108D3", -1).c_str());
    654 
    655   // 1 0000 1000 0110 0011 0100 => 11110-100 10-001000 10-011000 10-110100
    656   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", 1).c_str());
    657   EXPECT_STREQ("\xF4\x88\x98\xB4", WideStringToUtf8(L"\x108634", -1).c_str());
    658 }
    659 
    660 // Tests that encoding an invalid code-point generates the expected result.
    661 TEST(WideStringToUtf8Test, CanEncodeInvalidCodePoint) {
    662   EXPECT_STREQ("(Invalid Unicode 0xABCDFF)",
    663                WideStringToUtf8(L"\xABCDFF", -1).c_str());
    664 }
    665 #else  // !GTEST_WIDE_STRING_USES_UTF16_
    666 // Tests that surrogate pairs are encoded correctly on the systems using
    667 // UTF-16 encoding in the wide strings.
    668 TEST(WideStringToUtf8Test, CanEncodeValidUtf16SUrrogatePairs) {
    669   const wchar_t s[] = { 0xD801, 0xDC00, '\0' };
    670   EXPECT_STREQ("\xF0\x90\x90\x80", WideStringToUtf8(s, -1).c_str());
    671 }
    672 
    673 // Tests that encoding an invalid UTF-16 surrogate pair
    674 // generates the expected result.
    675 TEST(WideStringToUtf8Test, CanEncodeInvalidUtf16SurrogatePair) {
    676   // Leading surrogate is at the end of the string.
    677   const wchar_t s1[] = { 0xD800, '\0' };
    678   EXPECT_STREQ("\xED\xA0\x80", WideStringToUtf8(s1, -1).c_str());
    679   // Leading surrogate is not followed by the trailing surrogate.
    680   const wchar_t s2[] = { 0xD800, 'M', '\0' };
    681   EXPECT_STREQ("\xED\xA0\x80M", WideStringToUtf8(s2, -1).c_str());
    682   // Trailing surrogate appearas without a leading surrogate.
    683   const wchar_t s3[] = { 0xDC00, 'P', 'Q', 'R', '\0' };
    684   EXPECT_STREQ("\xED\xB0\x80PQR", WideStringToUtf8(s3, -1).c_str());
    685 }
    686 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    687 
    688 // Tests that codepoint concatenation works correctly.
    689 #if !GTEST_WIDE_STRING_USES_UTF16_
    690 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    691   const wchar_t s[] = { 0x108634, 0xC74D, '\n', 0x576, 0x8D3, 0x108634, '\0'};
    692   EXPECT_STREQ(
    693       "\xF4\x88\x98\xB4"
    694           "\xEC\x9D\x8D"
    695           "\n"
    696           "\xD5\xB6"
    697           "\xE0\xA3\x93"
    698           "\xF4\x88\x98\xB4",
    699       WideStringToUtf8(s, -1).c_str());
    700 }
    701 #else
    702 TEST(WideStringToUtf8Test, ConcatenatesCodepointsCorrectly) {
    703   const wchar_t s[] = { 0xC74D, '\n', 0x576, 0x8D3, '\0'};
    704   EXPECT_STREQ(
    705       "\xEC\x9D\x8D" "\n" "\xD5\xB6" "\xE0\xA3\x93",
    706       WideStringToUtf8(s, -1).c_str());
    707 }
    708 #endif  // !GTEST_WIDE_STRING_USES_UTF16_
    709 
    710 // Tests the Random class.
    711 
    712 TEST(RandomDeathTest, GeneratesCrashesOnInvalidRange) {
    713   testing::internal::Random random(42);
    714   EXPECT_DEATH_IF_SUPPORTED(
    715       random.Generate(0),
    716       "Cannot generate a number in the range \\[0, 0\\)");
    717   EXPECT_DEATH_IF_SUPPORTED(
    718       random.Generate(testing::internal::Random::kMaxRange + 1),
    719       "Generation of a number in \\[0, 2147483649\\) was requested, "
    720       "but this can only generate numbers in \\[0, 2147483648\\)");
    721 }
    722 
    723 TEST(RandomTest, GeneratesNumbersWithinRange) {
    724   const UInt32 kRange = 10000;
    725   testing::internal::Random random(12345);
    726   for (int i = 0; i < 10; i++) {
    727     EXPECT_LT(random.Generate(kRange), kRange) << " for iteration " << i;
    728   }
    729 
    730   testing::internal::Random random2(testing::internal::Random::kMaxRange);
    731   for (int i = 0; i < 10; i++) {
    732     EXPECT_LT(random2.Generate(kRange), kRange) << " for iteration " << i;
    733   }
    734 }
    735 
    736 TEST(RandomTest, RepeatsWhenReseeded) {
    737   const int kSeed = 123;
    738   const int kArraySize = 10;
    739   const UInt32 kRange = 10000;
    740   UInt32 values[kArraySize];
    741 
    742   testing::internal::Random random(kSeed);
    743   for (int i = 0; i < kArraySize; i++) {
    744     values[i] = random.Generate(kRange);
    745   }
    746 
    747   random.Reseed(kSeed);
    748   for (int i = 0; i < kArraySize; i++) {
    749     EXPECT_EQ(values[i], random.Generate(kRange)) << " for iteration " << i;
    750   }
    751 }
    752 
    753 // Tests STL container utilities.
    754 
    755 // Tests CountIf().
    756 
    757 static bool IsPositive(int n) { return n > 0; }
    758 
    759 TEST(ContainerUtilityTest, CountIf) {
    760   std::vector<int> v;
    761   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works for an empty container.
    762 
    763   v.push_back(-1);
    764   v.push_back(0);
    765   EXPECT_EQ(0, CountIf(v, IsPositive));  // Works when no value satisfies.
    766 
    767   v.push_back(2);
    768   v.push_back(-10);
    769   v.push_back(10);
    770   EXPECT_EQ(2, CountIf(v, IsPositive));
    771 }
    772 
    773 // Tests ForEach().
    774 
    775 static int g_sum = 0;
    776 static void Accumulate(int n) { g_sum += n; }
    777 
    778 TEST(ContainerUtilityTest, ForEach) {
    779   std::vector<int> v;
    780   g_sum = 0;
    781   ForEach(v, Accumulate);
    782   EXPECT_EQ(0, g_sum);  // Works for an empty container;
    783 
    784   g_sum = 0;
    785   v.push_back(1);
    786   ForEach(v, Accumulate);
    787   EXPECT_EQ(1, g_sum);  // Works for a container with one element.
    788 
    789   g_sum = 0;
    790   v.push_back(20);
    791   v.push_back(300);
    792   ForEach(v, Accumulate);
    793   EXPECT_EQ(321, g_sum);
    794 }
    795 
    796 // Tests GetElementOr().
    797 TEST(ContainerUtilityTest, GetElementOr) {
    798   std::vector<char> a;
    799   EXPECT_EQ('x', GetElementOr(a, 0, 'x'));
    800 
    801   a.push_back('a');
    802   a.push_back('b');
    803   EXPECT_EQ('a', GetElementOr(a, 0, 'x'));
    804   EXPECT_EQ('b', GetElementOr(a, 1, 'x'));
    805   EXPECT_EQ('x', GetElementOr(a, -2, 'x'));
    806   EXPECT_EQ('x', GetElementOr(a, 2, 'x'));
    807 }
    808 
    809 TEST(ContainerUtilityDeathTest, ShuffleRange) {
    810   std::vector<int> a;
    811   a.push_back(0);
    812   a.push_back(1);
    813   a.push_back(2);
    814   testing::internal::Random random(1);
    815 
    816   EXPECT_DEATH_IF_SUPPORTED(
    817       ShuffleRange(&random, -1, 1, &a),
    818       "Invalid shuffle range start -1: must be in range \\[0, 3\\]");
    819   EXPECT_DEATH_IF_SUPPORTED(
    820       ShuffleRange(&random, 4, 4, &a),
    821       "Invalid shuffle range start 4: must be in range \\[0, 3\\]");
    822   EXPECT_DEATH_IF_SUPPORTED(
    823       ShuffleRange(&random, 3, 2, &a),
    824       "Invalid shuffle range finish 2: must be in range \\[3, 3\\]");
    825   EXPECT_DEATH_IF_SUPPORTED(
    826       ShuffleRange(&random, 3, 4, &a),
    827       "Invalid shuffle range finish 4: must be in range \\[3, 3\\]");
    828 }
    829 
    830 class VectorShuffleTest : public Test {
    831  protected:
    832   static const int kVectorSize = 20;
    833 
    834   VectorShuffleTest() : random_(1) {
    835     for (int i = 0; i < kVectorSize; i++) {
    836       vector_.push_back(i);
    837     }
    838   }
    839 
    840   static bool VectorIsCorrupt(const TestingVector& vector) {
    841     if (kVectorSize != static_cast<int>(vector.size())) {
    842       return true;
    843     }
    844 
    845     bool found_in_vector[kVectorSize] = { false };
    846     for (size_t i = 0; i < vector.size(); i++) {
    847       const int e = vector[i];
    848       if (e < 0 || e >= kVectorSize || found_in_vector[e]) {
    849         return true;
    850       }
    851       found_in_vector[e] = true;
    852     }
    853 
    854     // Vector size is correct, elements' range is correct, no
    855     // duplicate elements.  Therefore no corruption has occurred.
    856     return false;
    857   }
    858 
    859   static bool VectorIsNotCorrupt(const TestingVector& vector) {
    860     return !VectorIsCorrupt(vector);
    861   }
    862 
    863   static bool RangeIsShuffled(const TestingVector& vector, int begin, int end) {
    864     for (int i = begin; i < end; i++) {
    865       if (i != vector[i]) {
    866         return true;
    867       }
    868     }
    869     return false;
    870   }
    871 
    872   static bool RangeIsUnshuffled(
    873       const TestingVector& vector, int begin, int end) {
    874     return !RangeIsShuffled(vector, begin, end);
    875   }
    876 
    877   static bool VectorIsShuffled(const TestingVector& vector) {
    878     return RangeIsShuffled(vector, 0, static_cast<int>(vector.size()));
    879   }
    880 
    881   static bool VectorIsUnshuffled(const TestingVector& vector) {
    882     return !VectorIsShuffled(vector);
    883   }
    884 
    885   testing::internal::Random random_;
    886   TestingVector vector_;
    887 };  // class VectorShuffleTest
    888 
    889 const int VectorShuffleTest::kVectorSize;
    890 
    891 TEST_F(VectorShuffleTest, HandlesEmptyRange) {
    892   // Tests an empty range at the beginning...
    893   ShuffleRange(&random_, 0, 0, &vector_);
    894   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    895   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    896 
    897   // ...in the middle...
    898   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2, &vector_);
    899   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    900   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    901 
    902   // ...at the end...
    903   ShuffleRange(&random_, kVectorSize - 1, kVectorSize - 1, &vector_);
    904   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    905   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    906 
    907   // ...and past the end.
    908   ShuffleRange(&random_, kVectorSize, kVectorSize, &vector_);
    909   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    910   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    911 }
    912 
    913 TEST_F(VectorShuffleTest, HandlesRangeOfSizeOne) {
    914   // Tests a size one range at the beginning...
    915   ShuffleRange(&random_, 0, 1, &vector_);
    916   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    917   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    918 
    919   // ...in the middle...
    920   ShuffleRange(&random_, kVectorSize/2, kVectorSize/2 + 1, &vector_);
    921   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    922   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    923 
    924   // ...and at the end.
    925   ShuffleRange(&random_, kVectorSize - 1, kVectorSize, &vector_);
    926   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    927   ASSERT_PRED1(VectorIsUnshuffled, vector_);
    928 }
    929 
    930 // Because we use our own random number generator and a fixed seed,
    931 // we can guarantee that the following "random" tests will succeed.
    932 
    933 TEST_F(VectorShuffleTest, ShufflesEntireVector) {
    934   Shuffle(&random_, &vector_);
    935   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    936   EXPECT_FALSE(VectorIsUnshuffled(vector_)) << vector_;
    937 
    938   // Tests the first and last elements in particular to ensure that
    939   // there are no off-by-one problems in our shuffle algorithm.
    940   EXPECT_NE(0, vector_[0]);
    941   EXPECT_NE(kVectorSize - 1, vector_[kVectorSize - 1]);
    942 }
    943 
    944 TEST_F(VectorShuffleTest, ShufflesStartOfVector) {
    945   const int kRangeSize = kVectorSize/2;
    946 
    947   ShuffleRange(&random_, 0, kRangeSize, &vector_);
    948 
    949   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    950   EXPECT_PRED3(RangeIsShuffled, vector_, 0, kRangeSize);
    951   EXPECT_PRED3(RangeIsUnshuffled, vector_, kRangeSize, kVectorSize);
    952 }
    953 
    954 TEST_F(VectorShuffleTest, ShufflesEndOfVector) {
    955   const int kRangeSize = kVectorSize / 2;
    956   ShuffleRange(&random_, kRangeSize, kVectorSize, &vector_);
    957 
    958   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    959   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    960   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, kVectorSize);
    961 }
    962 
    963 TEST_F(VectorShuffleTest, ShufflesMiddleOfVector) {
    964   int kRangeSize = kVectorSize/3;
    965   ShuffleRange(&random_, kRangeSize, 2*kRangeSize, &vector_);
    966 
    967   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    968   EXPECT_PRED3(RangeIsUnshuffled, vector_, 0, kRangeSize);
    969   EXPECT_PRED3(RangeIsShuffled, vector_, kRangeSize, 2*kRangeSize);
    970   EXPECT_PRED3(RangeIsUnshuffled, vector_, 2*kRangeSize, kVectorSize);
    971 }
    972 
    973 TEST_F(VectorShuffleTest, ShufflesRepeatably) {
    974   TestingVector vector2;
    975   for (int i = 0; i < kVectorSize; i++) {
    976     vector2.push_back(i);
    977   }
    978 
    979   random_.Reseed(1234);
    980   Shuffle(&random_, &vector_);
    981   random_.Reseed(1234);
    982   Shuffle(&random_, &vector2);
    983 
    984   ASSERT_PRED1(VectorIsNotCorrupt, vector_);
    985   ASSERT_PRED1(VectorIsNotCorrupt, vector2);
    986 
    987   for (int i = 0; i < kVectorSize; i++) {
    988     EXPECT_EQ(vector_[i], vector2[i]) << " where i is " << i;
    989   }
    990 }
    991 
    992 // Tests the size of the AssertHelper class.
    993 
    994 TEST(AssertHelperTest, AssertHelperIsSmall) {
    995   // To avoid breaking clients that use lots of assertions in one
    996   // function, we cannot grow the size of AssertHelper.
    997   EXPECT_LE(sizeof(testing::internal::AssertHelper), sizeof(void*));
    998 }
    999 
   1000 // Tests String::EndsWithCaseInsensitive().
   1001 TEST(StringTest, EndsWithCaseInsensitive) {
   1002   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", "BAR"));
   1003   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobaR", "bar"));
   1004   EXPECT_TRUE(String::EndsWithCaseInsensitive("foobar", ""));
   1005   EXPECT_TRUE(String::EndsWithCaseInsensitive("", ""));
   1006 
   1007   EXPECT_FALSE(String::EndsWithCaseInsensitive("Foobar", "foo"));
   1008   EXPECT_FALSE(String::EndsWithCaseInsensitive("foobar", "Foo"));
   1009   EXPECT_FALSE(String::EndsWithCaseInsensitive("", "foo"));
   1010 }
   1011 
   1012 // C++Builder's preprocessor is buggy; it fails to expand macros that
   1013 // appear in macro parameters after wide char literals.  Provide an alias
   1014 // for NULL as a workaround.
   1015 static const wchar_t* const kNull = NULL;
   1016 
   1017 // Tests String::CaseInsensitiveWideCStringEquals
   1018 TEST(StringTest, CaseInsensitiveWideCStringEquals) {
   1019   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(NULL, NULL));
   1020   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L""));
   1021   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"", kNull));
   1022   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(kNull, L"foobar"));
   1023   EXPECT_FALSE(String::CaseInsensitiveWideCStringEquals(L"foobar", kNull));
   1024   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"foobar"));
   1025   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"foobar", L"FOOBAR"));
   1026   EXPECT_TRUE(String::CaseInsensitiveWideCStringEquals(L"FOOBAR", L"foobar"));
   1027 }
   1028 
   1029 #if GTEST_OS_WINDOWS
   1030 
   1031 // Tests String::ShowWideCString().
   1032 TEST(StringTest, ShowWideCString) {
   1033   EXPECT_STREQ("(null)",
   1034                String::ShowWideCString(NULL).c_str());
   1035   EXPECT_STREQ("", String::ShowWideCString(L"").c_str());
   1036   EXPECT_STREQ("foo", String::ShowWideCString(L"foo").c_str());
   1037 }
   1038 
   1039 # if GTEST_OS_WINDOWS_MOBILE
   1040 TEST(StringTest, AnsiAndUtf16Null) {
   1041   EXPECT_EQ(NULL, String::AnsiToUtf16(NULL));
   1042   EXPECT_EQ(NULL, String::Utf16ToAnsi(NULL));
   1043 }
   1044 
   1045 TEST(StringTest, AnsiAndUtf16ConvertBasic) {
   1046   const char* ansi = String::Utf16ToAnsi(L"str");
   1047   EXPECT_STREQ("str", ansi);
   1048   delete [] ansi;
   1049   const WCHAR* utf16 = String::AnsiToUtf16("str");
   1050   EXPECT_EQ(0, wcsncmp(L"str", utf16, 3));
   1051   delete [] utf16;
   1052 }
   1053 
   1054 TEST(StringTest, AnsiAndUtf16ConvertPathChars) {
   1055   const char* ansi = String::Utf16ToAnsi(L".:\\ \"*?");
   1056   EXPECT_STREQ(".:\\ \"*?", ansi);
   1057   delete [] ansi;
   1058   const WCHAR* utf16 = String::AnsiToUtf16(".:\\ \"*?");
   1059   EXPECT_EQ(0, wcsncmp(L".:\\ \"*?", utf16, 3));
   1060   delete [] utf16;
   1061 }
   1062 # endif  // GTEST_OS_WINDOWS_MOBILE
   1063 
   1064 #endif  // GTEST_OS_WINDOWS
   1065 
   1066 // Tests TestProperty construction.
   1067 TEST(TestPropertyTest, StringValue) {
   1068   TestProperty property("key", "1");
   1069   EXPECT_STREQ("key", property.key());
   1070   EXPECT_STREQ("1", property.value());
   1071 }
   1072 
   1073 // Tests TestProperty replacing a value.
   1074 TEST(TestPropertyTest, ReplaceStringValue) {
   1075   TestProperty property("key", "1");
   1076   EXPECT_STREQ("1", property.value());
   1077   property.SetValue("2");
   1078   EXPECT_STREQ("2", property.value());
   1079 }
   1080 
   1081 // AddFatalFailure() and AddNonfatalFailure() must be stand-alone
   1082 // functions (i.e. their definitions cannot be inlined at the call
   1083 // sites), or C++Builder won't compile the code.
   1084 static void AddFatalFailure() {
   1085   FAIL() << "Expected fatal failure.";
   1086 }
   1087 
   1088 static void AddNonfatalFailure() {
   1089   ADD_FAILURE() << "Expected non-fatal failure.";
   1090 }
   1091 
   1092 class ScopedFakeTestPartResultReporterTest : public Test {
   1093  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   1094   enum FailureMode {
   1095     FATAL_FAILURE,
   1096     NONFATAL_FAILURE
   1097   };
   1098   static void AddFailure(FailureMode failure) {
   1099     if (failure == FATAL_FAILURE) {
   1100       AddFatalFailure();
   1101     } else {
   1102       AddNonfatalFailure();
   1103     }
   1104   }
   1105 };
   1106 
   1107 // Tests that ScopedFakeTestPartResultReporter intercepts test
   1108 // failures.
   1109 TEST_F(ScopedFakeTestPartResultReporterTest, InterceptsTestFailures) {
   1110   TestPartResultArray results;
   1111   {
   1112     ScopedFakeTestPartResultReporter reporter(
   1113         ScopedFakeTestPartResultReporter::INTERCEPT_ONLY_CURRENT_THREAD,
   1114         &results);
   1115     AddFailure(NONFATAL_FAILURE);
   1116     AddFailure(FATAL_FAILURE);
   1117   }
   1118 
   1119   EXPECT_EQ(2, results.size());
   1120   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1121   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1122 }
   1123 
   1124 TEST_F(ScopedFakeTestPartResultReporterTest, DeprecatedConstructor) {
   1125   TestPartResultArray results;
   1126   {
   1127     // Tests, that the deprecated constructor still works.
   1128     ScopedFakeTestPartResultReporter reporter(&results);
   1129     AddFailure(NONFATAL_FAILURE);
   1130   }
   1131   EXPECT_EQ(1, results.size());
   1132 }
   1133 
   1134 #if GTEST_IS_THREADSAFE
   1135 
   1136 class ScopedFakeTestPartResultReporterWithThreadsTest
   1137   : public ScopedFakeTestPartResultReporterTest {
   1138  protected:
   1139   static void AddFailureInOtherThread(FailureMode failure) {
   1140     ThreadWithParam<FailureMode> thread(&AddFailure, failure, NULL);
   1141     thread.Join();
   1142   }
   1143 };
   1144 
   1145 TEST_F(ScopedFakeTestPartResultReporterWithThreadsTest,
   1146        InterceptsTestFailuresInAllThreads) {
   1147   TestPartResultArray results;
   1148   {
   1149     ScopedFakeTestPartResultReporter reporter(
   1150         ScopedFakeTestPartResultReporter::INTERCEPT_ALL_THREADS, &results);
   1151     AddFailure(NONFATAL_FAILURE);
   1152     AddFailure(FATAL_FAILURE);
   1153     AddFailureInOtherThread(NONFATAL_FAILURE);
   1154     AddFailureInOtherThread(FATAL_FAILURE);
   1155   }
   1156 
   1157   EXPECT_EQ(4, results.size());
   1158   EXPECT_TRUE(results.GetTestPartResult(0).nonfatally_failed());
   1159   EXPECT_TRUE(results.GetTestPartResult(1).fatally_failed());
   1160   EXPECT_TRUE(results.GetTestPartResult(2).nonfatally_failed());
   1161   EXPECT_TRUE(results.GetTestPartResult(3).fatally_failed());
   1162 }
   1163 
   1164 #endif  // GTEST_IS_THREADSAFE
   1165 
   1166 // Tests EXPECT_FATAL_FAILURE{,ON_ALL_THREADS}.  Makes sure that they
   1167 // work even if the failure is generated in a called function rather than
   1168 // the current context.
   1169 
   1170 typedef ScopedFakeTestPartResultReporterTest ExpectFatalFailureTest;
   1171 
   1172 TEST_F(ExpectFatalFailureTest, CatchesFatalFaliure) {
   1173   EXPECT_FATAL_FAILURE(AddFatalFailure(), "Expected fatal failure.");
   1174 }
   1175 
   1176 #if GTEST_HAS_GLOBAL_STRING
   1177 TEST_F(ExpectFatalFailureTest, AcceptsStringObject) {
   1178   EXPECT_FATAL_FAILURE(AddFatalFailure(), ::string("Expected fatal failure."));
   1179 }
   1180 #endif
   1181 
   1182 TEST_F(ExpectFatalFailureTest, AcceptsStdStringObject) {
   1183   EXPECT_FATAL_FAILURE(AddFatalFailure(),
   1184                        ::std::string("Expected fatal failure."));
   1185 }
   1186 
   1187 TEST_F(ExpectFatalFailureTest, CatchesFatalFailureOnAllThreads) {
   1188   // We have another test below to verify that the macro catches fatal
   1189   // failures generated on another thread.
   1190   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFatalFailure(),
   1191                                       "Expected fatal failure.");
   1192 }
   1193 
   1194 #ifdef __BORLANDC__
   1195 // Silences warnings: "Condition is always true"
   1196 # pragma option push -w-ccc
   1197 #endif
   1198 
   1199 // Tests that EXPECT_FATAL_FAILURE() can be used in a non-void
   1200 // function even when the statement in it contains ASSERT_*.
   1201 
   1202 int NonVoidFunction() {
   1203   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1204   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1205   return 0;
   1206 }
   1207 
   1208 TEST_F(ExpectFatalFailureTest, CanBeUsedInNonVoidFunction) {
   1209   NonVoidFunction();
   1210 }
   1211 
   1212 // Tests that EXPECT_FATAL_FAILURE(statement, ...) doesn't abort the
   1213 // current function even though 'statement' generates a fatal failure.
   1214 
   1215 void DoesNotAbortHelper(bool* aborted) {
   1216   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false), "");
   1217   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(FAIL(), "");
   1218 
   1219   *aborted = false;
   1220 }
   1221 
   1222 #ifdef __BORLANDC__
   1223 // Restores warnings after previous "#pragma option push" suppressed them.
   1224 # pragma option pop
   1225 #endif
   1226 
   1227 TEST_F(ExpectFatalFailureTest, DoesNotAbort) {
   1228   bool aborted = true;
   1229   DoesNotAbortHelper(&aborted);
   1230   EXPECT_FALSE(aborted);
   1231 }
   1232 
   1233 // Tests that the EXPECT_FATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1234 // statement that contains a macro which expands to code containing an
   1235 // unprotected comma.
   1236 
   1237 static int global_var = 0;
   1238 #define GTEST_USE_UNPROTECTED_COMMA_ global_var++, global_var++
   1239 
   1240 TEST_F(ExpectFatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1241 #ifndef __BORLANDC__
   1242   // ICE's in C++Builder.
   1243   EXPECT_FATAL_FAILURE({
   1244     GTEST_USE_UNPROTECTED_COMMA_;
   1245     AddFatalFailure();
   1246   }, "");
   1247 #endif
   1248 
   1249   EXPECT_FATAL_FAILURE_ON_ALL_THREADS({
   1250     GTEST_USE_UNPROTECTED_COMMA_;
   1251     AddFatalFailure();
   1252   }, "");
   1253 }
   1254 
   1255 // Tests EXPECT_NONFATAL_FAILURE{,ON_ALL_THREADS}.
   1256 
   1257 typedef ScopedFakeTestPartResultReporterTest ExpectNonfatalFailureTest;
   1258 
   1259 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailure) {
   1260   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1261                           "Expected non-fatal failure.");
   1262 }
   1263 
   1264 #if GTEST_HAS_GLOBAL_STRING
   1265 TEST_F(ExpectNonfatalFailureTest, AcceptsStringObject) {
   1266   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1267                           ::string("Expected non-fatal failure."));
   1268 }
   1269 #endif
   1270 
   1271 TEST_F(ExpectNonfatalFailureTest, AcceptsStdStringObject) {
   1272   EXPECT_NONFATAL_FAILURE(AddNonfatalFailure(),
   1273                           ::std::string("Expected non-fatal failure."));
   1274 }
   1275 
   1276 TEST_F(ExpectNonfatalFailureTest, CatchesNonfatalFailureOnAllThreads) {
   1277   // We have another test below to verify that the macro catches
   1278   // non-fatal failures generated on another thread.
   1279   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(AddNonfatalFailure(),
   1280                                          "Expected non-fatal failure.");
   1281 }
   1282 
   1283 // Tests that the EXPECT_NONFATAL_FAILURE{,_ON_ALL_THREADS} accepts a
   1284 // statement that contains a macro which expands to code containing an
   1285 // unprotected comma.
   1286 TEST_F(ExpectNonfatalFailureTest, AcceptsMacroThatExpandsToUnprotectedComma) {
   1287   EXPECT_NONFATAL_FAILURE({
   1288     GTEST_USE_UNPROTECTED_COMMA_;
   1289     AddNonfatalFailure();
   1290   }, "");
   1291 
   1292   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS({
   1293     GTEST_USE_UNPROTECTED_COMMA_;
   1294     AddNonfatalFailure();
   1295   }, "");
   1296 }
   1297 
   1298 #if GTEST_IS_THREADSAFE
   1299 
   1300 typedef ScopedFakeTestPartResultReporterWithThreadsTest
   1301     ExpectFailureWithThreadsTest;
   1302 
   1303 TEST_F(ExpectFailureWithThreadsTest, ExpectFatalFailureOnAllThreads) {
   1304   EXPECT_FATAL_FAILURE_ON_ALL_THREADS(AddFailureInOtherThread(FATAL_FAILURE),
   1305                                       "Expected fatal failure.");
   1306 }
   1307 
   1308 TEST_F(ExpectFailureWithThreadsTest, ExpectNonFatalFailureOnAllThreads) {
   1309   EXPECT_NONFATAL_FAILURE_ON_ALL_THREADS(
   1310       AddFailureInOtherThread(NONFATAL_FAILURE), "Expected non-fatal failure.");
   1311 }
   1312 
   1313 #endif  // GTEST_IS_THREADSAFE
   1314 
   1315 // Tests the TestProperty class.
   1316 
   1317 TEST(TestPropertyTest, ConstructorWorks) {
   1318   const TestProperty property("key", "value");
   1319   EXPECT_STREQ("key", property.key());
   1320   EXPECT_STREQ("value", property.value());
   1321 }
   1322 
   1323 TEST(TestPropertyTest, SetValue) {
   1324   TestProperty property("key", "value_1");
   1325   EXPECT_STREQ("key", property.key());
   1326   property.SetValue("value_2");
   1327   EXPECT_STREQ("key", property.key());
   1328   EXPECT_STREQ("value_2", property.value());
   1329 }
   1330 
   1331 // Tests the TestResult class
   1332 
   1333 // The test fixture for testing TestResult.
   1334 class TestResultTest : public Test {
   1335  protected:
   1336   typedef std::vector<TestPartResult> TPRVector;
   1337 
   1338   // We make use of 2 TestPartResult objects,
   1339   TestPartResult * pr1, * pr2;
   1340 
   1341   // ... and 3 TestResult objects.
   1342   TestResult * r0, * r1, * r2;
   1343 
   1344   virtual void SetUp() {
   1345     // pr1 is for success.
   1346     pr1 = new TestPartResult(TestPartResult::kSuccess,
   1347                              "foo/bar.cc",
   1348                              10,
   1349                              "Success!");
   1350 
   1351     // pr2 is for fatal failure.
   1352     pr2 = new TestPartResult(TestPartResult::kFatalFailure,
   1353                              "foo/bar.cc",
   1354                              -1,  // This line number means "unknown"
   1355                              "Failure!");
   1356 
   1357     // Creates the TestResult objects.
   1358     r0 = new TestResult();
   1359     r1 = new TestResult();
   1360     r2 = new TestResult();
   1361 
   1362     // In order to test TestResult, we need to modify its internal
   1363     // state, in particular the TestPartResult vector it holds.
   1364     // test_part_results() returns a const reference to this vector.
   1365     // We cast it to a non-const object s.t. it can be modified (yes,
   1366     // this is a hack).
   1367     TPRVector* results1 = const_cast<TPRVector*>(
   1368         &TestResultAccessor::test_part_results(*r1));
   1369     TPRVector* results2 = const_cast<TPRVector*>(
   1370         &TestResultAccessor::test_part_results(*r2));
   1371 
   1372     // r0 is an empty TestResult.
   1373 
   1374     // r1 contains a single SUCCESS TestPartResult.
   1375     results1->push_back(*pr1);
   1376 
   1377     // r2 contains a SUCCESS, and a FAILURE.
   1378     results2->push_back(*pr1);
   1379     results2->push_back(*pr2);
   1380   }
   1381 
   1382   virtual void TearDown() {
   1383     delete pr1;
   1384     delete pr2;
   1385 
   1386     delete r0;
   1387     delete r1;
   1388     delete r2;
   1389   }
   1390 
   1391   // Helper that compares two TestPartResults.
   1392   static void CompareTestPartResult(const TestPartResult& expected,
   1393                                     const TestPartResult& actual) {
   1394     EXPECT_EQ(expected.type(), actual.type());
   1395     EXPECT_STREQ(expected.file_name(), actual.file_name());
   1396     EXPECT_EQ(expected.line_number(), actual.line_number());
   1397     EXPECT_STREQ(expected.summary(), actual.summary());
   1398     EXPECT_STREQ(expected.message(), actual.message());
   1399     EXPECT_EQ(expected.passed(), actual.passed());
   1400     EXPECT_EQ(expected.failed(), actual.failed());
   1401     EXPECT_EQ(expected.nonfatally_failed(), actual.nonfatally_failed());
   1402     EXPECT_EQ(expected.fatally_failed(), actual.fatally_failed());
   1403   }
   1404 };
   1405 
   1406 // Tests TestResult::total_part_count().
   1407 TEST_F(TestResultTest, total_part_count) {
   1408   ASSERT_EQ(0, r0->total_part_count());
   1409   ASSERT_EQ(1, r1->total_part_count());
   1410   ASSERT_EQ(2, r2->total_part_count());
   1411 }
   1412 
   1413 // Tests TestResult::Passed().
   1414 TEST_F(TestResultTest, Passed) {
   1415   ASSERT_TRUE(r0->Passed());
   1416   ASSERT_TRUE(r1->Passed());
   1417   ASSERT_FALSE(r2->Passed());
   1418 }
   1419 
   1420 // Tests TestResult::Failed().
   1421 TEST_F(TestResultTest, Failed) {
   1422   ASSERT_FALSE(r0->Failed());
   1423   ASSERT_FALSE(r1->Failed());
   1424   ASSERT_TRUE(r2->Failed());
   1425 }
   1426 
   1427 // Tests TestResult::GetTestPartResult().
   1428 
   1429 typedef TestResultTest TestResultDeathTest;
   1430 
   1431 TEST_F(TestResultDeathTest, GetTestPartResult) {
   1432   CompareTestPartResult(*pr1, r2->GetTestPartResult(0));
   1433   CompareTestPartResult(*pr2, r2->GetTestPartResult(1));
   1434   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(2), "");
   1435   EXPECT_DEATH_IF_SUPPORTED(r2->GetTestPartResult(-1), "");
   1436 }
   1437 
   1438 // Tests TestResult has no properties when none are added.
   1439 TEST(TestResultPropertyTest, NoPropertiesFoundWhenNoneAreAdded) {
   1440   TestResult test_result;
   1441   ASSERT_EQ(0, test_result.test_property_count());
   1442 }
   1443 
   1444 // Tests TestResult has the expected property when added.
   1445 TEST(TestResultPropertyTest, OnePropertyFoundWhenAdded) {
   1446   TestResult test_result;
   1447   TestProperty property("key_1", "1");
   1448   TestResultAccessor::RecordProperty(&test_result, "testcase", property);
   1449   ASSERT_EQ(1, test_result.test_property_count());
   1450   const TestProperty& actual_property = test_result.GetTestProperty(0);
   1451   EXPECT_STREQ("key_1", actual_property.key());
   1452   EXPECT_STREQ("1", actual_property.value());
   1453 }
   1454 
   1455 // Tests TestResult has multiple properties when added.
   1456 TEST(TestResultPropertyTest, MultiplePropertiesFoundWhenAdded) {
   1457   TestResult test_result;
   1458   TestProperty property_1("key_1", "1");
   1459   TestProperty property_2("key_2", "2");
   1460   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1461   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1462   ASSERT_EQ(2, test_result.test_property_count());
   1463   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1464   EXPECT_STREQ("key_1", actual_property_1.key());
   1465   EXPECT_STREQ("1", actual_property_1.value());
   1466 
   1467   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1468   EXPECT_STREQ("key_2", actual_property_2.key());
   1469   EXPECT_STREQ("2", actual_property_2.value());
   1470 }
   1471 
   1472 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   1473 TEST(TestResultPropertyTest, OverridesValuesForDuplicateKeys) {
   1474   TestResult test_result;
   1475   TestProperty property_1_1("key_1", "1");
   1476   TestProperty property_2_1("key_2", "2");
   1477   TestProperty property_1_2("key_1", "12");
   1478   TestProperty property_2_2("key_2", "22");
   1479   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_1);
   1480   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_1);
   1481   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1_2);
   1482   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2_2);
   1483 
   1484   ASSERT_EQ(2, test_result.test_property_count());
   1485   const TestProperty& actual_property_1 = test_result.GetTestProperty(0);
   1486   EXPECT_STREQ("key_1", actual_property_1.key());
   1487   EXPECT_STREQ("12", actual_property_1.value());
   1488 
   1489   const TestProperty& actual_property_2 = test_result.GetTestProperty(1);
   1490   EXPECT_STREQ("key_2", actual_property_2.key());
   1491   EXPECT_STREQ("22", actual_property_2.value());
   1492 }
   1493 
   1494 // Tests TestResult::GetTestProperty().
   1495 TEST(TestResultPropertyTest, GetTestProperty) {
   1496   TestResult test_result;
   1497   TestProperty property_1("key_1", "1");
   1498   TestProperty property_2("key_2", "2");
   1499   TestProperty property_3("key_3", "3");
   1500   TestResultAccessor::RecordProperty(&test_result, "testcase", property_1);
   1501   TestResultAccessor::RecordProperty(&test_result, "testcase", property_2);
   1502   TestResultAccessor::RecordProperty(&test_result, "testcase", property_3);
   1503 
   1504   const TestProperty& fetched_property_1 = test_result.GetTestProperty(0);
   1505   const TestProperty& fetched_property_2 = test_result.GetTestProperty(1);
   1506   const TestProperty& fetched_property_3 = test_result.GetTestProperty(2);
   1507 
   1508   EXPECT_STREQ("key_1", fetched_property_1.key());
   1509   EXPECT_STREQ("1", fetched_property_1.value());
   1510 
   1511   EXPECT_STREQ("key_2", fetched_property_2.key());
   1512   EXPECT_STREQ("2", fetched_property_2.value());
   1513 
   1514   EXPECT_STREQ("key_3", fetched_property_3.key());
   1515   EXPECT_STREQ("3", fetched_property_3.value());
   1516 
   1517   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(3), "");
   1518   EXPECT_DEATH_IF_SUPPORTED(test_result.GetTestProperty(-1), "");
   1519 }
   1520 
   1521 // Tests the Test class.
   1522 //
   1523 // It's difficult to test every public method of this class (we are
   1524 // already stretching the limit of Google Test by using it to test itself!).
   1525 // Fortunately, we don't have to do that, as we are already testing
   1526 // the functionalities of the Test class extensively by using Google Test
   1527 // alone.
   1528 //
   1529 // Therefore, this section only contains one test.
   1530 
   1531 // Tests that GTestFlagSaver works on Windows and Mac.
   1532 
   1533 class GTestFlagSaverTest : public Test {
   1534  protected:
   1535   // Saves the Google Test flags such that we can restore them later, and
   1536   // then sets them to their default values.  This will be called
   1537   // before the first test in this test case is run.
   1538   static void SetUpTestCase() {
   1539     saver_ = new GTestFlagSaver;
   1540 
   1541     GTEST_FLAG(also_run_disabled_tests) = false;
   1542     GTEST_FLAG(break_on_failure) = false;
   1543     GTEST_FLAG(catch_exceptions) = false;
   1544     GTEST_FLAG(death_test_use_fork) = false;
   1545     GTEST_FLAG(color) = "auto";
   1546     GTEST_FLAG(filter) = "";
   1547     GTEST_FLAG(list_tests) = false;
   1548     GTEST_FLAG(output) = "";
   1549     GTEST_FLAG(print_time) = true;
   1550     GTEST_FLAG(random_seed) = 0;
   1551     GTEST_FLAG(repeat) = 1;
   1552     GTEST_FLAG(shuffle) = false;
   1553     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   1554     GTEST_FLAG(stream_result_to) = "";
   1555     GTEST_FLAG(throw_on_failure) = false;
   1556   }
   1557 
   1558   // Restores the Google Test flags that the tests have modified.  This will
   1559   // be called after the last test in this test case is run.
   1560   static void TearDownTestCase() {
   1561     delete saver_;
   1562     saver_ = NULL;
   1563   }
   1564 
   1565   // Verifies that the Google Test flags have their default values, and then
   1566   // modifies each of them.
   1567   void VerifyAndModifyFlags() {
   1568     EXPECT_FALSE(GTEST_FLAG(also_run_disabled_tests));
   1569     EXPECT_FALSE(GTEST_FLAG(break_on_failure));
   1570     EXPECT_FALSE(GTEST_FLAG(catch_exceptions));
   1571     EXPECT_STREQ("auto", GTEST_FLAG(color).c_str());
   1572     EXPECT_FALSE(GTEST_FLAG(death_test_use_fork));
   1573     EXPECT_STREQ("", GTEST_FLAG(filter).c_str());
   1574     EXPECT_FALSE(GTEST_FLAG(list_tests));
   1575     EXPECT_STREQ("", GTEST_FLAG(output).c_str());
   1576     EXPECT_TRUE(GTEST_FLAG(print_time));
   1577     EXPECT_EQ(0, GTEST_FLAG(random_seed));
   1578     EXPECT_EQ(1, GTEST_FLAG(repeat));
   1579     EXPECT_FALSE(GTEST_FLAG(shuffle));
   1580     EXPECT_EQ(kMaxStackTraceDepth, GTEST_FLAG(stack_trace_depth));
   1581     EXPECT_STREQ("", GTEST_FLAG(stream_result_to).c_str());
   1582     EXPECT_FALSE(GTEST_FLAG(throw_on_failure));
   1583 
   1584     GTEST_FLAG(also_run_disabled_tests) = true;
   1585     GTEST_FLAG(break_on_failure) = true;
   1586     GTEST_FLAG(catch_exceptions) = true;
   1587     GTEST_FLAG(color) = "no";
   1588     GTEST_FLAG(death_test_use_fork) = true;
   1589     GTEST_FLAG(filter) = "abc";
   1590     GTEST_FLAG(list_tests) = true;
   1591     GTEST_FLAG(output) = "xml:foo.xml";
   1592     GTEST_FLAG(print_time) = false;
   1593     GTEST_FLAG(random_seed) = 1;
   1594     GTEST_FLAG(repeat) = 100;
   1595     GTEST_FLAG(shuffle) = true;
   1596     GTEST_FLAG(stack_trace_depth) = 1;
   1597     GTEST_FLAG(stream_result_to) = "localhost:1234";
   1598     GTEST_FLAG(throw_on_failure) = true;
   1599   }
   1600 
   1601  private:
   1602   // For saving Google Test flags during this test case.
   1603   static GTestFlagSaver* saver_;
   1604 };
   1605 
   1606 GTestFlagSaver* GTestFlagSaverTest::saver_ = NULL;
   1607 
   1608 // Google Test doesn't guarantee the order of tests.  The following two
   1609 // tests are designed to work regardless of their order.
   1610 
   1611 // Modifies the Google Test flags in the test body.
   1612 TEST_F(GTestFlagSaverTest, ModifyGTestFlags) {
   1613   VerifyAndModifyFlags();
   1614 }
   1615 
   1616 // Verifies that the Google Test flags in the body of the previous test were
   1617 // restored to their original values.
   1618 TEST_F(GTestFlagSaverTest, VerifyGTestFlags) {
   1619   VerifyAndModifyFlags();
   1620 }
   1621 
   1622 // Sets an environment variable with the given name to the given
   1623 // value.  If the value argument is "", unsets the environment
   1624 // variable.  The caller must ensure that both arguments are not NULL.
   1625 static void SetEnv(const char* name, const char* value) {
   1626 #if GTEST_OS_WINDOWS_MOBILE
   1627   // Environment variables are not supported on Windows CE.
   1628   return;
   1629 #elif defined(__BORLANDC__) || defined(__SunOS_5_8) || defined(__SunOS_5_9)
   1630   // C++Builder's putenv only stores a pointer to its parameter; we have to
   1631   // ensure that the string remains valid as long as it might be needed.
   1632   // We use an std::map to do so.
   1633   static std::map<std::string, std::string*> added_env;
   1634 
   1635   // Because putenv stores a pointer to the string buffer, we can't delete the
   1636   // previous string (if present) until after it's replaced.
   1637   std::string *prev_env = NULL;
   1638   if (added_env.find(name) != added_env.end()) {
   1639     prev_env = added_env[name];
   1640   }
   1641   added_env[name] = new std::string(
   1642       (Message() << name << "=" << value).GetString());
   1643 
   1644   // The standard signature of putenv accepts a 'char*' argument. Other
   1645   // implementations, like C++Builder's, accept a 'const char*'.
   1646   // We cast away the 'const' since that would work for both variants.
   1647   putenv(const_cast<char*>(added_env[name]->c_str()));
   1648   delete prev_env;
   1649 #elif GTEST_OS_WINDOWS  // If we are on Windows proper.
   1650   _putenv((Message() << name << "=" << value).GetString().c_str());
   1651 #else
   1652   if (*value == '\0') {
   1653     unsetenv(name);
   1654   } else {
   1655     setenv(name, value, 1);
   1656   }
   1657 #endif  // GTEST_OS_WINDOWS_MOBILE
   1658 }
   1659 
   1660 #if !GTEST_OS_WINDOWS_MOBILE
   1661 // Environment variables are not supported on Windows CE.
   1662 
   1663 using testing::internal::Int32FromGTestEnv;
   1664 
   1665 // Tests Int32FromGTestEnv().
   1666 
   1667 // Tests that Int32FromGTestEnv() returns the default value when the
   1668 // environment variable is not set.
   1669 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenVariableIsNotSet) {
   1670   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "");
   1671   EXPECT_EQ(10, Int32FromGTestEnv("temp", 10));
   1672 }
   1673 
   1674 # if !defined(GTEST_GET_INT32_FROM_ENV_)
   1675 
   1676 // Tests that Int32FromGTestEnv() returns the default value when the
   1677 // environment variable overflows as an Int32.
   1678 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueOverflows) {
   1679   printf("(expecting 2 warnings)\n");
   1680 
   1681   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12345678987654321");
   1682   EXPECT_EQ(20, Int32FromGTestEnv("temp", 20));
   1683 
   1684   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-12345678987654321");
   1685   EXPECT_EQ(30, Int32FromGTestEnv("temp", 30));
   1686 }
   1687 
   1688 // Tests that Int32FromGTestEnv() returns the default value when the
   1689 // environment variable does not represent a valid decimal integer.
   1690 TEST(Int32FromGTestEnvTest, ReturnsDefaultWhenValueIsInvalid) {
   1691   printf("(expecting 2 warnings)\n");
   1692 
   1693   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "A1");
   1694   EXPECT_EQ(40, Int32FromGTestEnv("temp", 40));
   1695 
   1696   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "12X");
   1697   EXPECT_EQ(50, Int32FromGTestEnv("temp", 50));
   1698 }
   1699 
   1700 # endif  // !defined(GTEST_GET_INT32_FROM_ENV_)
   1701 
   1702 // Tests that Int32FromGTestEnv() parses and returns the value of the
   1703 // environment variable when it represents a valid decimal integer in
   1704 // the range of an Int32.
   1705 TEST(Int32FromGTestEnvTest, ParsesAndReturnsValidValue) {
   1706   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "123");
   1707   EXPECT_EQ(123, Int32FromGTestEnv("temp", 0));
   1708 
   1709   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "TEMP", "-321");
   1710   EXPECT_EQ(-321, Int32FromGTestEnv("temp", 0));
   1711 }
   1712 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1713 
   1714 // Tests ParseInt32Flag().
   1715 
   1716 // Tests that ParseInt32Flag() returns false and doesn't change the
   1717 // output value when the flag has wrong format
   1718 TEST(ParseInt32FlagTest, ReturnsFalseForInvalidFlag) {
   1719   Int32 value = 123;
   1720   EXPECT_FALSE(ParseInt32Flag("--a=100", "b", &value));
   1721   EXPECT_EQ(123, value);
   1722 
   1723   EXPECT_FALSE(ParseInt32Flag("a=100", "a", &value));
   1724   EXPECT_EQ(123, value);
   1725 }
   1726 
   1727 // Tests that ParseInt32Flag() returns false and doesn't change the
   1728 // output value when the flag overflows as an Int32.
   1729 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueOverflows) {
   1730   printf("(expecting 2 warnings)\n");
   1731 
   1732   Int32 value = 123;
   1733   EXPECT_FALSE(ParseInt32Flag("--abc=12345678987654321", "abc", &value));
   1734   EXPECT_EQ(123, value);
   1735 
   1736   EXPECT_FALSE(ParseInt32Flag("--abc=-12345678987654321", "abc", &value));
   1737   EXPECT_EQ(123, value);
   1738 }
   1739 
   1740 // Tests that ParseInt32Flag() returns false and doesn't change the
   1741 // output value when the flag does not represent a valid decimal
   1742 // integer.
   1743 TEST(ParseInt32FlagTest, ReturnsDefaultWhenValueIsInvalid) {
   1744   printf("(expecting 2 warnings)\n");
   1745 
   1746   Int32 value = 123;
   1747   EXPECT_FALSE(ParseInt32Flag("--abc=A1", "abc", &value));
   1748   EXPECT_EQ(123, value);
   1749 
   1750   EXPECT_FALSE(ParseInt32Flag("--abc=12X", "abc", &value));
   1751   EXPECT_EQ(123, value);
   1752 }
   1753 
   1754 // Tests that ParseInt32Flag() parses the value of the flag and
   1755 // returns true when the flag represents a valid decimal integer in
   1756 // the range of an Int32.
   1757 TEST(ParseInt32FlagTest, ParsesAndReturnsValidValue) {
   1758   Int32 value = 123;
   1759   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=456", "abc", &value));
   1760   EXPECT_EQ(456, value);
   1761 
   1762   EXPECT_TRUE(ParseInt32Flag("--" GTEST_FLAG_PREFIX_ "abc=-789",
   1763                              "abc", &value));
   1764   EXPECT_EQ(-789, value);
   1765 }
   1766 
   1767 // Tests that Int32FromEnvOrDie() parses the value of the var or
   1768 // returns the correct default.
   1769 // Environment variables are not supported on Windows CE.
   1770 #if !GTEST_OS_WINDOWS_MOBILE
   1771 TEST(Int32FromEnvOrDieTest, ParsesAndReturnsValidValue) {
   1772   EXPECT_EQ(333, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1773   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "123");
   1774   EXPECT_EQ(123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1775   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", "-123");
   1776   EXPECT_EQ(-123, Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "UnsetVar", 333));
   1777 }
   1778 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1779 
   1780 // Tests that Int32FromEnvOrDie() aborts with an error message
   1781 // if the variable is not an Int32.
   1782 TEST(Int32FromEnvOrDieDeathTest, AbortsOnFailure) {
   1783   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "xxx");
   1784   EXPECT_DEATH_IF_SUPPORTED(
   1785       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1786       ".*");
   1787 }
   1788 
   1789 // Tests that Int32FromEnvOrDie() aborts with an error message
   1790 // if the variable cannot be represnted by an Int32.
   1791 TEST(Int32FromEnvOrDieDeathTest, AbortsOnInt32Overflow) {
   1792   SetEnv(GTEST_FLAG_PREFIX_UPPER_ "VAR", "1234567891234567891234");
   1793   EXPECT_DEATH_IF_SUPPORTED(
   1794       Int32FromEnvOrDie(GTEST_FLAG_PREFIX_UPPER_ "VAR", 123),
   1795       ".*");
   1796 }
   1797 
   1798 // Tests that ShouldRunTestOnShard() selects all tests
   1799 // where there is 1 shard.
   1800 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereIsOneShard) {
   1801   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 0));
   1802   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 1));
   1803   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 2));
   1804   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 3));
   1805   EXPECT_TRUE(ShouldRunTestOnShard(1, 0, 4));
   1806 }
   1807 
   1808 class ShouldShardTest : public testing::Test {
   1809  protected:
   1810   virtual void SetUp() {
   1811     index_var_ = GTEST_FLAG_PREFIX_UPPER_ "INDEX";
   1812     total_var_ = GTEST_FLAG_PREFIX_UPPER_ "TOTAL";
   1813   }
   1814 
   1815   virtual void TearDown() {
   1816     SetEnv(index_var_, "");
   1817     SetEnv(total_var_, "");
   1818   }
   1819 
   1820   const char* index_var_;
   1821   const char* total_var_;
   1822 };
   1823 
   1824 // Tests that sharding is disabled if neither of the environment variables
   1825 // are set.
   1826 TEST_F(ShouldShardTest, ReturnsFalseWhenNeitherEnvVarIsSet) {
   1827   SetEnv(index_var_, "");
   1828   SetEnv(total_var_, "");
   1829 
   1830   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1831   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1832 }
   1833 
   1834 // Tests that sharding is not enabled if total_shards  == 1.
   1835 TEST_F(ShouldShardTest, ReturnsFalseWhenTotalShardIsOne) {
   1836   SetEnv(index_var_, "0");
   1837   SetEnv(total_var_, "1");
   1838   EXPECT_FALSE(ShouldShard(total_var_, index_var_, false));
   1839   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1840 }
   1841 
   1842 // Tests that sharding is enabled if total_shards > 1 and
   1843 // we are not in a death test subprocess.
   1844 // Environment variables are not supported on Windows CE.
   1845 #if !GTEST_OS_WINDOWS_MOBILE
   1846 TEST_F(ShouldShardTest, WorksWhenShardEnvVarsAreValid) {
   1847   SetEnv(index_var_, "4");
   1848   SetEnv(total_var_, "22");
   1849   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1850   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1851 
   1852   SetEnv(index_var_, "8");
   1853   SetEnv(total_var_, "9");
   1854   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1855   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1856 
   1857   SetEnv(index_var_, "0");
   1858   SetEnv(total_var_, "9");
   1859   EXPECT_TRUE(ShouldShard(total_var_, index_var_, false));
   1860   EXPECT_FALSE(ShouldShard(total_var_, index_var_, true));
   1861 }
   1862 #endif  // !GTEST_OS_WINDOWS_MOBILE
   1863 
   1864 // Tests that we exit in error if the sharding values are not valid.
   1865 
   1866 typedef ShouldShardTest ShouldShardDeathTest;
   1867 
   1868 TEST_F(ShouldShardDeathTest, AbortsWhenShardingEnvVarsAreInvalid) {
   1869   SetEnv(index_var_, "4");
   1870   SetEnv(total_var_, "4");
   1871   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1872 
   1873   SetEnv(index_var_, "4");
   1874   SetEnv(total_var_, "-2");
   1875   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1876 
   1877   SetEnv(index_var_, "5");
   1878   SetEnv(total_var_, "");
   1879   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1880 
   1881   SetEnv(index_var_, "");
   1882   SetEnv(total_var_, "5");
   1883   EXPECT_DEATH_IF_SUPPORTED(ShouldShard(total_var_, index_var_, false), ".*");
   1884 }
   1885 
   1886 // Tests that ShouldRunTestOnShard is a partition when 5
   1887 // shards are used.
   1888 TEST(ShouldRunTestOnShardTest, IsPartitionWhenThereAreFiveShards) {
   1889   // Choose an arbitrary number of tests and shards.
   1890   const int num_tests = 17;
   1891   const int num_shards = 5;
   1892 
   1893   // Check partitioning: each test should be on exactly 1 shard.
   1894   for (int test_id = 0; test_id < num_tests; test_id++) {
   1895     int prev_selected_shard_index = -1;
   1896     for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1897       if (ShouldRunTestOnShard(num_shards, shard_index, test_id)) {
   1898         if (prev_selected_shard_index < 0) {
   1899           prev_selected_shard_index = shard_index;
   1900         } else {
   1901           ADD_FAILURE() << "Shard " << prev_selected_shard_index << " and "
   1902             << shard_index << " are both selected to run test " << test_id;
   1903         }
   1904       }
   1905     }
   1906   }
   1907 
   1908   // Check balance: This is not required by the sharding protocol, but is a
   1909   // desirable property for performance.
   1910   for (int shard_index = 0; shard_index < num_shards; shard_index++) {
   1911     int num_tests_on_shard = 0;
   1912     for (int test_id = 0; test_id < num_tests; test_id++) {
   1913       num_tests_on_shard +=
   1914         ShouldRunTestOnShard(num_shards, shard_index, test_id);
   1915     }
   1916     EXPECT_GE(num_tests_on_shard, num_tests / num_shards);
   1917   }
   1918 }
   1919 
   1920 // For the same reason we are not explicitly testing everything in the
   1921 // Test class, there are no separate tests for the following classes
   1922 // (except for some trivial cases):
   1923 //
   1924 //   TestCase, UnitTest, UnitTestResultPrinter.
   1925 //
   1926 // Similarly, there are no separate tests for the following macros:
   1927 //
   1928 //   TEST, TEST_F, RUN_ALL_TESTS
   1929 
   1930 TEST(UnitTestTest, CanGetOriginalWorkingDir) {
   1931   ASSERT_TRUE(UnitTest::GetInstance()->original_working_dir() != NULL);
   1932   EXPECT_STRNE(UnitTest::GetInstance()->original_working_dir(), "");
   1933 }
   1934 
   1935 TEST(UnitTestTest, ReturnsPlausibleTimestamp) {
   1936   EXPECT_LT(0, UnitTest::GetInstance()->start_timestamp());
   1937   EXPECT_LE(UnitTest::GetInstance()->start_timestamp(), GetTimeInMillis());
   1938 }
   1939 
   1940 // When a property using a reserved key is supplied to this function, it
   1941 // tests that a non-fatal failure is added, a fatal failure is not added,
   1942 // and that the property is not recorded.
   1943 void ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1944     const TestResult& test_result, const char* key) {
   1945   EXPECT_NONFATAL_FAILURE(Test::RecordProperty(key, "1"), "Reserved key");
   1946   ASSERT_EQ(0, test_result.test_property_count()) << "Property for key '" << key
   1947                                                   << "' recorded unexpectedly.";
   1948 }
   1949 
   1950 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   1951     const char* key) {
   1952   const TestInfo* test_info = UnitTest::GetInstance()->current_test_info();
   1953   ASSERT_TRUE(test_info != NULL);
   1954   ExpectNonFatalFailureRecordingPropertyWithReservedKey(*test_info->result(),
   1955                                                         key);
   1956 }
   1957 
   1958 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1959     const char* key) {
   1960   const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1961   ASSERT_TRUE(test_case != NULL);
   1962   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1963       test_case->ad_hoc_test_result(), key);
   1964 }
   1965 
   1966 void ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   1967     const char* key) {
   1968   ExpectNonFatalFailureRecordingPropertyWithReservedKey(
   1969       UnitTest::GetInstance()->ad_hoc_test_result(), key);
   1970 }
   1971 
   1972 // Tests that property recording functions in UnitTest outside of tests
   1973 // functions correcly.  Creating a separate instance of UnitTest ensures it
   1974 // is in a state similar to the UnitTest's singleton's between tests.
   1975 class UnitTestRecordPropertyTest :
   1976     public testing::internal::UnitTestRecordPropertyTestHelper {
   1977  public:
   1978   static void SetUpTestCase() {
   1979     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1980         "disabled");
   1981     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1982         "errors");
   1983     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1984         "failures");
   1985     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1986         "name");
   1987     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1988         "tests");
   1989     ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTestCase(
   1990         "time");
   1991 
   1992     Test::RecordProperty("test_case_key_1", "1");
   1993     const TestCase* test_case = UnitTest::GetInstance()->current_test_case();
   1994     ASSERT_TRUE(test_case != NULL);
   1995 
   1996     ASSERT_EQ(1, test_case->ad_hoc_test_result().test_property_count());
   1997     EXPECT_STREQ("test_case_key_1",
   1998                  test_case->ad_hoc_test_result().GetTestProperty(0).key());
   1999     EXPECT_STREQ("1",
   2000                  test_case->ad_hoc_test_result().GetTestProperty(0).value());
   2001   }
   2002 };
   2003 
   2004 // Tests TestResult has the expected property when added.
   2005 TEST_F(UnitTestRecordPropertyTest, OnePropertyFoundWhenAdded) {
   2006   UnitTestRecordProperty("key_1", "1");
   2007 
   2008   ASSERT_EQ(1, unit_test_.ad_hoc_test_result().test_property_count());
   2009 
   2010   EXPECT_STREQ("key_1",
   2011                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2012   EXPECT_STREQ("1",
   2013                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2014 }
   2015 
   2016 // Tests TestResult has multiple properties when added.
   2017 TEST_F(UnitTestRecordPropertyTest, MultiplePropertiesFoundWhenAdded) {
   2018   UnitTestRecordProperty("key_1", "1");
   2019   UnitTestRecordProperty("key_2", "2");
   2020 
   2021   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2022 
   2023   EXPECT_STREQ("key_1",
   2024                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2025   EXPECT_STREQ("1", unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2026 
   2027   EXPECT_STREQ("key_2",
   2028                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2029   EXPECT_STREQ("2", unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2030 }
   2031 
   2032 // Tests TestResult::RecordProperty() overrides values for duplicate keys.
   2033 TEST_F(UnitTestRecordPropertyTest, OverridesValuesForDuplicateKeys) {
   2034   UnitTestRecordProperty("key_1", "1");
   2035   UnitTestRecordProperty("key_2", "2");
   2036   UnitTestRecordProperty("key_1", "12");
   2037   UnitTestRecordProperty("key_2", "22");
   2038 
   2039   ASSERT_EQ(2, unit_test_.ad_hoc_test_result().test_property_count());
   2040 
   2041   EXPECT_STREQ("key_1",
   2042                unit_test_.ad_hoc_test_result().GetTestProperty(0).key());
   2043   EXPECT_STREQ("12",
   2044                unit_test_.ad_hoc_test_result().GetTestProperty(0).value());
   2045 
   2046   EXPECT_STREQ("key_2",
   2047                unit_test_.ad_hoc_test_result().GetTestProperty(1).key());
   2048   EXPECT_STREQ("22",
   2049                unit_test_.ad_hoc_test_result().GetTestProperty(1).value());
   2050 }
   2051 
   2052 TEST_F(UnitTestRecordPropertyTest,
   2053        AddFailureInsideTestsWhenUsingTestCaseReservedKeys) {
   2054   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2055       "name");
   2056   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2057       "value_param");
   2058   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2059       "type_param");
   2060   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2061       "status");
   2062   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2063       "time");
   2064   ExpectNonFatalFailureRecordingPropertyWithReservedKeyForCurrentTest(
   2065       "classname");
   2066 }
   2067 
   2068 TEST_F(UnitTestRecordPropertyTest,
   2069        AddRecordWithReservedKeysGeneratesCorrectPropertyList) {
   2070   EXPECT_NONFATAL_FAILURE(
   2071       Test::RecordProperty("name", "1"),
   2072       "'classname', 'name', 'status', 'time', 'type_param', and 'value_param'"
   2073       " are reserved");
   2074 }
   2075 
   2076 class UnitTestRecordPropertyTestEnvironment : public Environment {
   2077  public:
   2078   virtual void TearDown() {
   2079     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2080         "tests");
   2081     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2082         "failures");
   2083     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2084         "disabled");
   2085     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2086         "errors");
   2087     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2088         "name");
   2089     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2090         "timestamp");
   2091     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2092         "time");
   2093     ExpectNonFatalFailureRecordingPropertyWithReservedKeyOutsideOfTestCase(
   2094         "random_seed");
   2095   }
   2096 };
   2097 
   2098 // This will test property recording outside of any test or test case.
   2099 Environment* record_property_env GTEST_ATTRIBUTE_UNUSED_ =
   2100     AddGlobalTestEnvironment(new UnitTestRecordPropertyTestEnvironment);
   2101 
   2102 // This group of tests is for predicate assertions (ASSERT_PRED*, etc)
   2103 // of various arities.  They do not attempt to be exhaustive.  Rather,
   2104 // view them as smoke tests that can be easily reviewed and verified.
   2105 // A more complete set of tests for predicate assertions can be found
   2106 // in gtest_pred_impl_unittest.cc.
   2107 
   2108 // First, some predicates and predicate-formatters needed by the tests.
   2109 
   2110 // Returns true iff the argument is an even number.
   2111 bool IsEven(int n) {
   2112   return (n % 2) == 0;
   2113 }
   2114 
   2115 // A functor that returns true iff the argument is an even number.
   2116 struct IsEvenFunctor {
   2117   bool operator()(int n) { return IsEven(n); }
   2118 };
   2119 
   2120 // A predicate-formatter function that asserts the argument is an even
   2121 // number.
   2122 AssertionResult AssertIsEven(const char* expr, int n) {
   2123   if (IsEven(n)) {
   2124     return AssertionSuccess();
   2125   }
   2126 
   2127   Message msg;
   2128   msg << expr << " evaluates to " << n << ", which is not even.";
   2129   return AssertionFailure(msg);
   2130 }
   2131 
   2132 // A predicate function that returns AssertionResult for use in
   2133 // EXPECT/ASSERT_TRUE/FALSE.
   2134 AssertionResult ResultIsEven(int n) {
   2135   if (IsEven(n))
   2136     return AssertionSuccess() << n << " is even";
   2137   else
   2138     return AssertionFailure() << n << " is odd";
   2139 }
   2140 
   2141 // A predicate function that returns AssertionResult but gives no
   2142 // explanation why it succeeds. Needed for testing that
   2143 // EXPECT/ASSERT_FALSE handles such functions correctly.
   2144 AssertionResult ResultIsEvenNoExplanation(int n) {
   2145   if (IsEven(n))
   2146     return AssertionSuccess();
   2147   else
   2148     return AssertionFailure() << n << " is odd";
   2149 }
   2150 
   2151 // A predicate-formatter functor that asserts the argument is an even
   2152 // number.
   2153 struct AssertIsEvenFunctor {
   2154   AssertionResult operator()(const char* expr, int n) {
   2155     return AssertIsEven(expr, n);
   2156   }
   2157 };
   2158 
   2159 // Returns true iff the sum of the arguments is an even number.
   2160 bool SumIsEven2(int n1, int n2) {
   2161   return IsEven(n1 + n2);
   2162 }
   2163 
   2164 // A functor that returns true iff the sum of the arguments is an even
   2165 // number.
   2166 struct SumIsEven3Functor {
   2167   bool operator()(int n1, int n2, int n3) {
   2168     return IsEven(n1 + n2 + n3);
   2169   }
   2170 };
   2171 
   2172 // A predicate-formatter function that asserts the sum of the
   2173 // arguments is an even number.
   2174 AssertionResult AssertSumIsEven4(
   2175     const char* e1, const char* e2, const char* e3, const char* e4,
   2176     int n1, int n2, int n3, int n4) {
   2177   const int sum = n1 + n2 + n3 + n4;
   2178   if (IsEven(sum)) {
   2179     return AssertionSuccess();
   2180   }
   2181 
   2182   Message msg;
   2183   msg << e1 << " + " << e2 << " + " << e3 << " + " << e4
   2184       << " (" << n1 << " + " << n2 << " + " << n3 << " + " << n4
   2185       << ") evaluates to " << sum << ", which is not even.";
   2186   return AssertionFailure(msg);
   2187 }
   2188 
   2189 // A predicate-formatter functor that asserts the sum of the arguments
   2190 // is an even number.
   2191 struct AssertSumIsEven5Functor {
   2192   AssertionResult operator()(
   2193       const char* e1, const char* e2, const char* e3, const char* e4,
   2194       const char* e5, int n1, int n2, int n3, int n4, int n5) {
   2195     const int sum = n1 + n2 + n3 + n4 + n5;
   2196     if (IsEven(sum)) {
   2197       return AssertionSuccess();
   2198     }
   2199 
   2200     Message msg;
   2201     msg << e1 << " + " << e2 << " + " << e3 << " + " << e4 << " + " << e5
   2202         << " ("
   2203         << n1 << " + " << n2 << " + " << n3 << " + " << n4 << " + " << n5
   2204         << ") evaluates to " << sum << ", which is not even.";
   2205     return AssertionFailure(msg);
   2206   }
   2207 };
   2208 
   2209 
   2210 // Tests unary predicate assertions.
   2211 
   2212 // Tests unary predicate assertions that don't use a custom formatter.
   2213 TEST(Pred1Test, WithoutFormat) {
   2214   // Success cases.
   2215   EXPECT_PRED1(IsEvenFunctor(), 2) << "This failure is UNEXPECTED!";
   2216   ASSERT_PRED1(IsEven, 4);
   2217 
   2218   // Failure cases.
   2219   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2220     EXPECT_PRED1(IsEven, 5) << "This failure is expected.";
   2221   }, "This failure is expected.");
   2222   EXPECT_FATAL_FAILURE(ASSERT_PRED1(IsEvenFunctor(), 5),
   2223                        "evaluates to false");
   2224 }
   2225 
   2226 // Tests unary predicate assertions that use a custom formatter.
   2227 TEST(Pred1Test, WithFormat) {
   2228   // Success cases.
   2229   EXPECT_PRED_FORMAT1(AssertIsEven, 2);
   2230   ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), 4)
   2231     << "This failure is UNEXPECTED!";
   2232 
   2233   // Failure cases.
   2234   const int n = 5;
   2235   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT1(AssertIsEvenFunctor(), n),
   2236                           "n evaluates to 5, which is not even.");
   2237   EXPECT_FATAL_FAILURE({  // NOLINT
   2238     ASSERT_PRED_FORMAT1(AssertIsEven, 5) << "This failure is expected.";
   2239   }, "This failure is expected.");
   2240 }
   2241 
   2242 // Tests that unary predicate assertions evaluates their arguments
   2243 // exactly once.
   2244 TEST(Pred1Test, SingleEvaluationOnFailure) {
   2245   // A success case.
   2246   static int n = 0;
   2247   EXPECT_PRED1(IsEven, n++);
   2248   EXPECT_EQ(1, n) << "The argument is not evaluated exactly once.";
   2249 
   2250   // A failure case.
   2251   EXPECT_FATAL_FAILURE({  // NOLINT
   2252     ASSERT_PRED_FORMAT1(AssertIsEvenFunctor(), n++)
   2253         << "This failure is expected.";
   2254   }, "This failure is expected.");
   2255   EXPECT_EQ(2, n) << "The argument is not evaluated exactly once.";
   2256 }
   2257 
   2258 
   2259 // Tests predicate assertions whose arity is >= 2.
   2260 
   2261 // Tests predicate assertions that don't use a custom formatter.
   2262 TEST(PredTest, WithoutFormat) {
   2263   // Success cases.
   2264   ASSERT_PRED2(SumIsEven2, 2, 4) << "This failure is UNEXPECTED!";
   2265   EXPECT_PRED3(SumIsEven3Functor(), 4, 6, 8);
   2266 
   2267   // Failure cases.
   2268   const int n1 = 1;
   2269   const int n2 = 2;
   2270   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2271     EXPECT_PRED2(SumIsEven2, n1, n2) << "This failure is expected.";
   2272   }, "This failure is expected.");
   2273   EXPECT_FATAL_FAILURE({  // NOLINT
   2274     ASSERT_PRED3(SumIsEven3Functor(), 1, 2, 4);
   2275   }, "evaluates to false");
   2276 }
   2277 
   2278 // Tests predicate assertions that use a custom formatter.
   2279 TEST(PredTest, WithFormat) {
   2280   // Success cases.
   2281   ASSERT_PRED_FORMAT4(AssertSumIsEven4, 4, 6, 8, 10) <<
   2282     "This failure is UNEXPECTED!";
   2283   EXPECT_PRED_FORMAT5(AssertSumIsEven5Functor(), 2, 4, 6, 8, 10);
   2284 
   2285   // Failure cases.
   2286   const int n1 = 1;
   2287   const int n2 = 2;
   2288   const int n3 = 4;
   2289   const int n4 = 6;
   2290   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2291     EXPECT_PRED_FORMAT4(AssertSumIsEven4, n1, n2, n3, n4);
   2292   }, "evaluates to 13, which is not even.");
   2293   EXPECT_FATAL_FAILURE({  // NOLINT
   2294     ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(), 1, 2, 4, 6, 8)
   2295         << "This failure is expected.";
   2296   }, "This failure is expected.");
   2297 }
   2298 
   2299 // Tests that predicate assertions evaluates their arguments
   2300 // exactly once.
   2301 TEST(PredTest, SingleEvaluationOnFailure) {
   2302   // A success case.
   2303   int n1 = 0;
   2304   int n2 = 0;
   2305   EXPECT_PRED2(SumIsEven2, n1++, n2++);
   2306   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2307   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2308 
   2309   // Another success case.
   2310   n1 = n2 = 0;
   2311   int n3 = 0;
   2312   int n4 = 0;
   2313   int n5 = 0;
   2314   ASSERT_PRED_FORMAT5(AssertSumIsEven5Functor(),
   2315                       n1++, n2++, n3++, n4++, n5++)
   2316                         << "This failure is UNEXPECTED!";
   2317   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2318   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2319   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2320   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2321   EXPECT_EQ(1, n5) << "Argument 5 is not evaluated exactly once.";
   2322 
   2323   // A failure case.
   2324   n1 = n2 = n3 = 0;
   2325   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2326     EXPECT_PRED3(SumIsEven3Functor(), ++n1, n2++, n3++)
   2327         << "This failure is expected.";
   2328   }, "This failure is expected.");
   2329   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2330   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2331   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2332 
   2333   // Another failure case.
   2334   n1 = n2 = n3 = n4 = 0;
   2335   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2336     EXPECT_PRED_FORMAT4(AssertSumIsEven4, ++n1, n2++, n3++, n4++);
   2337   }, "evaluates to 1, which is not even.");
   2338   EXPECT_EQ(1, n1) << "Argument 1 is not evaluated exactly once.";
   2339   EXPECT_EQ(1, n2) << "Argument 2 is not evaluated exactly once.";
   2340   EXPECT_EQ(1, n3) << "Argument 3 is not evaluated exactly once.";
   2341   EXPECT_EQ(1, n4) << "Argument 4 is not evaluated exactly once.";
   2342 }
   2343 
   2344 
   2345 // Some helper functions for testing using overloaded/template
   2346 // functions with ASSERT_PREDn and EXPECT_PREDn.
   2347 
   2348 bool IsPositive(double x) {
   2349   return x > 0;
   2350 }
   2351 
   2352 template <typename T>
   2353 bool IsNegative(T x) {
   2354   return x < 0;
   2355 }
   2356 
   2357 template <typename T1, typename T2>
   2358 bool GreaterThan(T1 x1, T2 x2) {
   2359   return x1 > x2;
   2360 }
   2361 
   2362 // Tests that overloaded functions can be used in *_PRED* as long as
   2363 // their types are explicitly specified.
   2364 TEST(PredicateAssertionTest, AcceptsOverloadedFunction) {
   2365   // C++Builder requires C-style casts rather than static_cast.
   2366   EXPECT_PRED1((bool (*)(int))(IsPositive), 5);  // NOLINT
   2367   ASSERT_PRED1((bool (*)(double))(IsPositive), 6.0);  // NOLINT
   2368 }
   2369 
   2370 // Tests that template functions can be used in *_PRED* as long as
   2371 // their types are explicitly specified.
   2372 TEST(PredicateAssertionTest, AcceptsTemplateFunction) {
   2373   EXPECT_PRED1(IsNegative<int>, -5);
   2374   // Makes sure that we can handle templates with more than one
   2375   // parameter.
   2376   ASSERT_PRED2((GreaterThan<int, int>), 5, 0);
   2377 }
   2378 
   2379 
   2380 // Some helper functions for testing using overloaded/template
   2381 // functions with ASSERT_PRED_FORMATn and EXPECT_PRED_FORMATn.
   2382 
   2383 AssertionResult IsPositiveFormat(const char* /* expr */, int n) {
   2384   return n > 0 ? AssertionSuccess() :
   2385       AssertionFailure(Message() << "Failure");
   2386 }
   2387 
   2388 AssertionResult IsPositiveFormat(const char* /* expr */, double x) {
   2389   return x > 0 ? AssertionSuccess() :
   2390       AssertionFailure(Message() << "Failure");
   2391 }
   2392 
   2393 template <typename T>
   2394 AssertionResult IsNegativeFormat(const char* /* expr */, T x) {
   2395   return x < 0 ? AssertionSuccess() :
   2396       AssertionFailure(Message() << "Failure");
   2397 }
   2398 
   2399 template <typename T1, typename T2>
   2400 AssertionResult EqualsFormat(const char* /* expr1 */, const char* /* expr2 */,
   2401                              const T1& x1, const T2& x2) {
   2402   return x1 == x2 ? AssertionSuccess() :
   2403       AssertionFailure(Message() << "Failure");
   2404 }
   2405 
   2406 // Tests that overloaded functions can be used in *_PRED_FORMAT*
   2407 // without explicitly specifying their types.
   2408 TEST(PredicateFormatAssertionTest, AcceptsOverloadedFunction) {
   2409   EXPECT_PRED_FORMAT1(IsPositiveFormat, 5);
   2410   ASSERT_PRED_FORMAT1(IsPositiveFormat, 6.0);
   2411 }
   2412 
   2413 // Tests that template functions can be used in *_PRED_FORMAT* without
   2414 // explicitly specifying their types.
   2415 TEST(PredicateFormatAssertionTest, AcceptsTemplateFunction) {
   2416   EXPECT_PRED_FORMAT1(IsNegativeFormat, -5);
   2417   ASSERT_PRED_FORMAT2(EqualsFormat, 3, 3);
   2418 }
   2419 
   2420 
   2421 // Tests string assertions.
   2422 
   2423 // Tests ASSERT_STREQ with non-NULL arguments.
   2424 TEST(StringAssertionTest, ASSERT_STREQ) {
   2425   const char * const p1 = "good";
   2426   ASSERT_STREQ(p1, p1);
   2427 
   2428   // Let p2 have the same content as p1, but be at a different address.
   2429   const char p2[] = "good";
   2430   ASSERT_STREQ(p1, p2);
   2431 
   2432   EXPECT_FATAL_FAILURE(
   2433       ASSERT_STREQ("bad", "good"),
   2434       "Expected equality of these values:\n  \"bad\"\n  \"good\"");
   2435 }
   2436 
   2437 // Tests ASSERT_STREQ with NULL arguments.
   2438 TEST(StringAssertionTest, ASSERT_STREQ_Null) {
   2439   ASSERT_STREQ(static_cast<const char *>(NULL), NULL);
   2440   EXPECT_FATAL_FAILURE(ASSERT_STREQ(NULL, "non-null"),
   2441                        "non-null");
   2442 }
   2443 
   2444 // Tests ASSERT_STREQ with NULL arguments.
   2445 TEST(StringAssertionTest, ASSERT_STREQ_Null2) {
   2446   EXPECT_FATAL_FAILURE(ASSERT_STREQ("non-null", NULL),
   2447                        "non-null");
   2448 }
   2449 
   2450 // Tests ASSERT_STRNE.
   2451 TEST(StringAssertionTest, ASSERT_STRNE) {
   2452   ASSERT_STRNE("hi", "Hi");
   2453   ASSERT_STRNE("Hi", NULL);
   2454   ASSERT_STRNE(NULL, "Hi");
   2455   ASSERT_STRNE("", NULL);
   2456   ASSERT_STRNE(NULL, "");
   2457   ASSERT_STRNE("", "Hi");
   2458   ASSERT_STRNE("Hi", "");
   2459   EXPECT_FATAL_FAILURE(ASSERT_STRNE("Hi", "Hi"),
   2460                        "\"Hi\" vs \"Hi\"");
   2461 }
   2462 
   2463 // Tests ASSERT_STRCASEEQ.
   2464 TEST(StringAssertionTest, ASSERT_STRCASEEQ) {
   2465   ASSERT_STRCASEEQ("hi", "Hi");
   2466   ASSERT_STRCASEEQ(static_cast<const char *>(NULL), NULL);
   2467 
   2468   ASSERT_STRCASEEQ("", "");
   2469   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("Hi", "hi2"),
   2470                        "Ignoring case");
   2471 }
   2472 
   2473 // Tests ASSERT_STRCASENE.
   2474 TEST(StringAssertionTest, ASSERT_STRCASENE) {
   2475   ASSERT_STRCASENE("hi1", "Hi2");
   2476   ASSERT_STRCASENE("Hi", NULL);
   2477   ASSERT_STRCASENE(NULL, "Hi");
   2478   ASSERT_STRCASENE("", NULL);
   2479   ASSERT_STRCASENE(NULL, "");
   2480   ASSERT_STRCASENE("", "Hi");
   2481   ASSERT_STRCASENE("Hi", "");
   2482   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("Hi", "hi"),
   2483                        "(ignoring case)");
   2484 }
   2485 
   2486 // Tests *_STREQ on wide strings.
   2487 TEST(StringAssertionTest, STREQ_Wide) {
   2488   // NULL strings.
   2489   ASSERT_STREQ(static_cast<const wchar_t *>(NULL), NULL);
   2490 
   2491   // Empty strings.
   2492   ASSERT_STREQ(L"", L"");
   2493 
   2494   // Non-null vs NULL.
   2495   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"non-null", NULL),
   2496                           "non-null");
   2497 
   2498   // Equal strings.
   2499   EXPECT_STREQ(L"Hi", L"Hi");
   2500 
   2501   // Unequal strings.
   2502   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc", L"Abc"),
   2503                           "Abc");
   2504 
   2505   // Strings containing wide characters.
   2506   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ(L"abc\x8119", L"abc\x8120"),
   2507                           "abc");
   2508 
   2509   // The streaming variation.
   2510   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2511     EXPECT_STREQ(L"abc\x8119", L"abc\x8121") << "Expected failure";
   2512   }, "Expected failure");
   2513 }
   2514 
   2515 // Tests *_STRNE on wide strings.
   2516 TEST(StringAssertionTest, STRNE_Wide) {
   2517   // NULL strings.
   2518   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2519     EXPECT_STRNE(static_cast<const wchar_t *>(NULL), NULL);
   2520   }, "");
   2521 
   2522   // Empty strings.
   2523   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"", L""),
   2524                           "L\"\"");
   2525 
   2526   // Non-null vs NULL.
   2527   ASSERT_STRNE(L"non-null", NULL);
   2528 
   2529   // Equal strings.
   2530   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"Hi", L"Hi"),
   2531                           "L\"Hi\"");
   2532 
   2533   // Unequal strings.
   2534   EXPECT_STRNE(L"abc", L"Abc");
   2535 
   2536   // Strings containing wide characters.
   2537   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE(L"abc\x8119", L"abc\x8119"),
   2538                           "abc");
   2539 
   2540   // The streaming variation.
   2541   ASSERT_STRNE(L"abc\x8119", L"abc\x8120") << "This shouldn't happen";
   2542 }
   2543 
   2544 // Tests for ::testing::IsSubstring().
   2545 
   2546 // Tests that IsSubstring() returns the correct result when the input
   2547 // argument type is const char*.
   2548 TEST(IsSubstringTest, ReturnsCorrectResultForCString) {
   2549   EXPECT_FALSE(IsSubstring("", "", NULL, "a"));
   2550   EXPECT_FALSE(IsSubstring("", "", "b", NULL));
   2551   EXPECT_FALSE(IsSubstring("", "", "needle", "haystack"));
   2552 
   2553   EXPECT_TRUE(IsSubstring("", "", static_cast<const char*>(NULL), NULL));
   2554   EXPECT_TRUE(IsSubstring("", "", "needle", "two needles"));
   2555 }
   2556 
   2557 // Tests that IsSubstring() returns the correct result when the input
   2558 // argument type is const wchar_t*.
   2559 TEST(IsSubstringTest, ReturnsCorrectResultForWideCString) {
   2560   EXPECT_FALSE(IsSubstring("", "", kNull, L"a"));
   2561   EXPECT_FALSE(IsSubstring("", "", L"b", kNull));
   2562   EXPECT_FALSE(IsSubstring("", "", L"needle", L"haystack"));
   2563 
   2564   EXPECT_TRUE(IsSubstring("", "", static_cast<const wchar_t*>(NULL), NULL));
   2565   EXPECT_TRUE(IsSubstring("", "", L"needle", L"two needles"));
   2566 }
   2567 
   2568 // Tests that IsSubstring() generates the correct message when the input
   2569 // argument type is const char*.
   2570 TEST(IsSubstringTest, GeneratesCorrectMessageForCString) {
   2571   EXPECT_STREQ("Value of: needle_expr\n"
   2572                "  Actual: \"needle\"\n"
   2573                "Expected: a substring of haystack_expr\n"
   2574                "Which is: \"haystack\"",
   2575                IsSubstring("needle_expr", "haystack_expr",
   2576                            "needle", "haystack").failure_message());
   2577 }
   2578 
   2579 // Tests that IsSubstring returns the correct result when the input
   2580 // argument type is ::std::string.
   2581 TEST(IsSubstringTest, ReturnsCorrectResultsForStdString) {
   2582   EXPECT_TRUE(IsSubstring("", "", std::string("hello"), "ahellob"));
   2583   EXPECT_FALSE(IsSubstring("", "", "hello", std::string("world")));
   2584 }
   2585 
   2586 #if GTEST_HAS_STD_WSTRING
   2587 // Tests that IsSubstring returns the correct result when the input
   2588 // argument type is ::std::wstring.
   2589 TEST(IsSubstringTest, ReturnsCorrectResultForStdWstring) {
   2590   EXPECT_TRUE(IsSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2591   EXPECT_FALSE(IsSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2592 }
   2593 
   2594 // Tests that IsSubstring() generates the correct message when the input
   2595 // argument type is ::std::wstring.
   2596 TEST(IsSubstringTest, GeneratesCorrectMessageForWstring) {
   2597   EXPECT_STREQ("Value of: needle_expr\n"
   2598                "  Actual: L\"needle\"\n"
   2599                "Expected: a substring of haystack_expr\n"
   2600                "Which is: L\"haystack\"",
   2601                IsSubstring(
   2602                    "needle_expr", "haystack_expr",
   2603                    ::std::wstring(L"needle"), L"haystack").failure_message());
   2604 }
   2605 
   2606 #endif  // GTEST_HAS_STD_WSTRING
   2607 
   2608 // Tests for ::testing::IsNotSubstring().
   2609 
   2610 // Tests that IsNotSubstring() returns the correct result when the input
   2611 // argument type is const char*.
   2612 TEST(IsNotSubstringTest, ReturnsCorrectResultForCString) {
   2613   EXPECT_TRUE(IsNotSubstring("", "", "needle", "haystack"));
   2614   EXPECT_FALSE(IsNotSubstring("", "", "needle", "two needles"));
   2615 }
   2616 
   2617 // Tests that IsNotSubstring() returns the correct result when the input
   2618 // argument type is const wchar_t*.
   2619 TEST(IsNotSubstringTest, ReturnsCorrectResultForWideCString) {
   2620   EXPECT_TRUE(IsNotSubstring("", "", L"needle", L"haystack"));
   2621   EXPECT_FALSE(IsNotSubstring("", "", L"needle", L"two needles"));
   2622 }
   2623 
   2624 // Tests that IsNotSubstring() generates the correct message when the input
   2625 // argument type is const wchar_t*.
   2626 TEST(IsNotSubstringTest, GeneratesCorrectMessageForWideCString) {
   2627   EXPECT_STREQ("Value of: needle_expr\n"
   2628                "  Actual: L\"needle\"\n"
   2629                "Expected: not a substring of haystack_expr\n"
   2630                "Which is: L\"two needles\"",
   2631                IsNotSubstring(
   2632                    "needle_expr", "haystack_expr",
   2633                    L"needle", L"two needles").failure_message());
   2634 }
   2635 
   2636 // Tests that IsNotSubstring returns the correct result when the input
   2637 // argument type is ::std::string.
   2638 TEST(IsNotSubstringTest, ReturnsCorrectResultsForStdString) {
   2639   EXPECT_FALSE(IsNotSubstring("", "", std::string("hello"), "ahellob"));
   2640   EXPECT_TRUE(IsNotSubstring("", "", "hello", std::string("world")));
   2641 }
   2642 
   2643 // Tests that IsNotSubstring() generates the correct message when the input
   2644 // argument type is ::std::string.
   2645 TEST(IsNotSubstringTest, GeneratesCorrectMessageForStdString) {
   2646   EXPECT_STREQ("Value of: needle_expr\n"
   2647                "  Actual: \"needle\"\n"
   2648                "Expected: not a substring of haystack_expr\n"
   2649                "Which is: \"two needles\"",
   2650                IsNotSubstring(
   2651                    "needle_expr", "haystack_expr",
   2652                    ::std::string("needle"), "two needles").failure_message());
   2653 }
   2654 
   2655 #if GTEST_HAS_STD_WSTRING
   2656 
   2657 // Tests that IsNotSubstring returns the correct result when the input
   2658 // argument type is ::std::wstring.
   2659 TEST(IsNotSubstringTest, ReturnsCorrectResultForStdWstring) {
   2660   EXPECT_FALSE(
   2661       IsNotSubstring("", "", ::std::wstring(L"needle"), L"two needles"));
   2662   EXPECT_TRUE(IsNotSubstring("", "", L"needle", ::std::wstring(L"haystack")));
   2663 }
   2664 
   2665 #endif  // GTEST_HAS_STD_WSTRING
   2666 
   2667 // Tests floating-point assertions.
   2668 
   2669 template <typename RawType>
   2670 class FloatingPointTest : public Test {
   2671  protected:
   2672   // Pre-calculated numbers to be used by the tests.
   2673   struct TestValues {
   2674     RawType close_to_positive_zero;
   2675     RawType close_to_negative_zero;
   2676     RawType further_from_negative_zero;
   2677 
   2678     RawType close_to_one;
   2679     RawType further_from_one;
   2680 
   2681     RawType infinity;
   2682     RawType close_to_infinity;
   2683     RawType further_from_infinity;
   2684 
   2685     RawType nan1;
   2686     RawType nan2;
   2687   };
   2688 
   2689   typedef typename testing::internal::FloatingPoint<RawType> Floating;
   2690   typedef typename Floating::Bits Bits;
   2691 
   2692   virtual void SetUp() {
   2693     const size_t max_ulps = Floating::kMaxUlps;
   2694 
   2695     // The bits that represent 0.0.
   2696     const Bits zero_bits = Floating(0).bits();
   2697 
   2698     // Makes some numbers close to 0.0.
   2699     values_.close_to_positive_zero = Floating::ReinterpretBits(
   2700         zero_bits + max_ulps/2);
   2701     values_.close_to_negative_zero = -Floating::ReinterpretBits(
   2702         zero_bits + max_ulps - max_ulps/2);
   2703     values_.further_from_negative_zero = -Floating::ReinterpretBits(
   2704         zero_bits + max_ulps + 1 - max_ulps/2);
   2705 
   2706     // The bits that represent 1.0.
   2707     const Bits one_bits = Floating(1).bits();
   2708 
   2709     // Makes some numbers close to 1.0.
   2710     values_.close_to_one = Floating::ReinterpretBits(one_bits + max_ulps);
   2711     values_.further_from_one = Floating::ReinterpretBits(
   2712         one_bits + max_ulps + 1);
   2713 
   2714     // +infinity.
   2715     values_.infinity = Floating::Infinity();
   2716 
   2717     // The bits that represent +infinity.
   2718     const Bits infinity_bits = Floating(values_.infinity).bits();
   2719 
   2720     // Makes some numbers close to infinity.
   2721     values_.close_to_infinity = Floating::ReinterpretBits(
   2722         infinity_bits - max_ulps);
   2723     values_.further_from_infinity = Floating::ReinterpretBits(
   2724         infinity_bits - max_ulps - 1);
   2725 
   2726     // Makes some NAN's.  Sets the most significant bit of the fraction so that
   2727     // our NaN's are quiet; trying to process a signaling NaN would raise an
   2728     // exception if our environment enables floating point exceptions.
   2729     values_.nan1 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2730         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 1);
   2731     values_.nan2 = Floating::ReinterpretBits(Floating::kExponentBitMask
   2732         | (static_cast<Bits>(1) << (Floating::kFractionBitCount - 1)) | 200);
   2733   }
   2734 
   2735   void TestSize() {
   2736     EXPECT_EQ(sizeof(RawType), sizeof(Bits));
   2737   }
   2738 
   2739   static TestValues values_;
   2740 };
   2741 
   2742 template <typename RawType>
   2743 typename FloatingPointTest<RawType>::TestValues
   2744     FloatingPointTest<RawType>::values_;
   2745 
   2746 // Instantiates FloatingPointTest for testing *_FLOAT_EQ.
   2747 typedef FloatingPointTest<float> FloatTest;
   2748 
   2749 // Tests that the size of Float::Bits matches the size of float.
   2750 TEST_F(FloatTest, Size) {
   2751   TestSize();
   2752 }
   2753 
   2754 // Tests comparing with +0 and -0.
   2755 TEST_F(FloatTest, Zeros) {
   2756   EXPECT_FLOAT_EQ(0.0, -0.0);
   2757   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(-0.0, 1.0),
   2758                           "1.0");
   2759   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.5),
   2760                        "1.5");
   2761 }
   2762 
   2763 // Tests comparing numbers close to 0.
   2764 //
   2765 // This ensures that *_FLOAT_EQ handles the sign correctly and no
   2766 // overflow occurs when comparing numbers whose absolute value is very
   2767 // small.
   2768 TEST_F(FloatTest, AlmostZeros) {
   2769   // In C++Builder, names within local classes (such as used by
   2770   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2771   // scoping class.  Use a static local alias as a workaround.
   2772   // We use the assignment syntax since some compilers, like Sun Studio,
   2773   // don't allow initializing references using construction syntax
   2774   // (parentheses).
   2775   static const FloatTest::TestValues& v = this->values_;
   2776 
   2777   EXPECT_FLOAT_EQ(0.0, v.close_to_positive_zero);
   2778   EXPECT_FLOAT_EQ(-0.0, v.close_to_negative_zero);
   2779   EXPECT_FLOAT_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2780 
   2781   EXPECT_FATAL_FAILURE({  // NOLINT
   2782     ASSERT_FLOAT_EQ(v.close_to_positive_zero,
   2783                     v.further_from_negative_zero);
   2784   }, "v.further_from_negative_zero");
   2785 }
   2786 
   2787 // Tests comparing numbers close to each other.
   2788 TEST_F(FloatTest, SmallDiff) {
   2789   EXPECT_FLOAT_EQ(1.0, values_.close_to_one);
   2790   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, values_.further_from_one),
   2791                           "values_.further_from_one");
   2792 }
   2793 
   2794 // Tests comparing numbers far apart.
   2795 TEST_F(FloatTest, LargeDiff) {
   2796   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(2.5, 3.0),
   2797                           "3.0");
   2798 }
   2799 
   2800 // Tests comparing with infinity.
   2801 //
   2802 // This ensures that no overflow occurs when comparing numbers whose
   2803 // absolute value is very large.
   2804 TEST_F(FloatTest, Infinity) {
   2805   EXPECT_FLOAT_EQ(values_.infinity, values_.close_to_infinity);
   2806   EXPECT_FLOAT_EQ(-values_.infinity, -values_.close_to_infinity);
   2807 #if !GTEST_OS_SYMBIAN
   2808   // Nokia's STLport crashes if we try to output infinity or NaN.
   2809   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, -values_.infinity),
   2810                           "-values_.infinity");
   2811 
   2812   // This is interesting as the representations of infinity and nan1
   2813   // are only 1 DLP apart.
   2814   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.infinity, values_.nan1),
   2815                           "values_.nan1");
   2816 #endif  // !GTEST_OS_SYMBIAN
   2817 }
   2818 
   2819 // Tests that comparing with NAN always returns false.
   2820 TEST_F(FloatTest, NaN) {
   2821 #if !GTEST_OS_SYMBIAN
   2822 // Nokia's STLport crashes if we try to output infinity or NaN.
   2823 
   2824   // In C++Builder, names within local classes (such as used by
   2825   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2826   // scoping class.  Use a static local alias as a workaround.
   2827   // We use the assignment syntax since some compilers, like Sun Studio,
   2828   // don't allow initializing references using construction syntax
   2829   // (parentheses).
   2830   static const FloatTest::TestValues& v = this->values_;
   2831 
   2832   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan1),
   2833                           "v.nan1");
   2834   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(v.nan1, v.nan2),
   2835                           "v.nan2");
   2836   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(1.0, v.nan1),
   2837                           "v.nan1");
   2838 
   2839   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(v.nan1, v.infinity),
   2840                        "v.infinity");
   2841 #endif  // !GTEST_OS_SYMBIAN
   2842 }
   2843 
   2844 // Tests that *_FLOAT_EQ are reflexive.
   2845 TEST_F(FloatTest, Reflexive) {
   2846   EXPECT_FLOAT_EQ(0.0, 0.0);
   2847   EXPECT_FLOAT_EQ(1.0, 1.0);
   2848   ASSERT_FLOAT_EQ(values_.infinity, values_.infinity);
   2849 }
   2850 
   2851 // Tests that *_FLOAT_EQ are commutative.
   2852 TEST_F(FloatTest, Commutative) {
   2853   // We already tested EXPECT_FLOAT_EQ(1.0, values_.close_to_one).
   2854   EXPECT_FLOAT_EQ(values_.close_to_one, 1.0);
   2855 
   2856   // We already tested EXPECT_FLOAT_EQ(1.0, values_.further_from_one).
   2857   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(values_.further_from_one, 1.0),
   2858                           "1.0");
   2859 }
   2860 
   2861 // Tests EXPECT_NEAR.
   2862 TEST_F(FloatTest, EXPECT_NEAR) {
   2863   EXPECT_NEAR(-1.0f, -1.1f, 0.2f);
   2864   EXPECT_NEAR(2.0f, 3.0f, 1.0f);
   2865   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2866                           "The difference between 1.0f and 1.5f is 0.5, "
   2867                           "which exceeds 0.25f");
   2868   // To work around a bug in gcc 2.95.0, there is intentionally no
   2869   // space after the first comma in the previous line.
   2870 }
   2871 
   2872 // Tests ASSERT_NEAR.
   2873 TEST_F(FloatTest, ASSERT_NEAR) {
   2874   ASSERT_NEAR(-1.0f, -1.1f, 0.2f);
   2875   ASSERT_NEAR(2.0f, 3.0f, 1.0f);
   2876   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0f,1.5f, 0.25f),  // NOLINT
   2877                        "The difference between 1.0f and 1.5f is 0.5, "
   2878                        "which exceeds 0.25f");
   2879   // To work around a bug in gcc 2.95.0, there is intentionally no
   2880   // space after the first comma in the previous line.
   2881 }
   2882 
   2883 // Tests the cases where FloatLE() should succeed.
   2884 TEST_F(FloatTest, FloatLESucceeds) {
   2885   EXPECT_PRED_FORMAT2(FloatLE, 1.0f, 2.0f);  // When val1 < val2,
   2886   ASSERT_PRED_FORMAT2(FloatLE, 1.0f, 1.0f);  // val1 == val2,
   2887 
   2888   // or when val1 is greater than, but almost equals to, val2.
   2889   EXPECT_PRED_FORMAT2(FloatLE, values_.close_to_positive_zero, 0.0f);
   2890 }
   2891 
   2892 // Tests the cases where FloatLE() should fail.
   2893 TEST_F(FloatTest, FloatLEFails) {
   2894   // When val1 is greater than val2 by a large margin,
   2895   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(FloatLE, 2.0f, 1.0f),
   2896                           "(2.0f) <= (1.0f)");
   2897 
   2898   // or by a small yet non-negligible margin,
   2899   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2900     EXPECT_PRED_FORMAT2(FloatLE, values_.further_from_one, 1.0f);
   2901   }, "(values_.further_from_one) <= (1.0f)");
   2902 
   2903 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2904   // Nokia's STLport crashes if we try to output infinity or NaN.
   2905   // C++Builder gives bad results for ordered comparisons involving NaNs
   2906   // due to compiler bugs.
   2907   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2908     EXPECT_PRED_FORMAT2(FloatLE, values_.nan1, values_.infinity);
   2909   }, "(values_.nan1) <= (values_.infinity)");
   2910   EXPECT_NONFATAL_FAILURE({  // NOLINT
   2911     EXPECT_PRED_FORMAT2(FloatLE, -values_.infinity, values_.nan1);
   2912   }, "(-values_.infinity) <= (values_.nan1)");
   2913   EXPECT_FATAL_FAILURE({  // NOLINT
   2914     ASSERT_PRED_FORMAT2(FloatLE, values_.nan1, values_.nan1);
   2915   }, "(values_.nan1) <= (values_.nan1)");
   2916 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   2917 }
   2918 
   2919 // Instantiates FloatingPointTest for testing *_DOUBLE_EQ.
   2920 typedef FloatingPointTest<double> DoubleTest;
   2921 
   2922 // Tests that the size of Double::Bits matches the size of double.
   2923 TEST_F(DoubleTest, Size) {
   2924   TestSize();
   2925 }
   2926 
   2927 // Tests comparing with +0 and -0.
   2928 TEST_F(DoubleTest, Zeros) {
   2929   EXPECT_DOUBLE_EQ(0.0, -0.0);
   2930   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(-0.0, 1.0),
   2931                           "1.0");
   2932   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(0.0, 1.0),
   2933                        "1.0");
   2934 }
   2935 
   2936 // Tests comparing numbers close to 0.
   2937 //
   2938 // This ensures that *_DOUBLE_EQ handles the sign correctly and no
   2939 // overflow occurs when comparing numbers whose absolute value is very
   2940 // small.
   2941 TEST_F(DoubleTest, AlmostZeros) {
   2942   // In C++Builder, names within local classes (such as used by
   2943   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2944   // scoping class.  Use a static local alias as a workaround.
   2945   // We use the assignment syntax since some compilers, like Sun Studio,
   2946   // don't allow initializing references using construction syntax
   2947   // (parentheses).
   2948   static const DoubleTest::TestValues& v = this->values_;
   2949 
   2950   EXPECT_DOUBLE_EQ(0.0, v.close_to_positive_zero);
   2951   EXPECT_DOUBLE_EQ(-0.0, v.close_to_negative_zero);
   2952   EXPECT_DOUBLE_EQ(v.close_to_positive_zero, v.close_to_negative_zero);
   2953 
   2954   EXPECT_FATAL_FAILURE({  // NOLINT
   2955     ASSERT_DOUBLE_EQ(v.close_to_positive_zero,
   2956                      v.further_from_negative_zero);
   2957   }, "v.further_from_negative_zero");
   2958 }
   2959 
   2960 // Tests comparing numbers close to each other.
   2961 TEST_F(DoubleTest, SmallDiff) {
   2962   EXPECT_DOUBLE_EQ(1.0, values_.close_to_one);
   2963   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, values_.further_from_one),
   2964                           "values_.further_from_one");
   2965 }
   2966 
   2967 // Tests comparing numbers far apart.
   2968 TEST_F(DoubleTest, LargeDiff) {
   2969   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(2.0, 3.0),
   2970                           "3.0");
   2971 }
   2972 
   2973 // Tests comparing with infinity.
   2974 //
   2975 // This ensures that no overflow occurs when comparing numbers whose
   2976 // absolute value is very large.
   2977 TEST_F(DoubleTest, Infinity) {
   2978   EXPECT_DOUBLE_EQ(values_.infinity, values_.close_to_infinity);
   2979   EXPECT_DOUBLE_EQ(-values_.infinity, -values_.close_to_infinity);
   2980 #if !GTEST_OS_SYMBIAN
   2981   // Nokia's STLport crashes if we try to output infinity or NaN.
   2982   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, -values_.infinity),
   2983                           "-values_.infinity");
   2984 
   2985   // This is interesting as the representations of infinity_ and nan1_
   2986   // are only 1 DLP apart.
   2987   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.infinity, values_.nan1),
   2988                           "values_.nan1");
   2989 #endif  // !GTEST_OS_SYMBIAN
   2990 }
   2991 
   2992 // Tests that comparing with NAN always returns false.
   2993 TEST_F(DoubleTest, NaN) {
   2994 #if !GTEST_OS_SYMBIAN
   2995   // In C++Builder, names within local classes (such as used by
   2996   // EXPECT_FATAL_FAILURE) cannot be resolved against static members of the
   2997   // scoping class.  Use a static local alias as a workaround.
   2998   // We use the assignment syntax since some compilers, like Sun Studio,
   2999   // don't allow initializing references using construction syntax
   3000   // (parentheses).
   3001   static const DoubleTest::TestValues& v = this->values_;
   3002 
   3003   // Nokia's STLport crashes if we try to output infinity or NaN.
   3004   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan1),
   3005                           "v.nan1");
   3006   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(v.nan1, v.nan2), "v.nan2");
   3007   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1.0, v.nan1), "v.nan1");
   3008   EXPECT_FATAL_FAILURE(ASSERT_DOUBLE_EQ(v.nan1, v.infinity),
   3009                        "v.infinity");
   3010 #endif  // !GTEST_OS_SYMBIAN
   3011 }
   3012 
   3013 // Tests that *_DOUBLE_EQ are reflexive.
   3014 TEST_F(DoubleTest, Reflexive) {
   3015   EXPECT_DOUBLE_EQ(0.0, 0.0);
   3016   EXPECT_DOUBLE_EQ(1.0, 1.0);
   3017 #if !GTEST_OS_SYMBIAN
   3018   // Nokia's STLport crashes if we try to output infinity or NaN.
   3019   ASSERT_DOUBLE_EQ(values_.infinity, values_.infinity);
   3020 #endif  // !GTEST_OS_SYMBIAN
   3021 }
   3022 
   3023 // Tests that *_DOUBLE_EQ are commutative.
   3024 TEST_F(DoubleTest, Commutative) {
   3025   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.close_to_one).
   3026   EXPECT_DOUBLE_EQ(values_.close_to_one, 1.0);
   3027 
   3028   // We already tested EXPECT_DOUBLE_EQ(1.0, values_.further_from_one).
   3029   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(values_.further_from_one, 1.0),
   3030                           "1.0");
   3031 }
   3032 
   3033 // Tests EXPECT_NEAR.
   3034 TEST_F(DoubleTest, EXPECT_NEAR) {
   3035   EXPECT_NEAR(-1.0, -1.1, 0.2);
   3036   EXPECT_NEAR(2.0, 3.0, 1.0);
   3037   EXPECT_NONFATAL_FAILURE(EXPECT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3038                           "The difference between 1.0 and 1.5 is 0.5, "
   3039                           "which exceeds 0.25");
   3040   // To work around a bug in gcc 2.95.0, there is intentionally no
   3041   // space after the first comma in the previous statement.
   3042 }
   3043 
   3044 // Tests ASSERT_NEAR.
   3045 TEST_F(DoubleTest, ASSERT_NEAR) {
   3046   ASSERT_NEAR(-1.0, -1.1, 0.2);
   3047   ASSERT_NEAR(2.0, 3.0, 1.0);
   3048   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1.0, 1.5, 0.25),  // NOLINT
   3049                        "The difference between 1.0 and 1.5 is 0.5, "
   3050                        "which exceeds 0.25");
   3051   // To work around a bug in gcc 2.95.0, there is intentionally no
   3052   // space after the first comma in the previous statement.
   3053 }
   3054 
   3055 // Tests the cases where DoubleLE() should succeed.
   3056 TEST_F(DoubleTest, DoubleLESucceeds) {
   3057   EXPECT_PRED_FORMAT2(DoubleLE, 1.0, 2.0);  // When val1 < val2,
   3058   ASSERT_PRED_FORMAT2(DoubleLE, 1.0, 1.0);  // val1 == val2,
   3059 
   3060   // or when val1 is greater than, but almost equals to, val2.
   3061   EXPECT_PRED_FORMAT2(DoubleLE, values_.close_to_positive_zero, 0.0);
   3062 }
   3063 
   3064 // Tests the cases where DoubleLE() should fail.
   3065 TEST_F(DoubleTest, DoubleLEFails) {
   3066   // When val1 is greater than val2 by a large margin,
   3067   EXPECT_NONFATAL_FAILURE(EXPECT_PRED_FORMAT2(DoubleLE, 2.0, 1.0),
   3068                           "(2.0) <= (1.0)");
   3069 
   3070   // or by a small yet non-negligible margin,
   3071   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3072     EXPECT_PRED_FORMAT2(DoubleLE, values_.further_from_one, 1.0);
   3073   }, "(values_.further_from_one) <= (1.0)");
   3074 
   3075 #if !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3076   // Nokia's STLport crashes if we try to output infinity or NaN.
   3077   // C++Builder gives bad results for ordered comparisons involving NaNs
   3078   // due to compiler bugs.
   3079   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3080     EXPECT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.infinity);
   3081   }, "(values_.nan1) <= (values_.infinity)");
   3082   EXPECT_NONFATAL_FAILURE({  // NOLINT
   3083     EXPECT_PRED_FORMAT2(DoubleLE, -values_.infinity, values_.nan1);
   3084   }, " (-values_.infinity) <= (values_.nan1)");
   3085   EXPECT_FATAL_FAILURE({  // NOLINT
   3086     ASSERT_PRED_FORMAT2(DoubleLE, values_.nan1, values_.nan1);
   3087   }, "(values_.nan1) <= (values_.nan1)");
   3088 #endif  // !GTEST_OS_SYMBIAN && !defined(__BORLANDC__)
   3089 }
   3090 
   3091 
   3092 // Verifies that a test or test case whose name starts with DISABLED_ is
   3093 // not run.
   3094 
   3095 // A test whose name starts with DISABLED_.
   3096 // Should not run.
   3097 TEST(DisabledTest, DISABLED_TestShouldNotRun) {
   3098   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3099 }
   3100 
   3101 // A test whose name does not start with DISABLED_.
   3102 // Should run.
   3103 TEST(DisabledTest, NotDISABLED_TestShouldRun) {
   3104   EXPECT_EQ(1, 1);
   3105 }
   3106 
   3107 // A test case whose name starts with DISABLED_.
   3108 // Should not run.
   3109 TEST(DISABLED_TestCase, TestShouldNotRun) {
   3110   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3111 }
   3112 
   3113 // A test case and test whose names start with DISABLED_.
   3114 // Should not run.
   3115 TEST(DISABLED_TestCase, DISABLED_TestShouldNotRun) {
   3116   FAIL() << "Unexpected failure: Test in disabled test case should not be run.";
   3117 }
   3118 
   3119 // Check that when all tests in a test case are disabled, SetUpTestCase() and
   3120 // TearDownTestCase() are not called.
   3121 class DisabledTestsTest : public Test {
   3122  protected:
   3123   static void SetUpTestCase() {
   3124     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3125               "SetUpTestCase() should not be called.";
   3126   }
   3127 
   3128   static void TearDownTestCase() {
   3129     FAIL() << "Unexpected failure: All tests disabled in test case. "
   3130               "TearDownTestCase() should not be called.";
   3131   }
   3132 };
   3133 
   3134 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_1) {
   3135   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3136 }
   3137 
   3138 TEST_F(DisabledTestsTest, DISABLED_TestShouldNotRun_2) {
   3139   FAIL() << "Unexpected failure: Disabled test should not be run.";
   3140 }
   3141 
   3142 // Tests that disabled typed tests aren't run.
   3143 
   3144 #if GTEST_HAS_TYPED_TEST
   3145 
   3146 template <typename T>
   3147 class TypedTest : public Test {
   3148 };
   3149 
   3150 typedef testing::Types<int, double> NumericTypes;
   3151 TYPED_TEST_CASE(TypedTest, NumericTypes);
   3152 
   3153 TYPED_TEST(TypedTest, DISABLED_ShouldNotRun) {
   3154   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3155 }
   3156 
   3157 template <typename T>
   3158 class DISABLED_TypedTest : public Test {
   3159 };
   3160 
   3161 TYPED_TEST_CASE(DISABLED_TypedTest, NumericTypes);
   3162 
   3163 TYPED_TEST(DISABLED_TypedTest, ShouldNotRun) {
   3164   FAIL() << "Unexpected failure: Disabled typed test should not run.";
   3165 }
   3166 
   3167 #endif  // GTEST_HAS_TYPED_TEST
   3168 
   3169 // Tests that disabled type-parameterized tests aren't run.
   3170 
   3171 #if GTEST_HAS_TYPED_TEST_P
   3172 
   3173 template <typename T>
   3174 class TypedTestP : public Test {
   3175 };
   3176 
   3177 TYPED_TEST_CASE_P(TypedTestP);
   3178 
   3179 TYPED_TEST_P(TypedTestP, DISABLED_ShouldNotRun) {
   3180   FAIL() << "Unexpected failure: "
   3181          << "Disabled type-parameterized test should not run.";
   3182 }
   3183 
   3184 REGISTER_TYPED_TEST_CASE_P(TypedTestP, DISABLED_ShouldNotRun);
   3185 
   3186 INSTANTIATE_TYPED_TEST_CASE_P(My, TypedTestP, NumericTypes);
   3187 
   3188 template <typename T>
   3189 class DISABLED_TypedTestP : public Test {
   3190 };
   3191 
   3192 TYPED_TEST_CASE_P(DISABLED_TypedTestP);
   3193 
   3194 TYPED_TEST_P(DISABLED_TypedTestP, ShouldNotRun) {
   3195   FAIL() << "Unexpected failure: "
   3196          << "Disabled type-parameterized test should not run.";
   3197 }
   3198 
   3199 REGISTER_TYPED_TEST_CASE_P(DISABLED_TypedTestP, ShouldNotRun);
   3200 
   3201 INSTANTIATE_TYPED_TEST_CASE_P(My, DISABLED_TypedTestP, NumericTypes);
   3202 
   3203 #endif  // GTEST_HAS_TYPED_TEST_P
   3204 
   3205 // Tests that assertion macros evaluate their arguments exactly once.
   3206 
   3207 class SingleEvaluationTest : public Test {
   3208  public:  // Must be public and not protected due to a bug in g++ 3.4.2.
   3209   // This helper function is needed by the FailedASSERT_STREQ test
   3210   // below.  It's public to work around C++Builder's bug with scoping local
   3211   // classes.
   3212   static void CompareAndIncrementCharPtrs() {
   3213     ASSERT_STREQ(p1_++, p2_++);
   3214   }
   3215 
   3216   // This helper function is needed by the FailedASSERT_NE test below.  It's
   3217   // public to work around C++Builder's bug with scoping local classes.
   3218   static void CompareAndIncrementInts() {
   3219     ASSERT_NE(a_++, b_++);
   3220   }
   3221 
   3222  protected:
   3223   SingleEvaluationTest() {
   3224     p1_ = s1_;
   3225     p2_ = s2_;
   3226     a_ = 0;
   3227     b_ = 0;
   3228   }
   3229 
   3230   static const char* const s1_;
   3231   static const char* const s2_;
   3232   static const char* p1_;
   3233   static const char* p2_;
   3234 
   3235   static int a_;
   3236   static int b_;
   3237 };
   3238 
   3239 const char* const SingleEvaluationTest::s1_ = "01234";
   3240 const char* const SingleEvaluationTest::s2_ = "abcde";
   3241 const char* SingleEvaluationTest::p1_;
   3242 const char* SingleEvaluationTest::p2_;
   3243 int SingleEvaluationTest::a_;
   3244 int SingleEvaluationTest::b_;
   3245 
   3246 // Tests that when ASSERT_STREQ fails, it evaluates its arguments
   3247 // exactly once.
   3248 TEST_F(SingleEvaluationTest, FailedASSERT_STREQ) {
   3249   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementCharPtrs(),
   3250                        "p2_++");
   3251   EXPECT_EQ(s1_ + 1, p1_);
   3252   EXPECT_EQ(s2_ + 1, p2_);
   3253 }
   3254 
   3255 // Tests that string assertion arguments are evaluated exactly once.
   3256 TEST_F(SingleEvaluationTest, ASSERT_STR) {
   3257   // successful EXPECT_STRNE
   3258   EXPECT_STRNE(p1_++, p2_++);
   3259   EXPECT_EQ(s1_ + 1, p1_);
   3260   EXPECT_EQ(s2_ + 1, p2_);
   3261 
   3262   // failed EXPECT_STRCASEEQ
   3263   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ(p1_++, p2_++),
   3264                           "Ignoring case");
   3265   EXPECT_EQ(s1_ + 2, p1_);
   3266   EXPECT_EQ(s2_ + 2, p2_);
   3267 }
   3268 
   3269 // Tests that when ASSERT_NE fails, it evaluates its arguments exactly
   3270 // once.
   3271 TEST_F(SingleEvaluationTest, FailedASSERT_NE) {
   3272   EXPECT_FATAL_FAILURE(SingleEvaluationTest::CompareAndIncrementInts(),
   3273                        "(a_++) != (b_++)");
   3274   EXPECT_EQ(1, a_);
   3275   EXPECT_EQ(1, b_);
   3276 }
   3277 
   3278 // Tests that assertion arguments are evaluated exactly once.
   3279 TEST_F(SingleEvaluationTest, OtherCases) {
   3280   // successful EXPECT_TRUE
   3281   EXPECT_TRUE(0 == a_++);  // NOLINT
   3282   EXPECT_EQ(1, a_);
   3283 
   3284   // failed EXPECT_TRUE
   3285   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(-1 == a_++), "-1 == a_++");
   3286   EXPECT_EQ(2, a_);
   3287 
   3288   // successful EXPECT_GT
   3289   EXPECT_GT(a_++, b_++);
   3290   EXPECT_EQ(3, a_);
   3291   EXPECT_EQ(1, b_);
   3292 
   3293   // failed EXPECT_LT
   3294   EXPECT_NONFATAL_FAILURE(EXPECT_LT(a_++, b_++), "(a_++) < (b_++)");
   3295   EXPECT_EQ(4, a_);
   3296   EXPECT_EQ(2, b_);
   3297 
   3298   // successful ASSERT_TRUE
   3299   ASSERT_TRUE(0 < a_++);  // NOLINT
   3300   EXPECT_EQ(5, a_);
   3301 
   3302   // successful ASSERT_GT
   3303   ASSERT_GT(a_++, b_++);
   3304   EXPECT_EQ(6, a_);
   3305   EXPECT_EQ(3, b_);
   3306 }
   3307 
   3308 #if GTEST_HAS_EXCEPTIONS
   3309 
   3310 void ThrowAnInteger() {
   3311   throw 1;
   3312 }
   3313 
   3314 // Tests that assertion arguments are evaluated exactly once.
   3315 TEST_F(SingleEvaluationTest, ExceptionTests) {
   3316   // successful EXPECT_THROW
   3317   EXPECT_THROW({  // NOLINT
   3318     a_++;
   3319     ThrowAnInteger();
   3320   }, int);
   3321   EXPECT_EQ(1, a_);
   3322 
   3323   // failed EXPECT_THROW, throws different
   3324   EXPECT_NONFATAL_FAILURE(EXPECT_THROW({  // NOLINT
   3325     a_++;
   3326     ThrowAnInteger();
   3327   }, bool), "throws a different type");
   3328   EXPECT_EQ(2, a_);
   3329 
   3330   // failed EXPECT_THROW, throws nothing
   3331   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(a_++, bool), "throws nothing");
   3332   EXPECT_EQ(3, a_);
   3333 
   3334   // successful EXPECT_NO_THROW
   3335   EXPECT_NO_THROW(a_++);
   3336   EXPECT_EQ(4, a_);
   3337 
   3338   // failed EXPECT_NO_THROW
   3339   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW({  // NOLINT
   3340     a_++;
   3341     ThrowAnInteger();
   3342   }), "it throws");
   3343   EXPECT_EQ(5, a_);
   3344 
   3345   // successful EXPECT_ANY_THROW
   3346   EXPECT_ANY_THROW({  // NOLINT
   3347     a_++;
   3348     ThrowAnInteger();
   3349   });
   3350   EXPECT_EQ(6, a_);
   3351 
   3352   // failed EXPECT_ANY_THROW
   3353   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(a_++), "it doesn't");
   3354   EXPECT_EQ(7, a_);
   3355 }
   3356 
   3357 #endif  // GTEST_HAS_EXCEPTIONS
   3358 
   3359 // Tests {ASSERT|EXPECT}_NO_FATAL_FAILURE.
   3360 class NoFatalFailureTest : public Test {
   3361  protected:
   3362   void Succeeds() {}
   3363   void FailsNonFatal() {
   3364     ADD_FAILURE() << "some non-fatal failure";
   3365   }
   3366   void Fails() {
   3367     FAIL() << "some fatal failure";
   3368   }
   3369 
   3370   void DoAssertNoFatalFailureOnFails() {
   3371     ASSERT_NO_FATAL_FAILURE(Fails());
   3372     ADD_FAILURE() << "shold not reach here.";
   3373   }
   3374 
   3375   void DoExpectNoFatalFailureOnFails() {
   3376     EXPECT_NO_FATAL_FAILURE(Fails());
   3377     ADD_FAILURE() << "other failure";
   3378   }
   3379 };
   3380 
   3381 TEST_F(NoFatalFailureTest, NoFailure) {
   3382   EXPECT_NO_FATAL_FAILURE(Succeeds());
   3383   ASSERT_NO_FATAL_FAILURE(Succeeds());
   3384 }
   3385 
   3386 TEST_F(NoFatalFailureTest, NonFatalIsNoFailure) {
   3387   EXPECT_NONFATAL_FAILURE(
   3388       EXPECT_NO_FATAL_FAILURE(FailsNonFatal()),
   3389       "some non-fatal failure");
   3390   EXPECT_NONFATAL_FAILURE(
   3391       ASSERT_NO_FATAL_FAILURE(FailsNonFatal()),
   3392       "some non-fatal failure");
   3393 }
   3394 
   3395 TEST_F(NoFatalFailureTest, AssertNoFatalFailureOnFatalFailure) {
   3396   TestPartResultArray gtest_failures;
   3397   {
   3398     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3399     DoAssertNoFatalFailureOnFails();
   3400   }
   3401   ASSERT_EQ(2, gtest_failures.size());
   3402   EXPECT_EQ(TestPartResult::kFatalFailure,
   3403             gtest_failures.GetTestPartResult(0).type());
   3404   EXPECT_EQ(TestPartResult::kFatalFailure,
   3405             gtest_failures.GetTestPartResult(1).type());
   3406   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3407                       gtest_failures.GetTestPartResult(0).message());
   3408   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3409                       gtest_failures.GetTestPartResult(1).message());
   3410 }
   3411 
   3412 TEST_F(NoFatalFailureTest, ExpectNoFatalFailureOnFatalFailure) {
   3413   TestPartResultArray gtest_failures;
   3414   {
   3415     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3416     DoExpectNoFatalFailureOnFails();
   3417   }
   3418   ASSERT_EQ(3, gtest_failures.size());
   3419   EXPECT_EQ(TestPartResult::kFatalFailure,
   3420             gtest_failures.GetTestPartResult(0).type());
   3421   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3422             gtest_failures.GetTestPartResult(1).type());
   3423   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3424             gtest_failures.GetTestPartResult(2).type());
   3425   EXPECT_PRED_FORMAT2(testing::IsSubstring, "some fatal failure",
   3426                       gtest_failures.GetTestPartResult(0).message());
   3427   EXPECT_PRED_FORMAT2(testing::IsSubstring, "it does",
   3428                       gtest_failures.GetTestPartResult(1).message());
   3429   EXPECT_PRED_FORMAT2(testing::IsSubstring, "other failure",
   3430                       gtest_failures.GetTestPartResult(2).message());
   3431 }
   3432 
   3433 TEST_F(NoFatalFailureTest, MessageIsStreamable) {
   3434   TestPartResultArray gtest_failures;
   3435   {
   3436     ScopedFakeTestPartResultReporter gtest_reporter(&gtest_failures);
   3437     EXPECT_NO_FATAL_FAILURE(FAIL() << "foo") << "my message";
   3438   }
   3439   ASSERT_EQ(2, gtest_failures.size());
   3440   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3441             gtest_failures.GetTestPartResult(0).type());
   3442   EXPECT_EQ(TestPartResult::kNonFatalFailure,
   3443             gtest_failures.GetTestPartResult(1).type());
   3444   EXPECT_PRED_FORMAT2(testing::IsSubstring, "foo",
   3445                       gtest_failures.GetTestPartResult(0).message());
   3446   EXPECT_PRED_FORMAT2(testing::IsSubstring, "my message",
   3447                       gtest_failures.GetTestPartResult(1).message());
   3448 }
   3449 
   3450 // Tests non-string assertions.
   3451 
   3452 std::string EditsToString(const std::vector<EditType>& edits) {
   3453   std::string out;
   3454   for (size_t i = 0; i < edits.size(); ++i) {
   3455     static const char kEdits[] = " +-/";
   3456     out.append(1, kEdits[edits[i]]);
   3457   }
   3458   return out;
   3459 }
   3460 
   3461 std::vector<size_t> CharsToIndices(const std::string& str) {
   3462   std::vector<size_t> out;
   3463   for (size_t i = 0; i < str.size(); ++i) {
   3464     out.push_back(str[i]);
   3465   }
   3466   return out;
   3467 }
   3468 
   3469 std::vector<std::string> CharsToLines(const std::string& str) {
   3470   std::vector<std::string> out;
   3471   for (size_t i = 0; i < str.size(); ++i) {
   3472     out.push_back(str.substr(i, 1));
   3473   }
   3474   return out;
   3475 }
   3476 
   3477 TEST(EditDistance, TestCases) {
   3478   struct Case {
   3479     int line;
   3480     const char* left;
   3481     const char* right;
   3482     const char* expected_edits;
   3483     const char* expected_diff;
   3484   };
   3485   static const Case kCases[] = {
   3486       // No change.
   3487       {__LINE__, "A", "A", " ", ""},
   3488       {__LINE__, "ABCDE", "ABCDE", "     ", ""},
   3489       // Simple adds.
   3490       {__LINE__, "X", "XA", " +", "@@ +1,2 @@\n X\n+A\n"},
   3491       {__LINE__, "X", "XABCD", " ++++", "@@ +1,5 @@\n X\n+A\n+B\n+C\n+D\n"},
   3492       // Simple removes.
   3493       {__LINE__, "XA", "X", " -", "@@ -1,2 @@\n X\n-A\n"},
   3494       {__LINE__, "XABCD", "X", " ----", "@@ -1,5 @@\n X\n-A\n-B\n-C\n-D\n"},
   3495       // Simple replaces.
   3496       {__LINE__, "A", "a", "/", "@@ -1,1 +1,1 @@\n-A\n+a\n"},
   3497       {__LINE__, "ABCD", "abcd", "////",
   3498        "@@ -1,4 +1,4 @@\n-A\n-B\n-C\n-D\n+a\n+b\n+c\n+d\n"},
   3499       // Path finding.
   3500       {__LINE__, "ABCDEFGH", "ABXEGH1", "  -/ -  +",
   3501        "@@ -1,8 +1,7 @@\n A\n B\n-C\n-D\n+X\n E\n-F\n G\n H\n+1\n"},
   3502       {__LINE__, "AAAABCCCC", "ABABCDCDC", "- /   + / ",
   3503        "@@ -1,9 +1,9 @@\n-A\n A\n-A\n+B\n A\n B\n C\n+D\n C\n-C\n+D\n C\n"},
   3504       {__LINE__, "ABCDE", "BCDCD", "-   +/",
   3505        "@@ -1,5 +1,5 @@\n-A\n B\n C\n D\n-E\n+C\n+D\n"},
   3506       {__LINE__, "ABCDEFGHIJKL", "BCDCDEFGJKLJK", "- ++     --   ++",
   3507        "@@ -1,4 +1,5 @@\n-A\n B\n+C\n+D\n C\n D\n"
   3508        "@@ -6,7 +7,7 @@\n F\n G\n-H\n-I\n J\n K\n L\n+J\n+K\n"},
   3509       {}};
   3510   for (const Case* c = kCases; c->left; ++c) {
   3511     EXPECT_TRUE(c->expected_edits ==
   3512                 EditsToString(CalculateOptimalEdits(CharsToIndices(c->left),
   3513                                                     CharsToIndices(c->right))))
   3514         << "Left <" << c->left << "> Right <" << c->right << "> Edits <"
   3515         << EditsToString(CalculateOptimalEdits(
   3516                CharsToIndices(c->left), CharsToIndices(c->right))) << ">";
   3517     EXPECT_TRUE(c->expected_diff == CreateUnifiedDiff(CharsToLines(c->left),
   3518                                                       CharsToLines(c->right)))
   3519         << "Left <" << c->left << "> Right <" << c->right << "> Diff <"
   3520         << CreateUnifiedDiff(CharsToLines(c->left), CharsToLines(c->right))
   3521         << ">";
   3522   }
   3523 }
   3524 
   3525 // Tests EqFailure(), used for implementing *EQ* assertions.
   3526 TEST(AssertionTest, EqFailure) {
   3527   const std::string foo_val("5"), bar_val("6");
   3528   const std::string msg1(
   3529       EqFailure("foo", "bar", foo_val, bar_val, false)
   3530       .failure_message());
   3531   EXPECT_STREQ(
   3532       "Expected equality of these values:\n"
   3533       "  foo\n"
   3534       "    Which is: 5\n"
   3535       "  bar\n"
   3536       "    Which is: 6",
   3537       msg1.c_str());
   3538 
   3539   const std::string msg2(
   3540       EqFailure("foo", "6", foo_val, bar_val, false)
   3541       .failure_message());
   3542   EXPECT_STREQ(
   3543       "Expected equality of these values:\n"
   3544       "  foo\n"
   3545       "    Which is: 5\n"
   3546       "  6",
   3547       msg2.c_str());
   3548 
   3549   const std::string msg3(
   3550       EqFailure("5", "bar", foo_val, bar_val, false)
   3551       .failure_message());
   3552   EXPECT_STREQ(
   3553       "Expected equality of these values:\n"
   3554       "  5\n"
   3555       "  bar\n"
   3556       "    Which is: 6",
   3557       msg3.c_str());
   3558 
   3559   const std::string msg4(
   3560       EqFailure("5", "6", foo_val, bar_val, false).failure_message());
   3561   EXPECT_STREQ(
   3562       "Expected equality of these values:\n"
   3563       "  5\n"
   3564       "  6",
   3565       msg4.c_str());
   3566 
   3567   const std::string msg5(
   3568       EqFailure("foo", "bar",
   3569                 std::string("\"x\""), std::string("\"y\""),
   3570                 true).failure_message());
   3571   EXPECT_STREQ(
   3572       "Expected equality of these values:\n"
   3573       "  foo\n"
   3574       "    Which is: \"x\"\n"
   3575       "  bar\n"
   3576       "    Which is: \"y\"\n"
   3577       "Ignoring case",
   3578       msg5.c_str());
   3579 }
   3580 
   3581 TEST(AssertionTest, EqFailureWithDiff) {
   3582   const std::string left(
   3583       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15");
   3584   const std::string right(
   3585       "1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14");
   3586   const std::string msg1(
   3587       EqFailure("left", "right", left, right, false).failure_message());
   3588   EXPECT_STREQ(
   3589       "Expected equality of these values:\n"
   3590       "  left\n"
   3591       "    Which is: "
   3592       "1\\n2XXX\\n3\\n5\\n6\\n7\\n8\\n9\\n10\\n11\\n12XXX\\n13\\n14\\n15\n"
   3593       "  right\n"
   3594       "    Which is: 1\\n2\\n3\\n4\\n5\\n6\\n7\\n8\\n9\\n11\\n12\\n13\\n14\n"
   3595       "With diff:\n@@ -1,5 +1,6 @@\n 1\n-2XXX\n+2\n 3\n+4\n 5\n 6\n"
   3596       "@@ -7,8 +8,6 @@\n 8\n 9\n-10\n 11\n-12XXX\n+12\n 13\n 14\n-15\n",
   3597       msg1.c_str());
   3598 }
   3599 
   3600 // Tests AppendUserMessage(), used for implementing the *EQ* macros.
   3601 TEST(AssertionTest, AppendUserMessage) {
   3602   const std::string foo("foo");
   3603 
   3604   Message msg;
   3605   EXPECT_STREQ("foo",
   3606                AppendUserMessage(foo, msg).c_str());
   3607 
   3608   msg << "bar";
   3609   EXPECT_STREQ("foo\nbar",
   3610                AppendUserMessage(foo, msg).c_str());
   3611 }
   3612 
   3613 #ifdef __BORLANDC__
   3614 // Silences warnings: "Condition is always true", "Unreachable code"
   3615 # pragma option push -w-ccc -w-rch
   3616 #endif
   3617 
   3618 // Tests ASSERT_TRUE.
   3619 TEST(AssertionTest, ASSERT_TRUE) {
   3620   ASSERT_TRUE(2 > 1);  // NOLINT
   3621   EXPECT_FATAL_FAILURE(ASSERT_TRUE(2 < 1),
   3622                        "2 < 1");
   3623 }
   3624 
   3625 // Tests ASSERT_TRUE(predicate) for predicates returning AssertionResult.
   3626 TEST(AssertionTest, AssertTrueWithAssertionResult) {
   3627   ASSERT_TRUE(ResultIsEven(2));
   3628 #ifndef __BORLANDC__
   3629   // ICE's in C++Builder.
   3630   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEven(3)),
   3631                        "Value of: ResultIsEven(3)\n"
   3632                        "  Actual: false (3 is odd)\n"
   3633                        "Expected: true");
   3634 #endif
   3635   ASSERT_TRUE(ResultIsEvenNoExplanation(2));
   3636   EXPECT_FATAL_FAILURE(ASSERT_TRUE(ResultIsEvenNoExplanation(3)),
   3637                        "Value of: ResultIsEvenNoExplanation(3)\n"
   3638                        "  Actual: false (3 is odd)\n"
   3639                        "Expected: true");
   3640 }
   3641 
   3642 // Tests ASSERT_FALSE.
   3643 TEST(AssertionTest, ASSERT_FALSE) {
   3644   ASSERT_FALSE(2 < 1);  // NOLINT
   3645   EXPECT_FATAL_FAILURE(ASSERT_FALSE(2 > 1),
   3646                        "Value of: 2 > 1\n"
   3647                        "  Actual: true\n"
   3648                        "Expected: false");
   3649 }
   3650 
   3651 // Tests ASSERT_FALSE(predicate) for predicates returning AssertionResult.
   3652 TEST(AssertionTest, AssertFalseWithAssertionResult) {
   3653   ASSERT_FALSE(ResultIsEven(3));
   3654 #ifndef __BORLANDC__
   3655   // ICE's in C++Builder.
   3656   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEven(2)),
   3657                        "Value of: ResultIsEven(2)\n"
   3658                        "  Actual: true (2 is even)\n"
   3659                        "Expected: false");
   3660 #endif
   3661   ASSERT_FALSE(ResultIsEvenNoExplanation(3));
   3662   EXPECT_FATAL_FAILURE(ASSERT_FALSE(ResultIsEvenNoExplanation(2)),
   3663                        "Value of: ResultIsEvenNoExplanation(2)\n"
   3664                        "  Actual: true\n"
   3665                        "Expected: false");
   3666 }
   3667 
   3668 #ifdef __BORLANDC__
   3669 // Restores warnings after previous "#pragma option push" supressed them
   3670 # pragma option pop
   3671 #endif
   3672 
   3673 // Tests using ASSERT_EQ on double values.  The purpose is to make
   3674 // sure that the specialization we did for integer and anonymous enums
   3675 // isn't used for double arguments.
   3676 TEST(ExpectTest, ASSERT_EQ_Double) {
   3677   // A success.
   3678   ASSERT_EQ(5.6, 5.6);
   3679 
   3680   // A failure.
   3681   EXPECT_FATAL_FAILURE(ASSERT_EQ(5.1, 5.2),
   3682                        "5.1");
   3683 }
   3684 
   3685 // Tests ASSERT_EQ.
   3686 TEST(AssertionTest, ASSERT_EQ) {
   3687   ASSERT_EQ(5, 2 + 3);
   3688   EXPECT_FATAL_FAILURE(ASSERT_EQ(5, 2*3),
   3689                        "Expected equality of these values:\n"
   3690                        "  5\n"
   3691                        "  2*3\n"
   3692                        "    Which is: 6");
   3693 }
   3694 
   3695 // Tests ASSERT_EQ(NULL, pointer).
   3696 #if GTEST_CAN_COMPARE_NULL
   3697 TEST(AssertionTest, ASSERT_EQ_NULL) {
   3698   // A success.
   3699   const char* p = NULL;
   3700   // Some older GCC versions may issue a spurious warning in this or the next
   3701   // assertion statement. This warning should not be suppressed with
   3702   // static_cast since the test verifies the ability to use bare NULL as the
   3703   // expected parameter to the macro.
   3704   ASSERT_EQ(NULL, p);
   3705 
   3706   // A failure.
   3707   static int n = 0;
   3708   EXPECT_FATAL_FAILURE(ASSERT_EQ(NULL, &n),
   3709                        "  &n\n    Which is:");
   3710 }
   3711 #endif  // GTEST_CAN_COMPARE_NULL
   3712 
   3713 // Tests ASSERT_EQ(0, non_pointer).  Since the literal 0 can be
   3714 // treated as a null pointer by the compiler, we need to make sure
   3715 // that ASSERT_EQ(0, non_pointer) isn't interpreted by Google Test as
   3716 // ASSERT_EQ(static_cast<void*>(NULL), non_pointer).
   3717 TEST(ExpectTest, ASSERT_EQ_0) {
   3718   int n = 0;
   3719 
   3720   // A success.
   3721   ASSERT_EQ(0, n);
   3722 
   3723   // A failure.
   3724   EXPECT_FATAL_FAILURE(ASSERT_EQ(0, 5.6),
   3725                        "  0\n  5.6");
   3726 }
   3727 
   3728 // Tests ASSERT_NE.
   3729 TEST(AssertionTest, ASSERT_NE) {
   3730   ASSERT_NE(6, 7);
   3731   EXPECT_FATAL_FAILURE(ASSERT_NE('a', 'a'),
   3732                        "Expected: ('a') != ('a'), "
   3733                        "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   3734 }
   3735 
   3736 // Tests ASSERT_LE.
   3737 TEST(AssertionTest, ASSERT_LE) {
   3738   ASSERT_LE(2, 3);
   3739   ASSERT_LE(2, 2);
   3740   EXPECT_FATAL_FAILURE(ASSERT_LE(2, 0),
   3741                        "Expected: (2) <= (0), actual: 2 vs 0");
   3742 }
   3743 
   3744 // Tests ASSERT_LT.
   3745 TEST(AssertionTest, ASSERT_LT) {
   3746   ASSERT_LT(2, 3);
   3747   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 2),
   3748                        "Expected: (2) < (2), actual: 2 vs 2");
   3749 }
   3750 
   3751 // Tests ASSERT_GE.
   3752 TEST(AssertionTest, ASSERT_GE) {
   3753   ASSERT_GE(2, 1);
   3754   ASSERT_GE(2, 2);
   3755   EXPECT_FATAL_FAILURE(ASSERT_GE(2, 3),
   3756                        "Expected: (2) >= (3), actual: 2 vs 3");
   3757 }
   3758 
   3759 // Tests ASSERT_GT.
   3760 TEST(AssertionTest, ASSERT_GT) {
   3761   ASSERT_GT(2, 1);
   3762   EXPECT_FATAL_FAILURE(ASSERT_GT(2, 2),
   3763                        "Expected: (2) > (2), actual: 2 vs 2");
   3764 }
   3765 
   3766 #if GTEST_HAS_EXCEPTIONS
   3767 
   3768 void ThrowNothing() {}
   3769 
   3770 // Tests ASSERT_THROW.
   3771 TEST(AssertionTest, ASSERT_THROW) {
   3772   ASSERT_THROW(ThrowAnInteger(), int);
   3773 
   3774 # ifndef __BORLANDC__
   3775 
   3776   // ICE's in C++Builder 2007 and 2009.
   3777   EXPECT_FATAL_FAILURE(
   3778       ASSERT_THROW(ThrowAnInteger(), bool),
   3779       "Expected: ThrowAnInteger() throws an exception of type bool.\n"
   3780       "  Actual: it throws a different type.");
   3781 # endif
   3782 
   3783   EXPECT_FATAL_FAILURE(
   3784       ASSERT_THROW(ThrowNothing(), bool),
   3785       "Expected: ThrowNothing() throws an exception of type bool.\n"
   3786       "  Actual: it throws nothing.");
   3787 }
   3788 
   3789 // Tests ASSERT_NO_THROW.
   3790 TEST(AssertionTest, ASSERT_NO_THROW) {
   3791   ASSERT_NO_THROW(ThrowNothing());
   3792   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()),
   3793                        "Expected: ThrowAnInteger() doesn't throw an exception."
   3794                        "\n  Actual: it throws.");
   3795 }
   3796 
   3797 // Tests ASSERT_ANY_THROW.
   3798 TEST(AssertionTest, ASSERT_ANY_THROW) {
   3799   ASSERT_ANY_THROW(ThrowAnInteger());
   3800   EXPECT_FATAL_FAILURE(
   3801       ASSERT_ANY_THROW(ThrowNothing()),
   3802       "Expected: ThrowNothing() throws an exception.\n"
   3803       "  Actual: it doesn't.");
   3804 }
   3805 
   3806 #endif  // GTEST_HAS_EXCEPTIONS
   3807 
   3808 // Makes sure we deal with the precedence of <<.  This test should
   3809 // compile.
   3810 TEST(AssertionTest, AssertPrecedence) {
   3811   ASSERT_EQ(1 < 2, true);
   3812   bool false_value = false;
   3813   ASSERT_EQ(true && false_value, false);
   3814 }
   3815 
   3816 // A subroutine used by the following test.
   3817 void TestEq1(int x) {
   3818   ASSERT_EQ(1, x);
   3819 }
   3820 
   3821 // Tests calling a test subroutine that's not part of a fixture.
   3822 TEST(AssertionTest, NonFixtureSubroutine) {
   3823   EXPECT_FATAL_FAILURE(TestEq1(2),
   3824                        "Which is: 2");
   3825 }
   3826 
   3827 // An uncopyable class.
   3828 class Uncopyable {
   3829  public:
   3830   explicit Uncopyable(int a_value) : value_(a_value) {}
   3831 
   3832   int value() const { return value_; }
   3833   bool operator==(const Uncopyable& rhs) const {
   3834     return value() == rhs.value();
   3835   }
   3836  private:
   3837   // This constructor deliberately has no implementation, as we don't
   3838   // want this class to be copyable.
   3839   Uncopyable(const Uncopyable&);  // NOLINT
   3840 
   3841   int value_;
   3842 };
   3843 
   3844 ::std::ostream& operator<<(::std::ostream& os, const Uncopyable& value) {
   3845   return os << value.value();
   3846 }
   3847 
   3848 
   3849 bool IsPositiveUncopyable(const Uncopyable& x) {
   3850   return x.value() > 0;
   3851 }
   3852 
   3853 // A subroutine used by the following test.
   3854 void TestAssertNonPositive() {
   3855   Uncopyable y(-1);
   3856   ASSERT_PRED1(IsPositiveUncopyable, y);
   3857 }
   3858 // A subroutine used by the following test.
   3859 void TestAssertEqualsUncopyable() {
   3860   Uncopyable x(5);
   3861   Uncopyable y(-1);
   3862   ASSERT_EQ(x, y);
   3863 }
   3864 
   3865 // Tests that uncopyable objects can be used in assertions.
   3866 TEST(AssertionTest, AssertWorksWithUncopyableObject) {
   3867   Uncopyable x(5);
   3868   ASSERT_PRED1(IsPositiveUncopyable, x);
   3869   ASSERT_EQ(x, x);
   3870   EXPECT_FATAL_FAILURE(TestAssertNonPositive(),
   3871     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3872   EXPECT_FATAL_FAILURE(TestAssertEqualsUncopyable(),
   3873                        "Expected equality of these values:\n"
   3874                        "  x\n    Which is: 5\n  y\n    Which is: -1");
   3875 }
   3876 
   3877 // Tests that uncopyable objects can be used in expects.
   3878 TEST(AssertionTest, ExpectWorksWithUncopyableObject) {
   3879   Uncopyable x(5);
   3880   EXPECT_PRED1(IsPositiveUncopyable, x);
   3881   Uncopyable y(-1);
   3882   EXPECT_NONFATAL_FAILURE(EXPECT_PRED1(IsPositiveUncopyable, y),
   3883     "IsPositiveUncopyable(y) evaluates to false, where\ny evaluates to -1");
   3884   EXPECT_EQ(x, x);
   3885   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y),
   3886                           "Expected equality of these values:\n"
   3887                           "  x\n    Which is: 5\n  y\n    Which is: -1");
   3888 }
   3889 
   3890 enum NamedEnum {
   3891   kE1 = 0,
   3892   kE2 = 1
   3893 };
   3894 
   3895 TEST(AssertionTest, NamedEnum) {
   3896   EXPECT_EQ(kE1, kE1);
   3897   EXPECT_LT(kE1, kE2);
   3898   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 0");
   3899   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(kE1, kE2), "Which is: 1");
   3900 }
   3901 
   3902 // The version of gcc used in XCode 2.2 has a bug and doesn't allow
   3903 // anonymous enums in assertions.  Therefore the following test is not
   3904 // done on Mac.
   3905 // Sun Studio and HP aCC also reject this code.
   3906 #if !GTEST_OS_MAC && !defined(__SUNPRO_CC) && !defined(__HP_aCC)
   3907 
   3908 // Tests using assertions with anonymous enums.
   3909 enum {
   3910   kCaseA = -1,
   3911 
   3912 # if GTEST_OS_LINUX
   3913 
   3914   // We want to test the case where the size of the anonymous enum is
   3915   // larger than sizeof(int), to make sure our implementation of the
   3916   // assertions doesn't truncate the enums.  However, MSVC
   3917   // (incorrectly) doesn't allow an enum value to exceed the range of
   3918   // an int, so this has to be conditionally compiled.
   3919   //
   3920   // On Linux, kCaseB and kCaseA have the same value when truncated to
   3921   // int size.  We want to test whether this will confuse the
   3922   // assertions.
   3923   kCaseB = testing::internal::kMaxBiggestInt,
   3924 
   3925 # else
   3926 
   3927   kCaseB = INT_MAX,
   3928 
   3929 # endif  // GTEST_OS_LINUX
   3930 
   3931   kCaseC = 42
   3932 };
   3933 
   3934 TEST(AssertionTest, AnonymousEnum) {
   3935 # if GTEST_OS_LINUX
   3936 
   3937   EXPECT_EQ(static_cast<int>(kCaseA), static_cast<int>(kCaseB));
   3938 
   3939 # endif  // GTEST_OS_LINUX
   3940 
   3941   EXPECT_EQ(kCaseA, kCaseA);
   3942   EXPECT_NE(kCaseA, kCaseB);
   3943   EXPECT_LT(kCaseA, kCaseB);
   3944   EXPECT_LE(kCaseA, kCaseB);
   3945   EXPECT_GT(kCaseB, kCaseA);
   3946   EXPECT_GE(kCaseA, kCaseA);
   3947   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseB),
   3948                           "(kCaseA) >= (kCaseB)");
   3949   EXPECT_NONFATAL_FAILURE(EXPECT_GE(kCaseA, kCaseC),
   3950                           "-1 vs 42");
   3951 
   3952   ASSERT_EQ(kCaseA, kCaseA);
   3953   ASSERT_NE(kCaseA, kCaseB);
   3954   ASSERT_LT(kCaseA, kCaseB);
   3955   ASSERT_LE(kCaseA, kCaseB);
   3956   ASSERT_GT(kCaseB, kCaseA);
   3957   ASSERT_GE(kCaseA, kCaseA);
   3958 
   3959 # ifndef __BORLANDC__
   3960 
   3961   // ICE's in C++Builder.
   3962   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseB),
   3963                        "kCaseB");
   3964   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3965                        "Which is: 42");
   3966 # endif
   3967 
   3968   EXPECT_FATAL_FAILURE(ASSERT_EQ(kCaseA, kCaseC),
   3969                        "Which is: -1");
   3970 }
   3971 
   3972 #endif  // !GTEST_OS_MAC && !defined(__SUNPRO_CC)
   3973 
   3974 #if GTEST_OS_WINDOWS
   3975 
   3976 static HRESULT UnexpectedHRESULTFailure() {
   3977   return E_UNEXPECTED;
   3978 }
   3979 
   3980 static HRESULT OkHRESULTSuccess() {
   3981   return S_OK;
   3982 }
   3983 
   3984 static HRESULT FalseHRESULTSuccess() {
   3985   return S_FALSE;
   3986 }
   3987 
   3988 // HRESULT assertion tests test both zero and non-zero
   3989 // success codes as well as failure message for each.
   3990 //
   3991 // Windows CE doesn't support message texts.
   3992 TEST(HRESULTAssertionTest, EXPECT_HRESULT_SUCCEEDED) {
   3993   EXPECT_HRESULT_SUCCEEDED(S_OK);
   3994   EXPECT_HRESULT_SUCCEEDED(S_FALSE);
   3995 
   3996   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   3997     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   3998     "  Actual: 0x8000FFFF");
   3999 }
   4000 
   4001 TEST(HRESULTAssertionTest, ASSERT_HRESULT_SUCCEEDED) {
   4002   ASSERT_HRESULT_SUCCEEDED(S_OK);
   4003   ASSERT_HRESULT_SUCCEEDED(S_FALSE);
   4004 
   4005   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_SUCCEEDED(UnexpectedHRESULTFailure()),
   4006     "Expected: (UnexpectedHRESULTFailure()) succeeds.\n"
   4007     "  Actual: 0x8000FFFF");
   4008 }
   4009 
   4010 TEST(HRESULTAssertionTest, EXPECT_HRESULT_FAILED) {
   4011   EXPECT_HRESULT_FAILED(E_UNEXPECTED);
   4012 
   4013   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(OkHRESULTSuccess()),
   4014     "Expected: (OkHRESULTSuccess()) fails.\n"
   4015     "  Actual: 0x0");
   4016   EXPECT_NONFATAL_FAILURE(EXPECT_HRESULT_FAILED(FalseHRESULTSuccess()),
   4017     "Expected: (FalseHRESULTSuccess()) fails.\n"
   4018     "  Actual: 0x1");
   4019 }
   4020 
   4021 TEST(HRESULTAssertionTest, ASSERT_HRESULT_FAILED) {
   4022   ASSERT_HRESULT_FAILED(E_UNEXPECTED);
   4023 
   4024 # ifndef __BORLANDC__
   4025 
   4026   // ICE's in C++Builder 2007 and 2009.
   4027   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(OkHRESULTSuccess()),
   4028     "Expected: (OkHRESULTSuccess()) fails.\n"
   4029     "  Actual: 0x0");
   4030 # endif
   4031 
   4032   EXPECT_FATAL_FAILURE(ASSERT_HRESULT_FAILED(FalseHRESULTSuccess()),
   4033     "Expected: (FalseHRESULTSuccess()) fails.\n"
   4034     "  Actual: 0x1");
   4035 }
   4036 
   4037 // Tests that streaming to the HRESULT macros works.
   4038 TEST(HRESULTAssertionTest, Streaming) {
   4039   EXPECT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4040   ASSERT_HRESULT_SUCCEEDED(S_OK) << "unexpected failure";
   4041   EXPECT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4042   ASSERT_HRESULT_FAILED(E_UNEXPECTED) << "unexpected failure";
   4043 
   4044   EXPECT_NONFATAL_FAILURE(
   4045       EXPECT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4046       "expected failure");
   4047 
   4048 # ifndef __BORLANDC__
   4049 
   4050   // ICE's in C++Builder 2007 and 2009.
   4051   EXPECT_FATAL_FAILURE(
   4052       ASSERT_HRESULT_SUCCEEDED(E_UNEXPECTED) << "expected failure",
   4053       "expected failure");
   4054 # endif
   4055 
   4056   EXPECT_NONFATAL_FAILURE(
   4057       EXPECT_HRESULT_FAILED(S_OK) << "expected failure",
   4058       "expected failure");
   4059 
   4060   EXPECT_FATAL_FAILURE(
   4061       ASSERT_HRESULT_FAILED(S_OK) << "expected failure",
   4062       "expected failure");
   4063 }
   4064 
   4065 #endif  // GTEST_OS_WINDOWS
   4066 
   4067 #ifdef __BORLANDC__
   4068 // Silences warnings: "Condition is always true", "Unreachable code"
   4069 # pragma option push -w-ccc -w-rch
   4070 #endif
   4071 
   4072 // Tests that the assertion macros behave like single statements.
   4073 TEST(AssertionSyntaxTest, BasicAssertionsBehavesLikeSingleStatement) {
   4074   if (AlwaysFalse())
   4075     ASSERT_TRUE(false) << "This should never be executed; "
   4076                           "It's a compilation test only.";
   4077 
   4078   if (AlwaysTrue())
   4079     EXPECT_FALSE(false);
   4080   else
   4081     ;  // NOLINT
   4082 
   4083   if (AlwaysFalse())
   4084     ASSERT_LT(1, 3);
   4085 
   4086   if (AlwaysFalse())
   4087     ;  // NOLINT
   4088   else
   4089     EXPECT_GT(3, 2) << "";
   4090 }
   4091 
   4092 #if GTEST_HAS_EXCEPTIONS
   4093 // Tests that the compiler will not complain about unreachable code in the
   4094 // EXPECT_THROW/EXPECT_ANY_THROW/EXPECT_NO_THROW macros.
   4095 TEST(ExpectThrowTest, DoesNotGenerateUnreachableCodeWarning) {
   4096   int n = 0;
   4097 
   4098   EXPECT_THROW(throw 1, int);
   4099   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(n++, int), "");
   4100   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(throw 1, const char*), "");
   4101   EXPECT_NO_THROW(n++);
   4102   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(throw 1), "");
   4103   EXPECT_ANY_THROW(throw 1);
   4104   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(n++), "");
   4105 }
   4106 
   4107 TEST(AssertionSyntaxTest, ExceptionAssertionsBehavesLikeSingleStatement) {
   4108   if (AlwaysFalse())
   4109     EXPECT_THROW(ThrowNothing(), bool);
   4110 
   4111   if (AlwaysTrue())
   4112     EXPECT_THROW(ThrowAnInteger(), int);
   4113   else
   4114     ;  // NOLINT
   4115 
   4116   if (AlwaysFalse())
   4117     EXPECT_NO_THROW(ThrowAnInteger());
   4118 
   4119   if (AlwaysTrue())
   4120     EXPECT_NO_THROW(ThrowNothing());
   4121   else
   4122     ;  // NOLINT
   4123 
   4124   if (AlwaysFalse())
   4125     EXPECT_ANY_THROW(ThrowNothing());
   4126 
   4127   if (AlwaysTrue())
   4128     EXPECT_ANY_THROW(ThrowAnInteger());
   4129   else
   4130     ;  // NOLINT
   4131 }
   4132 #endif  // GTEST_HAS_EXCEPTIONS
   4133 
   4134 TEST(AssertionSyntaxTest, NoFatalFailureAssertionsBehavesLikeSingleStatement) {
   4135   if (AlwaysFalse())
   4136     EXPECT_NO_FATAL_FAILURE(FAIL()) << "This should never be executed. "
   4137                                     << "It's a compilation test only.";
   4138   else
   4139     ;  // NOLINT
   4140 
   4141   if (AlwaysFalse())
   4142     ASSERT_NO_FATAL_FAILURE(FAIL()) << "";
   4143   else
   4144     ;  // NOLINT
   4145 
   4146   if (AlwaysTrue())
   4147     EXPECT_NO_FATAL_FAILURE(SUCCEED());
   4148   else
   4149     ;  // NOLINT
   4150 
   4151   if (AlwaysFalse())
   4152     ;  // NOLINT
   4153   else
   4154     ASSERT_NO_FATAL_FAILURE(SUCCEED());
   4155 }
   4156 
   4157 // Tests that the assertion macros work well with switch statements.
   4158 TEST(AssertionSyntaxTest, WorksWithSwitch) {
   4159   switch (0) {
   4160     case 1:
   4161       break;
   4162     default:
   4163       ASSERT_TRUE(true);
   4164   }
   4165 
   4166   switch (0)
   4167     case 0:
   4168       EXPECT_FALSE(false) << "EXPECT_FALSE failed in switch case";
   4169 
   4170   // Binary assertions are implemented using a different code path
   4171   // than the Boolean assertions.  Hence we test them separately.
   4172   switch (0) {
   4173     case 1:
   4174     default:
   4175       ASSERT_EQ(1, 1) << "ASSERT_EQ failed in default switch handler";
   4176   }
   4177 
   4178   switch (0)
   4179     case 0:
   4180       EXPECT_NE(1, 2);
   4181 }
   4182 
   4183 #if GTEST_HAS_EXCEPTIONS
   4184 
   4185 void ThrowAString() {
   4186     throw "std::string";
   4187 }
   4188 
   4189 // Test that the exception assertion macros compile and work with const
   4190 // type qualifier.
   4191 TEST(AssertionSyntaxTest, WorksWithConst) {
   4192     ASSERT_THROW(ThrowAString(), const char*);
   4193 
   4194     EXPECT_THROW(ThrowAString(), const char*);
   4195 }
   4196 
   4197 #endif  // GTEST_HAS_EXCEPTIONS
   4198 
   4199 }  // namespace
   4200 
   4201 namespace testing {
   4202 
   4203 // Tests that Google Test tracks SUCCEED*.
   4204 TEST(SuccessfulAssertionTest, SUCCEED) {
   4205   SUCCEED();
   4206   SUCCEED() << "OK";
   4207   EXPECT_EQ(2, GetUnitTestImpl()->current_test_result()->total_part_count());
   4208 }
   4209 
   4210 // Tests that Google Test doesn't track successful EXPECT_*.
   4211 TEST(SuccessfulAssertionTest, EXPECT) {
   4212   EXPECT_TRUE(true);
   4213   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4214 }
   4215 
   4216 // Tests that Google Test doesn't track successful EXPECT_STR*.
   4217 TEST(SuccessfulAssertionTest, EXPECT_STR) {
   4218   EXPECT_STREQ("", "");
   4219   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4220 }
   4221 
   4222 // Tests that Google Test doesn't track successful ASSERT_*.
   4223 TEST(SuccessfulAssertionTest, ASSERT) {
   4224   ASSERT_TRUE(true);
   4225   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4226 }
   4227 
   4228 // Tests that Google Test doesn't track successful ASSERT_STR*.
   4229 TEST(SuccessfulAssertionTest, ASSERT_STR) {
   4230   ASSERT_STREQ("", "");
   4231   EXPECT_EQ(0, GetUnitTestImpl()->current_test_result()->total_part_count());
   4232 }
   4233 
   4234 }  // namespace testing
   4235 
   4236 namespace {
   4237 
   4238 // Tests the message streaming variation of assertions.
   4239 
   4240 TEST(AssertionWithMessageTest, EXPECT) {
   4241   EXPECT_EQ(1, 1) << "This should succeed.";
   4242   EXPECT_NONFATAL_FAILURE(EXPECT_NE(1, 1) << "Expected failure #1.",
   4243                           "Expected failure #1");
   4244   EXPECT_LE(1, 2) << "This should succeed.";
   4245   EXPECT_NONFATAL_FAILURE(EXPECT_LT(1, 0) << "Expected failure #2.",
   4246                           "Expected failure #2.");
   4247   EXPECT_GE(1, 0) << "This should succeed.";
   4248   EXPECT_NONFATAL_FAILURE(EXPECT_GT(1, 2) << "Expected failure #3.",
   4249                           "Expected failure #3.");
   4250 
   4251   EXPECT_STREQ("1", "1") << "This should succeed.";
   4252   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("1", "1") << "Expected failure #4.",
   4253                           "Expected failure #4.");
   4254   EXPECT_STRCASEEQ("a", "A") << "This should succeed.";
   4255   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("a", "A") << "Expected failure #5.",
   4256                           "Expected failure #5.");
   4257 
   4258   EXPECT_FLOAT_EQ(1, 1) << "This should succeed.";
   4259   EXPECT_NONFATAL_FAILURE(EXPECT_DOUBLE_EQ(1, 1.2) << "Expected failure #6.",
   4260                           "Expected failure #6.");
   4261   EXPECT_NEAR(1, 1.1, 0.2) << "This should succeed.";
   4262 }
   4263 
   4264 TEST(AssertionWithMessageTest, ASSERT) {
   4265   ASSERT_EQ(1, 1) << "This should succeed.";
   4266   ASSERT_NE(1, 2) << "This should succeed.";
   4267   ASSERT_LE(1, 2) << "This should succeed.";
   4268   ASSERT_LT(1, 2) << "This should succeed.";
   4269   ASSERT_GE(1, 0) << "This should succeed.";
   4270   EXPECT_FATAL_FAILURE(ASSERT_GT(1, 2) << "Expected failure.",
   4271                        "Expected failure.");
   4272 }
   4273 
   4274 TEST(AssertionWithMessageTest, ASSERT_STR) {
   4275   ASSERT_STREQ("1", "1") << "This should succeed.";
   4276   ASSERT_STRNE("1", "2") << "This should succeed.";
   4277   ASSERT_STRCASEEQ("a", "A") << "This should succeed.";
   4278   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("a", "A") << "Expected failure.",
   4279                        "Expected failure.");
   4280 }
   4281 
   4282 TEST(AssertionWithMessageTest, ASSERT_FLOATING) {
   4283   ASSERT_FLOAT_EQ(1, 1) << "This should succeed.";
   4284   ASSERT_DOUBLE_EQ(1, 1) << "This should succeed.";
   4285   EXPECT_FATAL_FAILURE(ASSERT_NEAR(1,1.2, 0.1) << "Expect failure.",  // NOLINT
   4286                        "Expect failure.");
   4287   // To work around a bug in gcc 2.95.0, there is intentionally no
   4288   // space after the first comma in the previous statement.
   4289 }
   4290 
   4291 // Tests using ASSERT_FALSE with a streamed message.
   4292 TEST(AssertionWithMessageTest, ASSERT_FALSE) {
   4293   ASSERT_FALSE(false) << "This shouldn't fail.";
   4294   EXPECT_FATAL_FAILURE({  // NOLINT
   4295     ASSERT_FALSE(true) << "Expected failure: " << 2 << " > " << 1
   4296                        << " evaluates to " << true;
   4297   }, "Expected failure");
   4298 }
   4299 
   4300 // Tests using FAIL with a streamed message.
   4301 TEST(AssertionWithMessageTest, FAIL) {
   4302   EXPECT_FATAL_FAILURE(FAIL() << 0,
   4303                        "0");
   4304 }
   4305 
   4306 // Tests using SUCCEED with a streamed message.
   4307 TEST(AssertionWithMessageTest, SUCCEED) {
   4308   SUCCEED() << "Success == " << 1;
   4309 }
   4310 
   4311 // Tests using ASSERT_TRUE with a streamed message.
   4312 TEST(AssertionWithMessageTest, ASSERT_TRUE) {
   4313   ASSERT_TRUE(true) << "This should succeed.";
   4314   ASSERT_TRUE(true) << true;
   4315   EXPECT_FATAL_FAILURE({  // NOLINT
   4316     ASSERT_TRUE(false) << static_cast<const char *>(NULL)
   4317                        << static_cast<char *>(NULL);
   4318   }, "(null)(null)");
   4319 }
   4320 
   4321 #if GTEST_OS_WINDOWS
   4322 // Tests using wide strings in assertion messages.
   4323 TEST(AssertionWithMessageTest, WideStringMessage) {
   4324   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4325     EXPECT_TRUE(false) << L"This failure is expected.\x8119";
   4326   }, "This failure is expected.");
   4327   EXPECT_FATAL_FAILURE({  // NOLINT
   4328     ASSERT_EQ(1, 2) << "This failure is "
   4329                     << L"expected too.\x8120";
   4330   }, "This failure is expected too.");
   4331 }
   4332 #endif  // GTEST_OS_WINDOWS
   4333 
   4334 // Tests EXPECT_TRUE.
   4335 TEST(ExpectTest, EXPECT_TRUE) {
   4336   EXPECT_TRUE(true) << "Intentional success";
   4337   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #1.",
   4338                           "Intentional failure #1.");
   4339   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "Intentional failure #2.",
   4340                           "Intentional failure #2.");
   4341   EXPECT_TRUE(2 > 1);  // NOLINT
   4342   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 < 1),
   4343                           "Value of: 2 < 1\n"
   4344                           "  Actual: false\n"
   4345                           "Expected: true");
   4346   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(2 > 3),
   4347                           "2 > 3");
   4348 }
   4349 
   4350 // Tests EXPECT_TRUE(predicate) for predicates returning AssertionResult.
   4351 TEST(ExpectTest, ExpectTrueWithAssertionResult) {
   4352   EXPECT_TRUE(ResultIsEven(2));
   4353   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEven(3)),
   4354                           "Value of: ResultIsEven(3)\n"
   4355                           "  Actual: false (3 is odd)\n"
   4356                           "Expected: true");
   4357   EXPECT_TRUE(ResultIsEvenNoExplanation(2));
   4358   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(ResultIsEvenNoExplanation(3)),
   4359                           "Value of: ResultIsEvenNoExplanation(3)\n"
   4360                           "  Actual: false (3 is odd)\n"
   4361                           "Expected: true");
   4362 }
   4363 
   4364 // Tests EXPECT_FALSE with a streamed message.
   4365 TEST(ExpectTest, EXPECT_FALSE) {
   4366   EXPECT_FALSE(2 < 1);  // NOLINT
   4367   EXPECT_FALSE(false) << "Intentional success";
   4368   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #1.",
   4369                           "Intentional failure #1.");
   4370   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "Intentional failure #2.",
   4371                           "Intentional failure #2.");
   4372   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 > 1),
   4373                           "Value of: 2 > 1\n"
   4374                           "  Actual: true\n"
   4375                           "Expected: false");
   4376   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(2 < 3),
   4377                           "2 < 3");
   4378 }
   4379 
   4380 // Tests EXPECT_FALSE(predicate) for predicates returning AssertionResult.
   4381 TEST(ExpectTest, ExpectFalseWithAssertionResult) {
   4382   EXPECT_FALSE(ResultIsEven(3));
   4383   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEven(2)),
   4384                           "Value of: ResultIsEven(2)\n"
   4385                           "  Actual: true (2 is even)\n"
   4386                           "Expected: false");
   4387   EXPECT_FALSE(ResultIsEvenNoExplanation(3));
   4388   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(ResultIsEvenNoExplanation(2)),
   4389                           "Value of: ResultIsEvenNoExplanation(2)\n"
   4390                           "  Actual: true\n"
   4391                           "Expected: false");
   4392 }
   4393 
   4394 #ifdef __BORLANDC__
   4395 // Restores warnings after previous "#pragma option push" supressed them
   4396 # pragma option pop
   4397 #endif
   4398 
   4399 // Tests EXPECT_EQ.
   4400 TEST(ExpectTest, EXPECT_EQ) {
   4401   EXPECT_EQ(5, 2 + 3);
   4402   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2*3),
   4403                           "Expected equality of these values:\n"
   4404                           "  5\n"
   4405                           "  2*3\n"
   4406                           "    Which is: 6");
   4407   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5, 2 - 3),
   4408                           "2 - 3");
   4409 }
   4410 
   4411 // Tests using EXPECT_EQ on double values.  The purpose is to make
   4412 // sure that the specialization we did for integer and anonymous enums
   4413 // isn't used for double arguments.
   4414 TEST(ExpectTest, EXPECT_EQ_Double) {
   4415   // A success.
   4416   EXPECT_EQ(5.6, 5.6);
   4417 
   4418   // A failure.
   4419   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(5.1, 5.2),
   4420                           "5.1");
   4421 }
   4422 
   4423 #if GTEST_CAN_COMPARE_NULL
   4424 // Tests EXPECT_EQ(NULL, pointer).
   4425 TEST(ExpectTest, EXPECT_EQ_NULL) {
   4426   // A success.
   4427   const char* p = NULL;
   4428   // Some older GCC versions may issue a spurious warning in this or the next
   4429   // assertion statement. This warning should not be suppressed with
   4430   // static_cast since the test verifies the ability to use bare NULL as the
   4431   // expected parameter to the macro.
   4432   EXPECT_EQ(NULL, p);
   4433 
   4434   // A failure.
   4435   int n = 0;
   4436   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(NULL, &n),
   4437                           "&n\n");
   4438 }
   4439 #endif  // GTEST_CAN_COMPARE_NULL
   4440 
   4441 // Tests EXPECT_EQ(0, non_pointer).  Since the literal 0 can be
   4442 // treated as a null pointer by the compiler, we need to make sure
   4443 // that EXPECT_EQ(0, non_pointer) isn't interpreted by Google Test as
   4444 // EXPECT_EQ(static_cast<void*>(NULL), non_pointer).
   4445 TEST(ExpectTest, EXPECT_EQ_0) {
   4446   int n = 0;
   4447 
   4448   // A success.
   4449   EXPECT_EQ(0, n);
   4450 
   4451   // A failure.
   4452   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(0, 5.6),
   4453                           "Expected equality of these values:\n  0\n  5.6");
   4454 }
   4455 
   4456 // Tests EXPECT_NE.
   4457 TEST(ExpectTest, EXPECT_NE) {
   4458   EXPECT_NE(6, 7);
   4459 
   4460   EXPECT_NONFATAL_FAILURE(EXPECT_NE('a', 'a'),
   4461                           "Expected: ('a') != ('a'), "
   4462                           "actual: 'a' (97, 0x61) vs 'a' (97, 0x61)");
   4463   EXPECT_NONFATAL_FAILURE(EXPECT_NE(2, 2),
   4464                           "2");
   4465   char* const p0 = NULL;
   4466   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p0, p0),
   4467                           "p0");
   4468   // Only way to get the Nokia compiler to compile the cast
   4469   // is to have a separate void* variable first. Putting
   4470   // the two casts on the same line doesn't work, neither does
   4471   // a direct C-style to char*.
   4472   void* pv1 = (void*)0x1234;  // NOLINT
   4473   char* const p1 = reinterpret_cast<char*>(pv1);
   4474   EXPECT_NONFATAL_FAILURE(EXPECT_NE(p1, p1),
   4475                           "p1");
   4476 }
   4477 
   4478 // Tests EXPECT_LE.
   4479 TEST(ExpectTest, EXPECT_LE) {
   4480   EXPECT_LE(2, 3);
   4481   EXPECT_LE(2, 2);
   4482   EXPECT_NONFATAL_FAILURE(EXPECT_LE(2, 0),
   4483                           "Expected: (2) <= (0), actual: 2 vs 0");
   4484   EXPECT_NONFATAL_FAILURE(EXPECT_LE(1.1, 0.9),
   4485                           "(1.1) <= (0.9)");
   4486 }
   4487 
   4488 // Tests EXPECT_LT.
   4489 TEST(ExpectTest, EXPECT_LT) {
   4490   EXPECT_LT(2, 3);
   4491   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 2),
   4492                           "Expected: (2) < (2), actual: 2 vs 2");
   4493   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1),
   4494                           "(2) < (1)");
   4495 }
   4496 
   4497 // Tests EXPECT_GE.
   4498 TEST(ExpectTest, EXPECT_GE) {
   4499   EXPECT_GE(2, 1);
   4500   EXPECT_GE(2, 2);
   4501   EXPECT_NONFATAL_FAILURE(EXPECT_GE(2, 3),
   4502                           "Expected: (2) >= (3), actual: 2 vs 3");
   4503   EXPECT_NONFATAL_FAILURE(EXPECT_GE(0.9, 1.1),
   4504                           "(0.9) >= (1.1)");
   4505 }
   4506 
   4507 // Tests EXPECT_GT.
   4508 TEST(ExpectTest, EXPECT_GT) {
   4509   EXPECT_GT(2, 1);
   4510   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 2),
   4511                           "Expected: (2) > (2), actual: 2 vs 2");
   4512   EXPECT_NONFATAL_FAILURE(EXPECT_GT(2, 3),
   4513                           "(2) > (3)");
   4514 }
   4515 
   4516 #if GTEST_HAS_EXCEPTIONS
   4517 
   4518 // Tests EXPECT_THROW.
   4519 TEST(ExpectTest, EXPECT_THROW) {
   4520   EXPECT_THROW(ThrowAnInteger(), int);
   4521   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool),
   4522                           "Expected: ThrowAnInteger() throws an exception of "
   4523                           "type bool.\n  Actual: it throws a different type.");
   4524   EXPECT_NONFATAL_FAILURE(
   4525       EXPECT_THROW(ThrowNothing(), bool),
   4526       "Expected: ThrowNothing() throws an exception of type bool.\n"
   4527       "  Actual: it throws nothing.");
   4528 }
   4529 
   4530 // Tests EXPECT_NO_THROW.
   4531 TEST(ExpectTest, EXPECT_NO_THROW) {
   4532   EXPECT_NO_THROW(ThrowNothing());
   4533   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()),
   4534                           "Expected: ThrowAnInteger() doesn't throw an "
   4535                           "exception.\n  Actual: it throws.");
   4536 }
   4537 
   4538 // Tests EXPECT_ANY_THROW.
   4539 TEST(ExpectTest, EXPECT_ANY_THROW) {
   4540   EXPECT_ANY_THROW(ThrowAnInteger());
   4541   EXPECT_NONFATAL_FAILURE(
   4542       EXPECT_ANY_THROW(ThrowNothing()),
   4543       "Expected: ThrowNothing() throws an exception.\n"
   4544       "  Actual: it doesn't.");
   4545 }
   4546 
   4547 #endif  // GTEST_HAS_EXCEPTIONS
   4548 
   4549 // Make sure we deal with the precedence of <<.
   4550 TEST(ExpectTest, ExpectPrecedence) {
   4551   EXPECT_EQ(1 < 2, true);
   4552   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(true, true && false),
   4553                           "true && false");
   4554 }
   4555 
   4556 
   4557 // Tests the StreamableToString() function.
   4558 
   4559 // Tests using StreamableToString() on a scalar.
   4560 TEST(StreamableToStringTest, Scalar) {
   4561   EXPECT_STREQ("5", StreamableToString(5).c_str());
   4562 }
   4563 
   4564 // Tests using StreamableToString() on a non-char pointer.
   4565 TEST(StreamableToStringTest, Pointer) {
   4566   int n = 0;
   4567   int* p = &n;
   4568   EXPECT_STRNE("(null)", StreamableToString(p).c_str());
   4569 }
   4570 
   4571 // Tests using StreamableToString() on a NULL non-char pointer.
   4572 TEST(StreamableToStringTest, NullPointer) {
   4573   int* p = NULL;
   4574   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4575 }
   4576 
   4577 // Tests using StreamableToString() on a C string.
   4578 TEST(StreamableToStringTest, CString) {
   4579   EXPECT_STREQ("Foo", StreamableToString("Foo").c_str());
   4580 }
   4581 
   4582 // Tests using StreamableToString() on a NULL C string.
   4583 TEST(StreamableToStringTest, NullCString) {
   4584   char* p = NULL;
   4585   EXPECT_STREQ("(null)", StreamableToString(p).c_str());
   4586 }
   4587 
   4588 // Tests using streamable values as assertion messages.
   4589 
   4590 // Tests using std::string as an assertion message.
   4591 TEST(StreamableTest, string) {
   4592   static const std::string str(
   4593       "This failure message is a std::string, and is expected.");
   4594   EXPECT_FATAL_FAILURE(FAIL() << str,
   4595                        str.c_str());
   4596 }
   4597 
   4598 // Tests that we can output strings containing embedded NULs.
   4599 // Limited to Linux because we can only do this with std::string's.
   4600 TEST(StreamableTest, stringWithEmbeddedNUL) {
   4601   static const char char_array_with_nul[] =
   4602       "Here's a NUL\0 and some more string";
   4603   static const std::string string_with_nul(char_array_with_nul,
   4604                                            sizeof(char_array_with_nul)
   4605                                            - 1);  // drops the trailing NUL
   4606   EXPECT_FATAL_FAILURE(FAIL() << string_with_nul,
   4607                        "Here's a NUL\\0 and some more string");
   4608 }
   4609 
   4610 // Tests that we can output a NUL char.
   4611 TEST(StreamableTest, NULChar) {
   4612   EXPECT_FATAL_FAILURE({  // NOLINT
   4613     FAIL() << "A NUL" << '\0' << " and some more string";
   4614   }, "A NUL\\0 and some more string");
   4615 }
   4616 
   4617 // Tests using int as an assertion message.
   4618 TEST(StreamableTest, int) {
   4619   EXPECT_FATAL_FAILURE(FAIL() << 900913,
   4620                        "900913");
   4621 }
   4622 
   4623 // Tests using NULL char pointer as an assertion message.
   4624 //
   4625 // In MSVC, streaming a NULL char * causes access violation.  Google Test
   4626 // implemented a workaround (substituting "(null)" for NULL).  This
   4627 // tests whether the workaround works.
   4628 TEST(StreamableTest, NullCharPtr) {
   4629   EXPECT_FATAL_FAILURE(FAIL() << static_cast<const char*>(NULL),
   4630                        "(null)");
   4631 }
   4632 
   4633 // Tests that basic IO manipulators (endl, ends, and flush) can be
   4634 // streamed to testing::Message.
   4635 TEST(StreamableTest, BasicIoManip) {
   4636   EXPECT_FATAL_FAILURE({  // NOLINT
   4637     FAIL() << "Line 1." << std::endl
   4638            << "A NUL char " << std::ends << std::flush << " in line 2.";
   4639   }, "Line 1.\nA NUL char \\0 in line 2.");
   4640 }
   4641 
   4642 // Tests the macros that haven't been covered so far.
   4643 
   4644 void AddFailureHelper(bool* aborted) {
   4645   *aborted = true;
   4646   ADD_FAILURE() << "Intentional failure.";
   4647   *aborted = false;
   4648 }
   4649 
   4650 // Tests ADD_FAILURE.
   4651 TEST(MacroTest, ADD_FAILURE) {
   4652   bool aborted = true;
   4653   EXPECT_NONFATAL_FAILURE(AddFailureHelper(&aborted),
   4654                           "Intentional failure.");
   4655   EXPECT_FALSE(aborted);
   4656 }
   4657 
   4658 // Tests ADD_FAILURE_AT.
   4659 TEST(MacroTest, ADD_FAILURE_AT) {
   4660   // Verifies that ADD_FAILURE_AT does generate a nonfatal failure and
   4661   // the failure message contains the user-streamed part.
   4662   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42) << "Wrong!", "Wrong!");
   4663 
   4664   // Verifies that the user-streamed part is optional.
   4665   EXPECT_NONFATAL_FAILURE(ADD_FAILURE_AT("foo.cc", 42), "Failed");
   4666 
   4667   // Unfortunately, we cannot verify that the failure message contains
   4668   // the right file path and line number the same way, as
   4669   // EXPECT_NONFATAL_FAILURE() doesn't get to see the file path and
   4670   // line number.  Instead, we do that in gtest_output_test_.cc.
   4671 }
   4672 
   4673 // Tests FAIL.
   4674 TEST(MacroTest, FAIL) {
   4675   EXPECT_FATAL_FAILURE(FAIL(),
   4676                        "Failed");
   4677   EXPECT_FATAL_FAILURE(FAIL() << "Intentional failure.",
   4678                        "Intentional failure.");
   4679 }
   4680 
   4681 // Tests SUCCEED
   4682 TEST(MacroTest, SUCCEED) {
   4683   SUCCEED();
   4684   SUCCEED() << "Explicit success.";
   4685 }
   4686 
   4687 // Tests for EXPECT_EQ() and ASSERT_EQ().
   4688 //
   4689 // These tests fail *intentionally*, s.t. the failure messages can be
   4690 // generated and tested.
   4691 //
   4692 // We have different tests for different argument types.
   4693 
   4694 // Tests using bool values in {EXPECT|ASSERT}_EQ.
   4695 TEST(EqAssertionTest, Bool) {
   4696   EXPECT_EQ(true,  true);
   4697   EXPECT_FATAL_FAILURE({
   4698       bool false_value = false;
   4699       ASSERT_EQ(false_value, true);
   4700     }, "Which is: false");
   4701 }
   4702 
   4703 // Tests using int values in {EXPECT|ASSERT}_EQ.
   4704 TEST(EqAssertionTest, Int) {
   4705   ASSERT_EQ(32, 32);
   4706   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(32, 33),
   4707                           "33");
   4708 }
   4709 
   4710 // Tests using time_t values in {EXPECT|ASSERT}_EQ.
   4711 TEST(EqAssertionTest, Time_T) {
   4712   EXPECT_EQ(static_cast<time_t>(0),
   4713             static_cast<time_t>(0));
   4714   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<time_t>(0),
   4715                                  static_cast<time_t>(1234)),
   4716                        "1234");
   4717 }
   4718 
   4719 // Tests using char values in {EXPECT|ASSERT}_EQ.
   4720 TEST(EqAssertionTest, Char) {
   4721   ASSERT_EQ('z', 'z');
   4722   const char ch = 'b';
   4723   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('\0', ch),
   4724                           "ch");
   4725   EXPECT_NONFATAL_FAILURE(EXPECT_EQ('a', ch),
   4726                           "ch");
   4727 }
   4728 
   4729 // Tests using wchar_t values in {EXPECT|ASSERT}_EQ.
   4730 TEST(EqAssertionTest, WideChar) {
   4731   EXPECT_EQ(L'b', L'b');
   4732 
   4733   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'\0', L'x'),
   4734                           "Expected equality of these values:\n"
   4735                           "  L'\0'\n"
   4736                           "    Which is: L'\0' (0, 0x0)\n"
   4737                           "  L'x'\n"
   4738                           "    Which is: L'x' (120, 0x78)");
   4739 
   4740   static wchar_t wchar;
   4741   wchar = L'b';
   4742   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(L'a', wchar),
   4743                           "wchar");
   4744   wchar = 0x8119;
   4745   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<wchar_t>(0x8120), wchar),
   4746                        "wchar");
   4747 }
   4748 
   4749 // Tests using ::std::string values in {EXPECT|ASSERT}_EQ.
   4750 TEST(EqAssertionTest, StdString) {
   4751   // Compares a const char* to an std::string that has identical
   4752   // content.
   4753   ASSERT_EQ("Test", ::std::string("Test"));
   4754 
   4755   // Compares two identical std::strings.
   4756   static const ::std::string str1("A * in the middle");
   4757   static const ::std::string str2(str1);
   4758   EXPECT_EQ(str1, str2);
   4759 
   4760   // Compares a const char* to an std::string that has different
   4761   // content
   4762   EXPECT_NONFATAL_FAILURE(EXPECT_EQ("Test", ::std::string("test")),
   4763                           "\"test\"");
   4764 
   4765   // Compares an std::string to a char* that has different content.
   4766   char* const p1 = const_cast<char*>("foo");
   4767   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::std::string("bar"), p1),
   4768                           "p1");
   4769 
   4770   // Compares two std::strings that have different contents, one of
   4771   // which having a NUL character in the middle.  This should fail.
   4772   static ::std::string str3(str1);
   4773   str3.at(2) = '\0';
   4774   EXPECT_FATAL_FAILURE(ASSERT_EQ(str1, str3),
   4775                        "  str3\n"
   4776                        "    Which is: \"A \\0 in the middle\"");
   4777 }
   4778 
   4779 #if GTEST_HAS_STD_WSTRING
   4780 
   4781 // Tests using ::std::wstring values in {EXPECT|ASSERT}_EQ.
   4782 TEST(EqAssertionTest, StdWideString) {
   4783   // Compares two identical std::wstrings.
   4784   const ::std::wstring wstr1(L"A * in the middle");
   4785   const ::std::wstring wstr2(wstr1);
   4786   ASSERT_EQ(wstr1, wstr2);
   4787 
   4788   // Compares an std::wstring to a const wchar_t* that has identical
   4789   // content.
   4790   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4791   EXPECT_EQ(::std::wstring(kTestX8119), kTestX8119);
   4792 
   4793   // Compares an std::wstring to a const wchar_t* that has different
   4794   // content.
   4795   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4796   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4797     EXPECT_EQ(::std::wstring(kTestX8119), kTestX8120);
   4798   }, "kTestX8120");
   4799 
   4800   // Compares two std::wstrings that have different contents, one of
   4801   // which having a NUL character in the middle.
   4802   ::std::wstring wstr3(wstr1);
   4803   wstr3.at(2) = L'\0';
   4804   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(wstr1, wstr3),
   4805                           "wstr3");
   4806 
   4807   // Compares a wchar_t* to an std::wstring that has different
   4808   // content.
   4809   EXPECT_FATAL_FAILURE({  // NOLINT
   4810     ASSERT_EQ(const_cast<wchar_t*>(L"foo"), ::std::wstring(L"bar"));
   4811   }, "");
   4812 }
   4813 
   4814 #endif  // GTEST_HAS_STD_WSTRING
   4815 
   4816 #if GTEST_HAS_GLOBAL_STRING
   4817 // Tests using ::string values in {EXPECT|ASSERT}_EQ.
   4818 TEST(EqAssertionTest, GlobalString) {
   4819   // Compares a const char* to a ::string that has identical content.
   4820   EXPECT_EQ("Test", ::string("Test"));
   4821 
   4822   // Compares two identical ::strings.
   4823   const ::string str1("A * in the middle");
   4824   const ::string str2(str1);
   4825   ASSERT_EQ(str1, str2);
   4826 
   4827   // Compares a ::string to a const char* that has different content.
   4828   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(::string("Test"), "test"),
   4829                           "test");
   4830 
   4831   // Compares two ::strings that have different contents, one of which
   4832   // having a NUL character in the middle.
   4833   ::string str3(str1);
   4834   str3.at(2) = '\0';
   4835   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(str1, str3),
   4836                           "str3");
   4837 
   4838   // Compares a ::string to a char* that has different content.
   4839   EXPECT_FATAL_FAILURE({  // NOLINT
   4840     ASSERT_EQ(::string("bar"), const_cast<char*>("foo"));
   4841   }, "");
   4842 }
   4843 
   4844 #endif  // GTEST_HAS_GLOBAL_STRING
   4845 
   4846 #if GTEST_HAS_GLOBAL_WSTRING
   4847 
   4848 // Tests using ::wstring values in {EXPECT|ASSERT}_EQ.
   4849 TEST(EqAssertionTest, GlobalWideString) {
   4850   // Compares two identical ::wstrings.
   4851   static const ::wstring wstr1(L"A * in the middle");
   4852   static const ::wstring wstr2(wstr1);
   4853   EXPECT_EQ(wstr1, wstr2);
   4854 
   4855   // Compares a const wchar_t* to a ::wstring that has identical content.
   4856   const wchar_t kTestX8119[] = { 'T', 'e', 's', 't', 0x8119, '\0' };
   4857   ASSERT_EQ(kTestX8119, ::wstring(kTestX8119));
   4858 
   4859   // Compares a const wchar_t* to a ::wstring that has different
   4860   // content.
   4861   const wchar_t kTestX8120[] = { 'T', 'e', 's', 't', 0x8120, '\0' };
   4862   EXPECT_NONFATAL_FAILURE({  // NOLINT
   4863     EXPECT_EQ(kTestX8120, ::wstring(kTestX8119));
   4864   }, "Test\\x8119");
   4865 
   4866   // Compares a wchar_t* to a ::wstring that has different content.
   4867   wchar_t* const p1 = const_cast<wchar_t*>(L"foo");
   4868   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, ::wstring(L"bar")),
   4869                           "bar");
   4870 
   4871   // Compares two ::wstrings that have different contents, one of which
   4872   // having a NUL character in the middle.
   4873   static ::wstring wstr3;
   4874   wstr3 = wstr1;
   4875   wstr3.at(2) = L'\0';
   4876   EXPECT_FATAL_FAILURE(ASSERT_EQ(wstr1, wstr3),
   4877                        "wstr3");
   4878 }
   4879 
   4880 #endif  // GTEST_HAS_GLOBAL_WSTRING
   4881 
   4882 // Tests using char pointers in {EXPECT|ASSERT}_EQ.
   4883 TEST(EqAssertionTest, CharPointer) {
   4884   char* const p0 = NULL;
   4885   // Only way to get the Nokia compiler to compile the cast
   4886   // is to have a separate void* variable first. Putting
   4887   // the two casts on the same line doesn't work, neither does
   4888   // a direct C-style to char*.
   4889   void* pv1 = (void*)0x1234;  // NOLINT
   4890   void* pv2 = (void*)0xABC0;  // NOLINT
   4891   char* const p1 = reinterpret_cast<char*>(pv1);
   4892   char* const p2 = reinterpret_cast<char*>(pv2);
   4893   ASSERT_EQ(p1, p1);
   4894 
   4895   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4896                           "p2");
   4897   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4898                           "p2");
   4899   EXPECT_FATAL_FAILURE(ASSERT_EQ(reinterpret_cast<char*>(0x1234),
   4900                                  reinterpret_cast<char*>(0xABC0)),
   4901                        "ABC0");
   4902 }
   4903 
   4904 // Tests using wchar_t pointers in {EXPECT|ASSERT}_EQ.
   4905 TEST(EqAssertionTest, WideCharPointer) {
   4906   wchar_t* const p0 = NULL;
   4907   // Only way to get the Nokia compiler to compile the cast
   4908   // is to have a separate void* variable first. Putting
   4909   // the two casts on the same line doesn't work, neither does
   4910   // a direct C-style to char*.
   4911   void* pv1 = (void*)0x1234;  // NOLINT
   4912   void* pv2 = (void*)0xABC0;  // NOLINT
   4913   wchar_t* const p1 = reinterpret_cast<wchar_t*>(pv1);
   4914   wchar_t* const p2 = reinterpret_cast<wchar_t*>(pv2);
   4915   EXPECT_EQ(p0, p0);
   4916 
   4917   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p0, p2),
   4918                           "p2");
   4919   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p1, p2),
   4920                           "p2");
   4921   void* pv3 = (void*)0x1234;  // NOLINT
   4922   void* pv4 = (void*)0xABC0;  // NOLINT
   4923   const wchar_t* p3 = reinterpret_cast<const wchar_t*>(pv3);
   4924   const wchar_t* p4 = reinterpret_cast<const wchar_t*>(pv4);
   4925   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(p3, p4),
   4926                           "p4");
   4927 }
   4928 
   4929 // Tests using other types of pointers in {EXPECT|ASSERT}_EQ.
   4930 TEST(EqAssertionTest, OtherPointer) {
   4931   ASSERT_EQ(static_cast<const int*>(NULL),
   4932             static_cast<const int*>(NULL));
   4933   EXPECT_FATAL_FAILURE(ASSERT_EQ(static_cast<const int*>(NULL),
   4934                                  reinterpret_cast<const int*>(0x1234)),
   4935                        "0x1234");
   4936 }
   4937 
   4938 // A class that supports binary comparison operators but not streaming.
   4939 class UnprintableChar {
   4940  public:
   4941   explicit UnprintableChar(char ch) : char_(ch) {}
   4942 
   4943   bool operator==(const UnprintableChar& rhs) const {
   4944     return char_ == rhs.char_;
   4945   }
   4946   bool operator!=(const UnprintableChar& rhs) const {
   4947     return char_ != rhs.char_;
   4948   }
   4949   bool operator<(const UnprintableChar& rhs) const {
   4950     return char_ < rhs.char_;
   4951   }
   4952   bool operator<=(const UnprintableChar& rhs) const {
   4953     return char_ <= rhs.char_;
   4954   }
   4955   bool operator>(const UnprintableChar& rhs) const {
   4956     return char_ > rhs.char_;
   4957   }
   4958   bool operator>=(const UnprintableChar& rhs) const {
   4959     return char_ >= rhs.char_;
   4960   }
   4961 
   4962  private:
   4963   char char_;
   4964 };
   4965 
   4966 // Tests that ASSERT_EQ() and friends don't require the arguments to
   4967 // be printable.
   4968 TEST(ComparisonAssertionTest, AcceptsUnprintableArgs) {
   4969   const UnprintableChar x('x'), y('y');
   4970   ASSERT_EQ(x, x);
   4971   EXPECT_NE(x, y);
   4972   ASSERT_LT(x, y);
   4973   EXPECT_LE(x, y);
   4974   ASSERT_GT(y, x);
   4975   EXPECT_GE(x, x);
   4976 
   4977   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <78>");
   4978   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(x, y), "1-byte object <79>");
   4979   EXPECT_NONFATAL_FAILURE(EXPECT_LT(y, y), "1-byte object <79>");
   4980   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <78>");
   4981   EXPECT_NONFATAL_FAILURE(EXPECT_GT(x, y), "1-byte object <79>");
   4982 
   4983   // Code tested by EXPECT_FATAL_FAILURE cannot reference local
   4984   // variables, so we have to write UnprintableChar('x') instead of x.
   4985 #ifndef __BORLANDC__
   4986   // ICE's in C++Builder.
   4987   EXPECT_FATAL_FAILURE(ASSERT_NE(UnprintableChar('x'), UnprintableChar('x')),
   4988                        "1-byte object <78>");
   4989   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4990                        "1-byte object <78>");
   4991 #endif
   4992   EXPECT_FATAL_FAILURE(ASSERT_LE(UnprintableChar('y'), UnprintableChar('x')),
   4993                        "1-byte object <79>");
   4994   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4995                        "1-byte object <78>");
   4996   EXPECT_FATAL_FAILURE(ASSERT_GE(UnprintableChar('x'), UnprintableChar('y')),
   4997                        "1-byte object <79>");
   4998 }
   4999 
   5000 // Tests the FRIEND_TEST macro.
   5001 
   5002 // This class has a private member we want to test.  We will test it
   5003 // both in a TEST and in a TEST_F.
   5004 class Foo {
   5005  public:
   5006   Foo() {}
   5007 
   5008  private:
   5009   int Bar() const { return 1; }
   5010 
   5011   // Declares the friend tests that can access the private member
   5012   // Bar().
   5013   FRIEND_TEST(FRIEND_TEST_Test, TEST);
   5014   FRIEND_TEST(FRIEND_TEST_Test2, TEST_F);
   5015 };
   5016 
   5017 // Tests that the FRIEND_TEST declaration allows a TEST to access a
   5018 // class's private members.  This should compile.
   5019 TEST(FRIEND_TEST_Test, TEST) {
   5020   ASSERT_EQ(1, Foo().Bar());
   5021 }
   5022 
   5023 // The fixture needed to test using FRIEND_TEST with TEST_F.
   5024 class FRIEND_TEST_Test2 : public Test {
   5025  protected:
   5026   Foo foo;
   5027 };
   5028 
   5029 // Tests that the FRIEND_TEST declaration allows a TEST_F to access a
   5030 // class's private members.  This should compile.
   5031 TEST_F(FRIEND_TEST_Test2, TEST_F) {
   5032   ASSERT_EQ(1, foo.Bar());
   5033 }
   5034 
   5035 // Tests the life cycle of Test objects.
   5036 
   5037 // The test fixture for testing the life cycle of Test objects.
   5038 //
   5039 // This class counts the number of live test objects that uses this
   5040 // fixture.
   5041 class TestLifeCycleTest : public Test {
   5042  protected:
   5043   // Constructor.  Increments the number of test objects that uses
   5044   // this fixture.
   5045   TestLifeCycleTest() { count_++; }
   5046 
   5047   // Destructor.  Decrements the number of test objects that uses this
   5048   // fixture.
   5049   ~TestLifeCycleTest() { count_--; }
   5050 
   5051   // Returns the number of live test objects that uses this fixture.
   5052   int count() const { return count_; }
   5053 
   5054  private:
   5055   static int count_;
   5056 };
   5057 
   5058 int TestLifeCycleTest::count_ = 0;
   5059 
   5060 // Tests the life cycle of test objects.
   5061 TEST_F(TestLifeCycleTest, Test1) {
   5062   // There should be only one test object in this test case that's
   5063   // currently alive.
   5064   ASSERT_EQ(1, count());
   5065 }
   5066 
   5067 // Tests the life cycle of test objects.
   5068 TEST_F(TestLifeCycleTest, Test2) {
   5069   // After Test1 is done and Test2 is started, there should still be
   5070   // only one live test object, as the object for Test1 should've been
   5071   // deleted.
   5072   ASSERT_EQ(1, count());
   5073 }
   5074 
   5075 }  // namespace
   5076 
   5077 // Tests that the copy constructor works when it is NOT optimized away by
   5078 // the compiler.
   5079 TEST(AssertionResultTest, CopyConstructorWorksWhenNotOptimied) {
   5080   // Checks that the copy constructor doesn't try to dereference NULL pointers
   5081   // in the source object.
   5082   AssertionResult r1 = AssertionSuccess();
   5083   AssertionResult r2 = r1;
   5084   // The following line is added to prevent the compiler from optimizing
   5085   // away the constructor call.
   5086   r1 << "abc";
   5087 
   5088   AssertionResult r3 = r1;
   5089   EXPECT_EQ(static_cast<bool>(r3), static_cast<bool>(r1));
   5090   EXPECT_STREQ("abc", r1.message());
   5091 }
   5092 
   5093 // Tests that AssertionSuccess and AssertionFailure construct
   5094 // AssertionResult objects as expected.
   5095 TEST(AssertionResultTest, ConstructionWorks) {
   5096   AssertionResult r1 = AssertionSuccess();
   5097   EXPECT_TRUE(r1);
   5098   EXPECT_STREQ("", r1.message());
   5099 
   5100   AssertionResult r2 = AssertionSuccess() << "abc";
   5101   EXPECT_TRUE(r2);
   5102   EXPECT_STREQ("abc", r2.message());
   5103 
   5104   AssertionResult r3 = AssertionFailure();
   5105   EXPECT_FALSE(r3);
   5106   EXPECT_STREQ("", r3.message());
   5107 
   5108   AssertionResult r4 = AssertionFailure() << "def";
   5109   EXPECT_FALSE(r4);
   5110   EXPECT_STREQ("def", r4.message());
   5111 
   5112   AssertionResult r5 = AssertionFailure(Message() << "ghi");
   5113   EXPECT_FALSE(r5);
   5114   EXPECT_STREQ("ghi", r5.message());
   5115 }
   5116 
   5117 // Tests that the negation flips the predicate result but keeps the message.
   5118 TEST(AssertionResultTest, NegationWorks) {
   5119   AssertionResult r1 = AssertionSuccess() << "abc";
   5120   EXPECT_FALSE(!r1);
   5121   EXPECT_STREQ("abc", (!r1).message());
   5122 
   5123   AssertionResult r2 = AssertionFailure() << "def";
   5124   EXPECT_TRUE(!r2);
   5125   EXPECT_STREQ("def", (!r2).message());
   5126 }
   5127 
   5128 TEST(AssertionResultTest, StreamingWorks) {
   5129   AssertionResult r = AssertionSuccess();
   5130   r << "abc" << 'd' << 0 << true;
   5131   EXPECT_STREQ("abcd0true", r.message());
   5132 }
   5133 
   5134 TEST(AssertionResultTest, CanStreamOstreamManipulators) {
   5135   AssertionResult r = AssertionSuccess();
   5136   r << "Data" << std::endl << std::flush << std::ends << "Will be visible";
   5137   EXPECT_STREQ("Data\n\\0Will be visible", r.message());
   5138 }
   5139 
   5140 // The next test uses explicit conversion operators -- a C++11 feature.
   5141 #if GTEST_LANG_CXX11
   5142 
   5143 TEST(AssertionResultTest, ConstructibleFromContextuallyConvertibleToBool) {
   5144   struct ExplicitlyConvertibleToBool {
   5145     explicit operator bool() const { return value; }
   5146     bool value;
   5147   };
   5148   ExplicitlyConvertibleToBool v1 = {false};
   5149   ExplicitlyConvertibleToBool v2 = {true};
   5150   EXPECT_FALSE(v1);
   5151   EXPECT_TRUE(v2);
   5152 }
   5153 
   5154 #endif  // GTEST_LANG_CXX11
   5155 
   5156 struct ConvertibleToAssertionResult {
   5157   operator AssertionResult() const { return AssertionResult(true); }
   5158 };
   5159 
   5160 TEST(AssertionResultTest, ConstructibleFromImplicitlyConvertible) {
   5161   ConvertibleToAssertionResult obj;
   5162   EXPECT_TRUE(obj);
   5163 }
   5164 
   5165 // Tests streaming a user type whose definition and operator << are
   5166 // both in the global namespace.
   5167 class Base {
   5168  public:
   5169   explicit Base(int an_x) : x_(an_x) {}
   5170   int x() const { return x_; }
   5171  private:
   5172   int x_;
   5173 };
   5174 std::ostream& operator<<(std::ostream& os,
   5175                          const Base& val) {
   5176   return os << val.x();
   5177 }
   5178 std::ostream& operator<<(std::ostream& os,
   5179                          const Base* pointer) {
   5180   return os << "(" << pointer->x() << ")";
   5181 }
   5182 
   5183 TEST(MessageTest, CanStreamUserTypeInGlobalNameSpace) {
   5184   Message msg;
   5185   Base a(1);
   5186 
   5187   msg << a << &a;  // Uses ::operator<<.
   5188   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5189 }
   5190 
   5191 // Tests streaming a user type whose definition and operator<< are
   5192 // both in an unnamed namespace.
   5193 namespace {
   5194 class MyTypeInUnnamedNameSpace : public Base {
   5195  public:
   5196   explicit MyTypeInUnnamedNameSpace(int an_x): Base(an_x) {}
   5197 };
   5198 std::ostream& operator<<(std::ostream& os,
   5199                          const MyTypeInUnnamedNameSpace& val) {
   5200   return os << val.x();
   5201 }
   5202 std::ostream& operator<<(std::ostream& os,
   5203                          const MyTypeInUnnamedNameSpace* pointer) {
   5204   return os << "(" << pointer->x() << ")";
   5205 }
   5206 }  // namespace
   5207 
   5208 TEST(MessageTest, CanStreamUserTypeInUnnamedNameSpace) {
   5209   Message msg;
   5210   MyTypeInUnnamedNameSpace a(1);
   5211 
   5212   msg << a << &a;  // Uses <unnamed_namespace>::operator<<.
   5213   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5214 }
   5215 
   5216 // Tests streaming a user type whose definition and operator<< are
   5217 // both in a user namespace.
   5218 namespace namespace1 {
   5219 class MyTypeInNameSpace1 : public Base {
   5220  public:
   5221   explicit MyTypeInNameSpace1(int an_x): Base(an_x) {}
   5222 };
   5223 std::ostream& operator<<(std::ostream& os,
   5224                          const MyTypeInNameSpace1& val) {
   5225   return os << val.x();
   5226 }
   5227 std::ostream& operator<<(std::ostream& os,
   5228                          const MyTypeInNameSpace1* pointer) {
   5229   return os << "(" << pointer->x() << ")";
   5230 }
   5231 }  // namespace namespace1
   5232 
   5233 TEST(MessageTest, CanStreamUserTypeInUserNameSpace) {
   5234   Message msg;
   5235   namespace1::MyTypeInNameSpace1 a(1);
   5236 
   5237   msg << a << &a;  // Uses namespace1::operator<<.
   5238   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5239 }
   5240 
   5241 // Tests streaming a user type whose definition is in a user namespace
   5242 // but whose operator<< is in the global namespace.
   5243 namespace namespace2 {
   5244 class MyTypeInNameSpace2 : public ::Base {
   5245  public:
   5246   explicit MyTypeInNameSpace2(int an_x): Base(an_x) {}
   5247 };
   5248 }  // namespace namespace2
   5249 std::ostream& operator<<(std::ostream& os,
   5250                          const namespace2::MyTypeInNameSpace2& val) {
   5251   return os << val.x();
   5252 }
   5253 std::ostream& operator<<(std::ostream& os,
   5254                          const namespace2::MyTypeInNameSpace2* pointer) {
   5255   return os << "(" << pointer->x() << ")";
   5256 }
   5257 
   5258 TEST(MessageTest, CanStreamUserTypeInUserNameSpaceWithStreamOperatorInGlobal) {
   5259   Message msg;
   5260   namespace2::MyTypeInNameSpace2 a(1);
   5261 
   5262   msg << a << &a;  // Uses ::operator<<.
   5263   EXPECT_STREQ("1(1)", msg.GetString().c_str());
   5264 }
   5265 
   5266 // Tests streaming NULL pointers to testing::Message.
   5267 TEST(MessageTest, NullPointers) {
   5268   Message msg;
   5269   char* const p1 = NULL;
   5270   unsigned char* const p2 = NULL;
   5271   int* p3 = NULL;
   5272   double* p4 = NULL;
   5273   bool* p5 = NULL;
   5274   Message* p6 = NULL;
   5275 
   5276   msg << p1 << p2 << p3 << p4 << p5 << p6;
   5277   ASSERT_STREQ("(null)(null)(null)(null)(null)(null)",
   5278                msg.GetString().c_str());
   5279 }
   5280 
   5281 // Tests streaming wide strings to testing::Message.
   5282 TEST(MessageTest, WideStrings) {
   5283   // Streams a NULL of type const wchar_t*.
   5284   const wchar_t* const_wstr = NULL;
   5285   EXPECT_STREQ("(null)",
   5286                (Message() << const_wstr).GetString().c_str());
   5287 
   5288   // Streams a NULL of type wchar_t*.
   5289   wchar_t* wstr = NULL;
   5290   EXPECT_STREQ("(null)",
   5291                (Message() << wstr).GetString().c_str());
   5292 
   5293   // Streams a non-NULL of type const wchar_t*.
   5294   const_wstr = L"abc\x8119";
   5295   EXPECT_STREQ("abc\xe8\x84\x99",
   5296                (Message() << const_wstr).GetString().c_str());
   5297 
   5298   // Streams a non-NULL of type wchar_t*.
   5299   wstr = const_cast<wchar_t*>(const_wstr);
   5300   EXPECT_STREQ("abc\xe8\x84\x99",
   5301                (Message() << wstr).GetString().c_str());
   5302 }
   5303 
   5304 
   5305 // This line tests that we can define tests in the testing namespace.
   5306 namespace testing {
   5307 
   5308 // Tests the TestInfo class.
   5309 
   5310 class TestInfoTest : public Test {
   5311  protected:
   5312   static const TestInfo* GetTestInfo(const char* test_name) {
   5313     const TestCase* const test_case = GetUnitTestImpl()->
   5314         GetTestCase("TestInfoTest", "", NULL, NULL);
   5315 
   5316     for (int i = 0; i < test_case->total_test_count(); ++i) {
   5317       const TestInfo* const test_info = test_case->GetTestInfo(i);
   5318       if (strcmp(test_name, test_info->name()) == 0)
   5319         return test_info;
   5320     }
   5321     return NULL;
   5322   }
   5323 
   5324   static const TestResult* GetTestResult(
   5325       const TestInfo* test_info) {
   5326     return test_info->result();
   5327   }
   5328 };
   5329 
   5330 // Tests TestInfo::test_case_name() and TestInfo::name().
   5331 TEST_F(TestInfoTest, Names) {
   5332   const TestInfo* const test_info = GetTestInfo("Names");
   5333 
   5334   ASSERT_STREQ("TestInfoTest", test_info->test_case_name());
   5335   ASSERT_STREQ("Names", test_info->name());
   5336 }
   5337 
   5338 // Tests TestInfo::result().
   5339 TEST_F(TestInfoTest, result) {
   5340   const TestInfo* const test_info = GetTestInfo("result");
   5341 
   5342   // Initially, there is no TestPartResult for this test.
   5343   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5344 
   5345   // After the previous assertion, there is still none.
   5346   ASSERT_EQ(0, GetTestResult(test_info)->total_part_count());
   5347 }
   5348 
   5349 #define VERIFY_CODE_LOCATION \
   5350   const int expected_line = __LINE__ - 1; \
   5351   const TestInfo* const test_info = GetUnitTestImpl()->current_test_info(); \
   5352   ASSERT_TRUE(test_info); \
   5353   EXPECT_STREQ(__FILE__, test_info->file()); \
   5354   EXPECT_EQ(expected_line, test_info->line())
   5355 
   5356 TEST(CodeLocationForTEST, Verify) {
   5357   VERIFY_CODE_LOCATION;
   5358 }
   5359 
   5360 class CodeLocationForTESTF : public Test {
   5361 };
   5362 
   5363 TEST_F(CodeLocationForTESTF, Verify) {
   5364   VERIFY_CODE_LOCATION;
   5365 }
   5366 
   5367 class CodeLocationForTESTP : public TestWithParam<int> {
   5368 };
   5369 
   5370 TEST_P(CodeLocationForTESTP, Verify) {
   5371   VERIFY_CODE_LOCATION;
   5372 }
   5373 
   5374 INSTANTIATE_TEST_CASE_P(, CodeLocationForTESTP, Values(0));
   5375 
   5376 template <typename T>
   5377 class CodeLocationForTYPEDTEST : public Test {
   5378 };
   5379 
   5380 TYPED_TEST_CASE(CodeLocationForTYPEDTEST, int);
   5381 
   5382 TYPED_TEST(CodeLocationForTYPEDTEST, Verify) {
   5383   VERIFY_CODE_LOCATION;
   5384 }
   5385 
   5386 template <typename T>
   5387 class CodeLocationForTYPEDTESTP : public Test {
   5388 };
   5389 
   5390 TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP);
   5391 
   5392 TYPED_TEST_P(CodeLocationForTYPEDTESTP, Verify) {
   5393   VERIFY_CODE_LOCATION;
   5394 }
   5395 
   5396 REGISTER_TYPED_TEST_CASE_P(CodeLocationForTYPEDTESTP, Verify);
   5397 
   5398 INSTANTIATE_TYPED_TEST_CASE_P(My, CodeLocationForTYPEDTESTP, int);
   5399 
   5400 #undef VERIFY_CODE_LOCATION
   5401 
   5402 // Tests setting up and tearing down a test case.
   5403 
   5404 class SetUpTestCaseTest : public Test {
   5405  protected:
   5406   // This will be called once before the first test in this test case
   5407   // is run.
   5408   static void SetUpTestCase() {
   5409     printf("Setting up the test case . . .\n");
   5410 
   5411     // Initializes some shared resource.  In this simple example, we
   5412     // just create a C string.  More complex stuff can be done if
   5413     // desired.
   5414     shared_resource_ = "123";
   5415 
   5416     // Increments the number of test cases that have been set up.
   5417     counter_++;
   5418 
   5419     // SetUpTestCase() should be called only once.
   5420     EXPECT_EQ(1, counter_);
   5421   }
   5422 
   5423   // This will be called once after the last test in this test case is
   5424   // run.
   5425   static void TearDownTestCase() {
   5426     printf("Tearing down the test case . . .\n");
   5427 
   5428     // Decrements the number of test cases that have been set up.
   5429     counter_--;
   5430 
   5431     // TearDownTestCase() should be called only once.
   5432     EXPECT_EQ(0, counter_);
   5433 
   5434     // Cleans up the shared resource.
   5435     shared_resource_ = NULL;
   5436   }
   5437 
   5438   // This will be called before each test in this test case.
   5439   virtual void SetUp() {
   5440     // SetUpTestCase() should be called only once, so counter_ should
   5441     // always be 1.
   5442     EXPECT_EQ(1, counter_);
   5443   }
   5444 
   5445   // Number of test cases that have been set up.
   5446   static int counter_;
   5447 
   5448   // Some resource to be shared by all tests in this test case.
   5449   static const char* shared_resource_;
   5450 };
   5451 
   5452 int SetUpTestCaseTest::counter_ = 0;
   5453 const char* SetUpTestCaseTest::shared_resource_ = NULL;
   5454 
   5455 // A test that uses the shared resource.
   5456 TEST_F(SetUpTestCaseTest, Test1) {
   5457   EXPECT_STRNE(NULL, shared_resource_);
   5458 }
   5459 
   5460 // Another test that uses the shared resource.
   5461 TEST_F(SetUpTestCaseTest, Test2) {
   5462   EXPECT_STREQ("123", shared_resource_);
   5463 }
   5464 
   5465 // The InitGoogleTestTest test case tests testing::InitGoogleTest().
   5466 
   5467 // The Flags struct stores a copy of all Google Test flags.
   5468 struct Flags {
   5469   // Constructs a Flags struct where each flag has its default value.
   5470   Flags() : also_run_disabled_tests(false),
   5471             break_on_failure(false),
   5472             catch_exceptions(false),
   5473             death_test_use_fork(false),
   5474             filter(""),
   5475             list_tests(false),
   5476             output(""),
   5477             print_time(true),
   5478             random_seed(0),
   5479             repeat(1),
   5480             shuffle(false),
   5481             stack_trace_depth(kMaxStackTraceDepth),
   5482             stream_result_to(""),
   5483             throw_on_failure(false) {}
   5484 
   5485   // Factory methods.
   5486 
   5487   // Creates a Flags struct where the gtest_also_run_disabled_tests flag has
   5488   // the given value.
   5489   static Flags AlsoRunDisabledTests(bool also_run_disabled_tests) {
   5490     Flags flags;
   5491     flags.also_run_disabled_tests = also_run_disabled_tests;
   5492     return flags;
   5493   }
   5494 
   5495   // Creates a Flags struct where the gtest_break_on_failure flag has
   5496   // the given value.
   5497   static Flags BreakOnFailure(bool break_on_failure) {
   5498     Flags flags;
   5499     flags.break_on_failure = break_on_failure;
   5500     return flags;
   5501   }
   5502 
   5503   // Creates a Flags struct where the gtest_catch_exceptions flag has
   5504   // the given value.
   5505   static Flags CatchExceptions(bool catch_exceptions) {
   5506     Flags flags;
   5507     flags.catch_exceptions = catch_exceptions;
   5508     return flags;
   5509   }
   5510 
   5511   // Creates a Flags struct where the gtest_death_test_use_fork flag has
   5512   // the given value.
   5513   static Flags DeathTestUseFork(bool death_test_use_fork) {
   5514     Flags flags;
   5515     flags.death_test_use_fork = death_test_use_fork;
   5516     return flags;
   5517   }
   5518 
   5519   // Creates a Flags struct where the gtest_filter flag has the given
   5520   // value.
   5521   static Flags Filter(const char* filter) {
   5522     Flags flags;
   5523     flags.filter = filter;
   5524     return flags;
   5525   }
   5526 
   5527   // Creates a Flags struct where the gtest_list_tests flag has the
   5528   // given value.
   5529   static Flags ListTests(bool list_tests) {
   5530     Flags flags;
   5531     flags.list_tests = list_tests;
   5532     return flags;
   5533   }
   5534 
   5535   // Creates a Flags struct where the gtest_output flag has the given
   5536   // value.
   5537   static Flags Output(const char* output) {
   5538     Flags flags;
   5539     flags.output = output;
   5540     return flags;
   5541   }
   5542 
   5543   // Creates a Flags struct where the gtest_print_time flag has the given
   5544   // value.
   5545   static Flags PrintTime(bool print_time) {
   5546     Flags flags;
   5547     flags.print_time = print_time;
   5548     return flags;
   5549   }
   5550 
   5551   // Creates a Flags struct where the gtest_random_seed flag has
   5552   // the given value.
   5553   static Flags RandomSeed(Int32 random_seed) {
   5554     Flags flags;
   5555     flags.random_seed = random_seed;
   5556     return flags;
   5557   }
   5558 
   5559   // Creates a Flags struct where the gtest_repeat flag has the given
   5560   // value.
   5561   static Flags Repeat(Int32 repeat) {
   5562     Flags flags;
   5563     flags.repeat = repeat;
   5564     return flags;
   5565   }
   5566 
   5567   // Creates a Flags struct where the gtest_shuffle flag has
   5568   // the given value.
   5569   static Flags Shuffle(bool shuffle) {
   5570     Flags flags;
   5571     flags.shuffle = shuffle;
   5572     return flags;
   5573   }
   5574 
   5575   // Creates a Flags struct where the GTEST_FLAG(stack_trace_depth) flag has
   5576   // the given value.
   5577   static Flags StackTraceDepth(Int32 stack_trace_depth) {
   5578     Flags flags;
   5579     flags.stack_trace_depth = stack_trace_depth;
   5580     return flags;
   5581   }
   5582 
   5583   // Creates a Flags struct where the GTEST_FLAG(stream_result_to) flag has
   5584   // the given value.
   5585   static Flags StreamResultTo(const char* stream_result_to) {
   5586     Flags flags;
   5587     flags.stream_result_to = stream_result_to;
   5588     return flags;
   5589   }
   5590 
   5591   // Creates a Flags struct where the gtest_throw_on_failure flag has
   5592   // the given value.
   5593   static Flags ThrowOnFailure(bool throw_on_failure) {
   5594     Flags flags;
   5595     flags.throw_on_failure = throw_on_failure;
   5596     return flags;
   5597   }
   5598 
   5599   // These fields store the flag values.
   5600   bool also_run_disabled_tests;
   5601   bool break_on_failure;
   5602   bool catch_exceptions;
   5603   bool death_test_use_fork;
   5604   const char* filter;
   5605   bool list_tests;
   5606   const char* output;
   5607   bool print_time;
   5608   Int32 random_seed;
   5609   Int32 repeat;
   5610   bool shuffle;
   5611   Int32 stack_trace_depth;
   5612   const char* stream_result_to;
   5613   bool throw_on_failure;
   5614 };
   5615 
   5616 // Fixture for testing InitGoogleTest().
   5617 class InitGoogleTestTest : public Test {
   5618  protected:
   5619   // Clears the flags before each test.
   5620   virtual void SetUp() {
   5621     GTEST_FLAG(also_run_disabled_tests) = false;
   5622     GTEST_FLAG(break_on_failure) = false;
   5623     GTEST_FLAG(catch_exceptions) = false;
   5624     GTEST_FLAG(death_test_use_fork) = false;
   5625     GTEST_FLAG(filter) = "";
   5626     GTEST_FLAG(list_tests) = false;
   5627     GTEST_FLAG(output) = "";
   5628     GTEST_FLAG(print_time) = true;
   5629     GTEST_FLAG(random_seed) = 0;
   5630     GTEST_FLAG(repeat) = 1;
   5631     GTEST_FLAG(shuffle) = false;
   5632     GTEST_FLAG(stack_trace_depth) = kMaxStackTraceDepth;
   5633     GTEST_FLAG(stream_result_to) = "";
   5634     GTEST_FLAG(throw_on_failure) = false;
   5635   }
   5636 
   5637   // Asserts that two narrow or wide string arrays are equal.
   5638   template <typename CharType>
   5639   static void AssertStringArrayEq(size_t size1, CharType** array1,
   5640                                   size_t size2, CharType** array2) {
   5641     ASSERT_EQ(size1, size2) << " Array sizes different.";
   5642 
   5643     for (size_t i = 0; i != size1; i++) {
   5644       ASSERT_STREQ(array1[i], array2[i]) << " where i == " << i;
   5645     }
   5646   }
   5647 
   5648   // Verifies that the flag values match the expected values.
   5649   static void CheckFlags(const Flags& expected) {
   5650     EXPECT_EQ(expected.also_run_disabled_tests,
   5651               GTEST_FLAG(also_run_disabled_tests));
   5652     EXPECT_EQ(expected.break_on_failure, GTEST_FLAG(break_on_failure));
   5653     EXPECT_EQ(expected.catch_exceptions, GTEST_FLAG(catch_exceptions));
   5654     EXPECT_EQ(expected.death_test_use_fork, GTEST_FLAG(death_test_use_fork));
   5655     EXPECT_STREQ(expected.filter, GTEST_FLAG(filter).c_str());
   5656     EXPECT_EQ(expected.list_tests, GTEST_FLAG(list_tests));
   5657     EXPECT_STREQ(expected.output, GTEST_FLAG(output).c_str());
   5658     EXPECT_EQ(expected.print_time, GTEST_FLAG(print_time));
   5659     EXPECT_EQ(expected.random_seed, GTEST_FLAG(random_seed));
   5660     EXPECT_EQ(expected.repeat, GTEST_FLAG(repeat));
   5661     EXPECT_EQ(expected.shuffle, GTEST_FLAG(shuffle));
   5662     EXPECT_EQ(expected.stack_trace_depth, GTEST_FLAG(stack_trace_depth));
   5663     EXPECT_STREQ(expected.stream_result_to,
   5664                  GTEST_FLAG(stream_result_to).c_str());
   5665     EXPECT_EQ(expected.throw_on_failure, GTEST_FLAG(throw_on_failure));
   5666   }
   5667 
   5668   // Parses a command line (specified by argc1 and argv1), then
   5669   // verifies that the flag values are expected and that the
   5670   // recognized flags are removed from the command line.
   5671   template <typename CharType>
   5672   static void TestParsingFlags(int argc1, const CharType** argv1,
   5673                                int argc2, const CharType** argv2,
   5674                                const Flags& expected, bool should_print_help) {
   5675     const bool saved_help_flag = ::testing::internal::g_help_flag;
   5676     ::testing::internal::g_help_flag = false;
   5677 
   5678 #if GTEST_HAS_STREAM_REDIRECTION
   5679     CaptureStdout();
   5680 #endif
   5681 
   5682     // Parses the command line.
   5683     internal::ParseGoogleTestFlagsOnly(&argc1, const_cast<CharType**>(argv1));
   5684 
   5685 #if GTEST_HAS_STREAM_REDIRECTION
   5686     const std::string captured_stdout = GetCapturedStdout();
   5687 #endif
   5688 
   5689     // Verifies the flag values.
   5690     CheckFlags(expected);
   5691 
   5692     // Verifies that the recognized flags are removed from the command
   5693     // line.
   5694     AssertStringArrayEq(argc1 + 1, argv1, argc2 + 1, argv2);
   5695 
   5696     // ParseGoogleTestFlagsOnly should neither set g_help_flag nor print the
   5697     // help message for the flags it recognizes.
   5698     EXPECT_EQ(should_print_help, ::testing::internal::g_help_flag);
   5699 
   5700 #if GTEST_HAS_STREAM_REDIRECTION
   5701     const char* const expected_help_fragment =
   5702         "This program contains tests written using";
   5703     if (should_print_help) {
   5704       EXPECT_PRED_FORMAT2(IsSubstring, expected_help_fragment, captured_stdout);
   5705     } else {
   5706       EXPECT_PRED_FORMAT2(IsNotSubstring,
   5707                           expected_help_fragment, captured_stdout);
   5708     }
   5709 #endif  // GTEST_HAS_STREAM_REDIRECTION
   5710 
   5711     ::testing::internal::g_help_flag = saved_help_flag;
   5712   }
   5713 
   5714   // This macro wraps TestParsingFlags s.t. the user doesn't need
   5715   // to specify the array sizes.
   5716 
   5717 #define GTEST_TEST_PARSING_FLAGS_(argv1, argv2, expected, should_print_help) \
   5718   TestParsingFlags(sizeof(argv1)/sizeof(*argv1) - 1, argv1, \
   5719                    sizeof(argv2)/sizeof(*argv2) - 1, argv2, \
   5720                    expected, should_print_help)
   5721 };
   5722 
   5723 // Tests parsing an empty command line.
   5724 TEST_F(InitGoogleTestTest, Empty) {
   5725   const char* argv[] = {
   5726     NULL
   5727   };
   5728 
   5729   const char* argv2[] = {
   5730     NULL
   5731   };
   5732 
   5733   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5734 }
   5735 
   5736 // Tests parsing a command line that has no flag.
   5737 TEST_F(InitGoogleTestTest, NoFlag) {
   5738   const char* argv[] = {
   5739     "foo.exe",
   5740     NULL
   5741   };
   5742 
   5743   const char* argv2[] = {
   5744     "foo.exe",
   5745     NULL
   5746   };
   5747 
   5748   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   5749 }
   5750 
   5751 // Tests parsing a bad --gtest_filter flag.
   5752 TEST_F(InitGoogleTestTest, FilterBad) {
   5753   const char* argv[] = {
   5754     "foo.exe",
   5755     "--gtest_filter",
   5756     NULL
   5757   };
   5758 
   5759   const char* argv2[] = {
   5760     "foo.exe",
   5761     "--gtest_filter",
   5762     NULL
   5763   };
   5764 
   5765   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), true);
   5766 }
   5767 
   5768 // Tests parsing an empty --gtest_filter flag.
   5769 TEST_F(InitGoogleTestTest, FilterEmpty) {
   5770   const char* argv[] = {
   5771     "foo.exe",
   5772     "--gtest_filter=",
   5773     NULL
   5774   };
   5775 
   5776   const char* argv2[] = {
   5777     "foo.exe",
   5778     NULL
   5779   };
   5780 
   5781   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter(""), false);
   5782 }
   5783 
   5784 // Tests parsing a non-empty --gtest_filter flag.
   5785 TEST_F(InitGoogleTestTest, FilterNonEmpty) {
   5786   const char* argv[] = {
   5787     "foo.exe",
   5788     "--gtest_filter=abc",
   5789     NULL
   5790   };
   5791 
   5792   const char* argv2[] = {
   5793     "foo.exe",
   5794     NULL
   5795   };
   5796 
   5797   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   5798 }
   5799 
   5800 // Tests parsing --gtest_break_on_failure.
   5801 TEST_F(InitGoogleTestTest, BreakOnFailureWithoutValue) {
   5802   const char* argv[] = {
   5803     "foo.exe",
   5804     "--gtest_break_on_failure",
   5805     NULL
   5806 };
   5807 
   5808   const char* argv2[] = {
   5809     "foo.exe",
   5810     NULL
   5811   };
   5812 
   5813   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5814 }
   5815 
   5816 // Tests parsing --gtest_break_on_failure=0.
   5817 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_0) {
   5818   const char* argv[] = {
   5819     "foo.exe",
   5820     "--gtest_break_on_failure=0",
   5821     NULL
   5822   };
   5823 
   5824   const char* argv2[] = {
   5825     "foo.exe",
   5826     NULL
   5827   };
   5828 
   5829   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5830 }
   5831 
   5832 // Tests parsing --gtest_break_on_failure=f.
   5833 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_f) {
   5834   const char* argv[] = {
   5835     "foo.exe",
   5836     "--gtest_break_on_failure=f",
   5837     NULL
   5838   };
   5839 
   5840   const char* argv2[] = {
   5841     "foo.exe",
   5842     NULL
   5843   };
   5844 
   5845   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5846 }
   5847 
   5848 // Tests parsing --gtest_break_on_failure=F.
   5849 TEST_F(InitGoogleTestTest, BreakOnFailureFalse_F) {
   5850   const char* argv[] = {
   5851     "foo.exe",
   5852     "--gtest_break_on_failure=F",
   5853     NULL
   5854   };
   5855 
   5856   const char* argv2[] = {
   5857     "foo.exe",
   5858     NULL
   5859   };
   5860 
   5861   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(false), false);
   5862 }
   5863 
   5864 // Tests parsing a --gtest_break_on_failure flag that has a "true"
   5865 // definition.
   5866 TEST_F(InitGoogleTestTest, BreakOnFailureTrue) {
   5867   const char* argv[] = {
   5868     "foo.exe",
   5869     "--gtest_break_on_failure=1",
   5870     NULL
   5871   };
   5872 
   5873   const char* argv2[] = {
   5874     "foo.exe",
   5875     NULL
   5876   };
   5877 
   5878   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::BreakOnFailure(true), false);
   5879 }
   5880 
   5881 // Tests parsing --gtest_catch_exceptions.
   5882 TEST_F(InitGoogleTestTest, CatchExceptions) {
   5883   const char* argv[] = {
   5884     "foo.exe",
   5885     "--gtest_catch_exceptions",
   5886     NULL
   5887   };
   5888 
   5889   const char* argv2[] = {
   5890     "foo.exe",
   5891     NULL
   5892   };
   5893 
   5894   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::CatchExceptions(true), false);
   5895 }
   5896 
   5897 // Tests parsing --gtest_death_test_use_fork.
   5898 TEST_F(InitGoogleTestTest, DeathTestUseFork) {
   5899   const char* argv[] = {
   5900     "foo.exe",
   5901     "--gtest_death_test_use_fork",
   5902     NULL
   5903   };
   5904 
   5905   const char* argv2[] = {
   5906     "foo.exe",
   5907     NULL
   5908   };
   5909 
   5910   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::DeathTestUseFork(true), false);
   5911 }
   5912 
   5913 // Tests having the same flag twice with different values.  The
   5914 // expected behavior is that the one coming last takes precedence.
   5915 TEST_F(InitGoogleTestTest, DuplicatedFlags) {
   5916   const char* argv[] = {
   5917     "foo.exe",
   5918     "--gtest_filter=a",
   5919     "--gtest_filter=b",
   5920     NULL
   5921   };
   5922 
   5923   const char* argv2[] = {
   5924     "foo.exe",
   5925     NULL
   5926   };
   5927 
   5928   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("b"), false);
   5929 }
   5930 
   5931 // Tests having an unrecognized flag on the command line.
   5932 TEST_F(InitGoogleTestTest, UnrecognizedFlag) {
   5933   const char* argv[] = {
   5934     "foo.exe",
   5935     "--gtest_break_on_failure",
   5936     "bar",  // Unrecognized by Google Test.
   5937     "--gtest_filter=b",
   5938     NULL
   5939   };
   5940 
   5941   const char* argv2[] = {
   5942     "foo.exe",
   5943     "bar",
   5944     NULL
   5945   };
   5946 
   5947   Flags flags;
   5948   flags.break_on_failure = true;
   5949   flags.filter = "b";
   5950   GTEST_TEST_PARSING_FLAGS_(argv, argv2, flags, false);
   5951 }
   5952 
   5953 // Tests having a --gtest_list_tests flag
   5954 TEST_F(InitGoogleTestTest, ListTestsFlag) {
   5955     const char* argv[] = {
   5956       "foo.exe",
   5957       "--gtest_list_tests",
   5958       NULL
   5959     };
   5960 
   5961     const char* argv2[] = {
   5962       "foo.exe",
   5963       NULL
   5964     };
   5965 
   5966     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5967 }
   5968 
   5969 // Tests having a --gtest_list_tests flag with a "true" value
   5970 TEST_F(InitGoogleTestTest, ListTestsTrue) {
   5971     const char* argv[] = {
   5972       "foo.exe",
   5973       "--gtest_list_tests=1",
   5974       NULL
   5975     };
   5976 
   5977     const char* argv2[] = {
   5978       "foo.exe",
   5979       NULL
   5980     };
   5981 
   5982     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(true), false);
   5983 }
   5984 
   5985 // Tests having a --gtest_list_tests flag with a "false" value
   5986 TEST_F(InitGoogleTestTest, ListTestsFalse) {
   5987     const char* argv[] = {
   5988       "foo.exe",
   5989       "--gtest_list_tests=0",
   5990       NULL
   5991     };
   5992 
   5993     const char* argv2[] = {
   5994       "foo.exe",
   5995       NULL
   5996     };
   5997 
   5998     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   5999 }
   6000 
   6001 // Tests parsing --gtest_list_tests=f.
   6002 TEST_F(InitGoogleTestTest, ListTestsFalse_f) {
   6003   const char* argv[] = {
   6004     "foo.exe",
   6005     "--gtest_list_tests=f",
   6006     NULL
   6007   };
   6008 
   6009   const char* argv2[] = {
   6010     "foo.exe",
   6011     NULL
   6012   };
   6013 
   6014   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   6015 }
   6016 
   6017 // Tests parsing --gtest_list_tests=F.
   6018 TEST_F(InitGoogleTestTest, ListTestsFalse_F) {
   6019   const char* argv[] = {
   6020     "foo.exe",
   6021     "--gtest_list_tests=F",
   6022     NULL
   6023   };
   6024 
   6025   const char* argv2[] = {
   6026     "foo.exe",
   6027     NULL
   6028   };
   6029 
   6030   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ListTests(false), false);
   6031 }
   6032 
   6033 // Tests parsing --gtest_output (invalid).
   6034 TEST_F(InitGoogleTestTest, OutputEmpty) {
   6035   const char* argv[] = {
   6036     "foo.exe",
   6037     "--gtest_output",
   6038     NULL
   6039   };
   6040 
   6041   const char* argv2[] = {
   6042     "foo.exe",
   6043     "--gtest_output",
   6044     NULL
   6045   };
   6046 
   6047   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), true);
   6048 }
   6049 
   6050 // Tests parsing --gtest_output=xml
   6051 TEST_F(InitGoogleTestTest, OutputXml) {
   6052   const char* argv[] = {
   6053     "foo.exe",
   6054     "--gtest_output=xml",
   6055     NULL
   6056   };
   6057 
   6058   const char* argv2[] = {
   6059     "foo.exe",
   6060     NULL
   6061   };
   6062 
   6063   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml"), false);
   6064 }
   6065 
   6066 // Tests parsing --gtest_output=xml:file
   6067 TEST_F(InitGoogleTestTest, OutputXmlFile) {
   6068   const char* argv[] = {
   6069     "foo.exe",
   6070     "--gtest_output=xml:file",
   6071     NULL
   6072   };
   6073 
   6074   const char* argv2[] = {
   6075     "foo.exe",
   6076     NULL
   6077   };
   6078 
   6079   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Output("xml:file"), false);
   6080 }
   6081 
   6082 // Tests parsing --gtest_output=xml:directory/path/
   6083 TEST_F(InitGoogleTestTest, OutputXmlDirectory) {
   6084   const char* argv[] = {
   6085     "foo.exe",
   6086     "--gtest_output=xml:directory/path/",
   6087     NULL
   6088   };
   6089 
   6090   const char* argv2[] = {
   6091     "foo.exe",
   6092     NULL
   6093   };
   6094 
   6095   GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6096                             Flags::Output("xml:directory/path/"), false);
   6097 }
   6098 
   6099 // Tests having a --gtest_print_time flag
   6100 TEST_F(InitGoogleTestTest, PrintTimeFlag) {
   6101     const char* argv[] = {
   6102       "foo.exe",
   6103       "--gtest_print_time",
   6104       NULL
   6105     };
   6106 
   6107     const char* argv2[] = {
   6108       "foo.exe",
   6109       NULL
   6110     };
   6111 
   6112     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   6113 }
   6114 
   6115 // Tests having a --gtest_print_time flag with a "true" value
   6116 TEST_F(InitGoogleTestTest, PrintTimeTrue) {
   6117     const char* argv[] = {
   6118       "foo.exe",
   6119       "--gtest_print_time=1",
   6120       NULL
   6121     };
   6122 
   6123     const char* argv2[] = {
   6124       "foo.exe",
   6125       NULL
   6126     };
   6127 
   6128     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(true), false);
   6129 }
   6130 
   6131 // Tests having a --gtest_print_time flag with a "false" value
   6132 TEST_F(InitGoogleTestTest, PrintTimeFalse) {
   6133     const char* argv[] = {
   6134       "foo.exe",
   6135       "--gtest_print_time=0",
   6136       NULL
   6137     };
   6138 
   6139     const char* argv2[] = {
   6140       "foo.exe",
   6141       NULL
   6142     };
   6143 
   6144     GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6145 }
   6146 
   6147 // Tests parsing --gtest_print_time=f.
   6148 TEST_F(InitGoogleTestTest, PrintTimeFalse_f) {
   6149   const char* argv[] = {
   6150     "foo.exe",
   6151     "--gtest_print_time=f",
   6152     NULL
   6153   };
   6154 
   6155   const char* argv2[] = {
   6156     "foo.exe",
   6157     NULL
   6158   };
   6159 
   6160   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6161 }
   6162 
   6163 // Tests parsing --gtest_print_time=F.
   6164 TEST_F(InitGoogleTestTest, PrintTimeFalse_F) {
   6165   const char* argv[] = {
   6166     "foo.exe",
   6167     "--gtest_print_time=F",
   6168     NULL
   6169   };
   6170 
   6171   const char* argv2[] = {
   6172     "foo.exe",
   6173     NULL
   6174   };
   6175 
   6176   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::PrintTime(false), false);
   6177 }
   6178 
   6179 // Tests parsing --gtest_random_seed=number
   6180 TEST_F(InitGoogleTestTest, RandomSeed) {
   6181   const char* argv[] = {
   6182     "foo.exe",
   6183     "--gtest_random_seed=1000",
   6184     NULL
   6185   };
   6186 
   6187   const char* argv2[] = {
   6188     "foo.exe",
   6189     NULL
   6190   };
   6191 
   6192   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::RandomSeed(1000), false);
   6193 }
   6194 
   6195 // Tests parsing --gtest_repeat=number
   6196 TEST_F(InitGoogleTestTest, Repeat) {
   6197   const char* argv[] = {
   6198     "foo.exe",
   6199     "--gtest_repeat=1000",
   6200     NULL
   6201   };
   6202 
   6203   const char* argv2[] = {
   6204     "foo.exe",
   6205     NULL
   6206   };
   6207 
   6208   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Repeat(1000), false);
   6209 }
   6210 
   6211 // Tests having a --gtest_also_run_disabled_tests flag
   6212 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFlag) {
   6213     const char* argv[] = {
   6214       "foo.exe",
   6215       "--gtest_also_run_disabled_tests",
   6216       NULL
   6217     };
   6218 
   6219     const char* argv2[] = {
   6220       "foo.exe",
   6221       NULL
   6222     };
   6223 
   6224     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6225                               Flags::AlsoRunDisabledTests(true), false);
   6226 }
   6227 
   6228 // Tests having a --gtest_also_run_disabled_tests flag with a "true" value
   6229 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsTrue) {
   6230     const char* argv[] = {
   6231       "foo.exe",
   6232       "--gtest_also_run_disabled_tests=1",
   6233       NULL
   6234     };
   6235 
   6236     const char* argv2[] = {
   6237       "foo.exe",
   6238       NULL
   6239     };
   6240 
   6241     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6242                               Flags::AlsoRunDisabledTests(true), false);
   6243 }
   6244 
   6245 // Tests having a --gtest_also_run_disabled_tests flag with a "false" value
   6246 TEST_F(InitGoogleTestTest, AlsoRunDisabledTestsFalse) {
   6247     const char* argv[] = {
   6248       "foo.exe",
   6249       "--gtest_also_run_disabled_tests=0",
   6250       NULL
   6251     };
   6252 
   6253     const char* argv2[] = {
   6254       "foo.exe",
   6255       NULL
   6256     };
   6257 
   6258     GTEST_TEST_PARSING_FLAGS_(argv, argv2,
   6259                               Flags::AlsoRunDisabledTests(false), false);
   6260 }
   6261 
   6262 // Tests parsing --gtest_shuffle.
   6263 TEST_F(InitGoogleTestTest, ShuffleWithoutValue) {
   6264   const char* argv[] = {
   6265     "foo.exe",
   6266     "--gtest_shuffle",
   6267     NULL
   6268 };
   6269 
   6270   const char* argv2[] = {
   6271     "foo.exe",
   6272     NULL
   6273   };
   6274 
   6275   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6276 }
   6277 
   6278 // Tests parsing --gtest_shuffle=0.
   6279 TEST_F(InitGoogleTestTest, ShuffleFalse_0) {
   6280   const char* argv[] = {
   6281     "foo.exe",
   6282     "--gtest_shuffle=0",
   6283     NULL
   6284   };
   6285 
   6286   const char* argv2[] = {
   6287     "foo.exe",
   6288     NULL
   6289   };
   6290 
   6291   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(false), false);
   6292 }
   6293 
   6294 // Tests parsing a --gtest_shuffle flag that has a "true"
   6295 // definition.
   6296 TEST_F(InitGoogleTestTest, ShuffleTrue) {
   6297   const char* argv[] = {
   6298     "foo.exe",
   6299     "--gtest_shuffle=1",
   6300     NULL
   6301   };
   6302 
   6303   const char* argv2[] = {
   6304     "foo.exe",
   6305     NULL
   6306   };
   6307 
   6308   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Shuffle(true), false);
   6309 }
   6310 
   6311 // Tests parsing --gtest_stack_trace_depth=number.
   6312 TEST_F(InitGoogleTestTest, StackTraceDepth) {
   6313   const char* argv[] = {
   6314     "foo.exe",
   6315     "--gtest_stack_trace_depth=5",
   6316     NULL
   6317   };
   6318 
   6319   const char* argv2[] = {
   6320     "foo.exe",
   6321     NULL
   6322   };
   6323 
   6324   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::StackTraceDepth(5), false);
   6325 }
   6326 
   6327 TEST_F(InitGoogleTestTest, StreamResultTo) {
   6328   const char* argv[] = {
   6329     "foo.exe",
   6330     "--gtest_stream_result_to=localhost:1234",
   6331     NULL
   6332   };
   6333 
   6334   const char* argv2[] = {
   6335     "foo.exe",
   6336     NULL
   6337   };
   6338 
   6339   GTEST_TEST_PARSING_FLAGS_(
   6340       argv, argv2, Flags::StreamResultTo("localhost:1234"), false);
   6341 }
   6342 
   6343 // Tests parsing --gtest_throw_on_failure.
   6344 TEST_F(InitGoogleTestTest, ThrowOnFailureWithoutValue) {
   6345   const char* argv[] = {
   6346     "foo.exe",
   6347     "--gtest_throw_on_failure",
   6348     NULL
   6349 };
   6350 
   6351   const char* argv2[] = {
   6352     "foo.exe",
   6353     NULL
   6354   };
   6355 
   6356   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6357 }
   6358 
   6359 // Tests parsing --gtest_throw_on_failure=0.
   6360 TEST_F(InitGoogleTestTest, ThrowOnFailureFalse_0) {
   6361   const char* argv[] = {
   6362     "foo.exe",
   6363     "--gtest_throw_on_failure=0",
   6364     NULL
   6365   };
   6366 
   6367   const char* argv2[] = {
   6368     "foo.exe",
   6369     NULL
   6370   };
   6371 
   6372   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(false), false);
   6373 }
   6374 
   6375 // Tests parsing a --gtest_throw_on_failure flag that has a "true"
   6376 // definition.
   6377 TEST_F(InitGoogleTestTest, ThrowOnFailureTrue) {
   6378   const char* argv[] = {
   6379     "foo.exe",
   6380     "--gtest_throw_on_failure=1",
   6381     NULL
   6382   };
   6383 
   6384   const char* argv2[] = {
   6385     "foo.exe",
   6386     NULL
   6387   };
   6388 
   6389   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::ThrowOnFailure(true), false);
   6390 }
   6391 
   6392 #if GTEST_OS_WINDOWS
   6393 // Tests parsing wide strings.
   6394 TEST_F(InitGoogleTestTest, WideStrings) {
   6395   const wchar_t* argv[] = {
   6396     L"foo.exe",
   6397     L"--gtest_filter=Foo*",
   6398     L"--gtest_list_tests=1",
   6399     L"--gtest_break_on_failure",
   6400     L"--non_gtest_flag",
   6401     NULL
   6402   };
   6403 
   6404   const wchar_t* argv2[] = {
   6405     L"foo.exe",
   6406     L"--non_gtest_flag",
   6407     NULL
   6408   };
   6409 
   6410   Flags expected_flags;
   6411   expected_flags.break_on_failure = true;
   6412   expected_flags.filter = "Foo*";
   6413   expected_flags.list_tests = true;
   6414 
   6415   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6416 }
   6417 # endif  // GTEST_OS_WINDOWS
   6418 
   6419 #if GTEST_USE_OWN_FLAGFILE_FLAG_
   6420 class FlagfileTest : public InitGoogleTestTest {
   6421  public:
   6422   virtual void SetUp() {
   6423     InitGoogleTestTest::SetUp();
   6424 
   6425     testdata_path_.Set(internal::FilePath(
   6426         testing::TempDir() + internal::GetCurrentExecutableName().string() +
   6427         "_flagfile_test"));
   6428     testing::internal::posix::RmDir(testdata_path_.c_str());
   6429     EXPECT_TRUE(testdata_path_.CreateFolder());
   6430   }
   6431 
   6432   virtual void TearDown() {
   6433     testing::internal::posix::RmDir(testdata_path_.c_str());
   6434     InitGoogleTestTest::TearDown();
   6435   }
   6436 
   6437   internal::FilePath CreateFlagfile(const char* contents) {
   6438     internal::FilePath file_path(internal::FilePath::GenerateUniqueFileName(
   6439         testdata_path_, internal::FilePath("unique"), "txt"));
   6440     FILE* f = testing::internal::posix::FOpen(file_path.c_str(), "w");
   6441     fprintf(f, "%s", contents);
   6442     fclose(f);
   6443     return file_path;
   6444   }
   6445 
   6446  private:
   6447   internal::FilePath testdata_path_;
   6448 };
   6449 
   6450 // Tests an empty flagfile.
   6451 TEST_F(FlagfileTest, Empty) {
   6452   internal::FilePath flagfile_path(CreateFlagfile(""));
   6453   std::string flagfile_flag =
   6454       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
   6455 
   6456   const char* argv[] = {
   6457     "foo.exe",
   6458     flagfile_flag.c_str(),
   6459     NULL
   6460   };
   6461 
   6462   const char* argv2[] = {
   6463     "foo.exe",
   6464     NULL
   6465   };
   6466 
   6467   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags(), false);
   6468 }
   6469 
   6470 // Tests passing a non-empty --gtest_filter flag via --gtest_flagfile.
   6471 TEST_F(FlagfileTest, FilterNonEmpty) {
   6472   internal::FilePath flagfile_path(CreateFlagfile(
   6473       "--"  GTEST_FLAG_PREFIX_  "filter=abc"));
   6474   std::string flagfile_flag =
   6475       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
   6476 
   6477   const char* argv[] = {
   6478     "foo.exe",
   6479     flagfile_flag.c_str(),
   6480     NULL
   6481   };
   6482 
   6483   const char* argv2[] = {
   6484     "foo.exe",
   6485     NULL
   6486   };
   6487 
   6488   GTEST_TEST_PARSING_FLAGS_(argv, argv2, Flags::Filter("abc"), false);
   6489 }
   6490 
   6491 // Tests passing several flags via --gtest_flagfile.
   6492 TEST_F(FlagfileTest, SeveralFlags) {
   6493   internal::FilePath flagfile_path(CreateFlagfile(
   6494       "--"  GTEST_FLAG_PREFIX_  "filter=abc\n"
   6495       "--"  GTEST_FLAG_PREFIX_  "break_on_failure\n"
   6496       "--"  GTEST_FLAG_PREFIX_  "list_tests"));
   6497   std::string flagfile_flag =
   6498       std::string("--" GTEST_FLAG_PREFIX_ "flagfile=") + flagfile_path.c_str();
   6499 
   6500   const char* argv[] = {
   6501     "foo.exe",
   6502     flagfile_flag.c_str(),
   6503     NULL
   6504   };
   6505 
   6506   const char* argv2[] = {
   6507     "foo.exe",
   6508     NULL
   6509   };
   6510 
   6511   Flags expected_flags;
   6512   expected_flags.break_on_failure = true;
   6513   expected_flags.filter = "abc";
   6514   expected_flags.list_tests = true;
   6515 
   6516   GTEST_TEST_PARSING_FLAGS_(argv, argv2, expected_flags, false);
   6517 }
   6518 #endif  // GTEST_USE_OWN_FLAGFILE_FLAG_
   6519 
   6520 // Tests current_test_info() in UnitTest.
   6521 class CurrentTestInfoTest : public Test {
   6522  protected:
   6523   // Tests that current_test_info() returns NULL before the first test in
   6524   // the test case is run.
   6525   static void SetUpTestCase() {
   6526     // There should be no tests running at this point.
   6527     const TestInfo* test_info =
   6528       UnitTest::GetInstance()->current_test_info();
   6529     EXPECT_TRUE(test_info == NULL)
   6530         << "There should be no tests running at this point.";
   6531   }
   6532 
   6533   // Tests that current_test_info() returns NULL after the last test in
   6534   // the test case has run.
   6535   static void TearDownTestCase() {
   6536     const TestInfo* test_info =
   6537       UnitTest::GetInstance()->current_test_info();
   6538     EXPECT_TRUE(test_info == NULL)
   6539         << "There should be no tests running at this point.";
   6540   }
   6541 };
   6542 
   6543 // Tests that current_test_info() returns TestInfo for currently running
   6544 // test by checking the expected test name against the actual one.
   6545 TEST_F(CurrentTestInfoTest, WorksForFirstTestInATestCase) {
   6546   const TestInfo* test_info =
   6547     UnitTest::GetInstance()->current_test_info();
   6548   ASSERT_TRUE(NULL != test_info)
   6549       << "There is a test running so we should have a valid TestInfo.";
   6550   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6551       << "Expected the name of the currently running test case.";
   6552   EXPECT_STREQ("WorksForFirstTestInATestCase", test_info->name())
   6553       << "Expected the name of the currently running test.";
   6554 }
   6555 
   6556 // Tests that current_test_info() returns TestInfo for currently running
   6557 // test by checking the expected test name against the actual one.  We
   6558 // use this test to see that the TestInfo object actually changed from
   6559 // the previous invocation.
   6560 TEST_F(CurrentTestInfoTest, WorksForSecondTestInATestCase) {
   6561   const TestInfo* test_info =
   6562     UnitTest::GetInstance()->current_test_info();
   6563   ASSERT_TRUE(NULL != test_info)
   6564       << "There is a test running so we should have a valid TestInfo.";
   6565   EXPECT_STREQ("CurrentTestInfoTest", test_info->test_case_name())
   6566       << "Expected the name of the currently running test case.";
   6567   EXPECT_STREQ("WorksForSecondTestInATestCase", test_info->name())
   6568       << "Expected the name of the currently running test.";
   6569 }
   6570 
   6571 }  // namespace testing
   6572 
   6573 // These two lines test that we can define tests in a namespace that
   6574 // has the name "testing" and is nested in another namespace.
   6575 namespace my_namespace {
   6576 namespace testing {
   6577 
   6578 // Makes sure that TEST knows to use ::testing::Test instead of
   6579 // ::my_namespace::testing::Test.
   6580 class Test {};
   6581 
   6582 // Makes sure that an assertion knows to use ::testing::Message instead of
   6583 // ::my_namespace::testing::Message.
   6584 class Message {};
   6585 
   6586 // Makes sure that an assertion knows to use
   6587 // ::testing::AssertionResult instead of
   6588 // ::my_namespace::testing::AssertionResult.
   6589 class AssertionResult {};
   6590 
   6591 // Tests that an assertion that should succeed works as expected.
   6592 TEST(NestedTestingNamespaceTest, Success) {
   6593   EXPECT_EQ(1, 1) << "This shouldn't fail.";
   6594 }
   6595 
   6596 // Tests that an assertion that should fail works as expected.
   6597 TEST(NestedTestingNamespaceTest, Failure) {
   6598   EXPECT_FATAL_FAILURE(FAIL() << "This failure is expected.",
   6599                        "This failure is expected.");
   6600 }
   6601 
   6602 }  // namespace testing
   6603 }  // namespace my_namespace
   6604 
   6605 // Tests that one can call superclass SetUp and TearDown methods--
   6606 // that is, that they are not private.
   6607 // No tests are based on this fixture; the test "passes" if it compiles
   6608 // successfully.
   6609 class ProtectedFixtureMethodsTest : public Test {
   6610  protected:
   6611   virtual void SetUp() {
   6612     Test::SetUp();
   6613   }
   6614   virtual void TearDown() {
   6615     Test::TearDown();
   6616   }
   6617 };
   6618 
   6619 // StreamingAssertionsTest tests the streaming versions of a representative
   6620 // sample of assertions.
   6621 TEST(StreamingAssertionsTest, Unconditional) {
   6622   SUCCEED() << "expected success";
   6623   EXPECT_NONFATAL_FAILURE(ADD_FAILURE() << "expected failure",
   6624                           "expected failure");
   6625   EXPECT_FATAL_FAILURE(FAIL() << "expected failure",
   6626                        "expected failure");
   6627 }
   6628 
   6629 #ifdef __BORLANDC__
   6630 // Silences warnings: "Condition is always true", "Unreachable code"
   6631 # pragma option push -w-ccc -w-rch
   6632 #endif
   6633 
   6634 TEST(StreamingAssertionsTest, Truth) {
   6635   EXPECT_TRUE(true) << "unexpected failure";
   6636   ASSERT_TRUE(true) << "unexpected failure";
   6637   EXPECT_NONFATAL_FAILURE(EXPECT_TRUE(false) << "expected failure",
   6638                           "expected failure");
   6639   EXPECT_FATAL_FAILURE(ASSERT_TRUE(false) << "expected failure",
   6640                        "expected failure");
   6641 }
   6642 
   6643 TEST(StreamingAssertionsTest, Truth2) {
   6644   EXPECT_FALSE(false) << "unexpected failure";
   6645   ASSERT_FALSE(false) << "unexpected failure";
   6646   EXPECT_NONFATAL_FAILURE(EXPECT_FALSE(true) << "expected failure",
   6647                           "expected failure");
   6648   EXPECT_FATAL_FAILURE(ASSERT_FALSE(true) << "expected failure",
   6649                        "expected failure");
   6650 }
   6651 
   6652 #ifdef __BORLANDC__
   6653 // Restores warnings after previous "#pragma option push" supressed them
   6654 # pragma option pop
   6655 #endif
   6656 
   6657 TEST(StreamingAssertionsTest, IntegerEquals) {
   6658   EXPECT_EQ(1, 1) << "unexpected failure";
   6659   ASSERT_EQ(1, 1) << "unexpected failure";
   6660   EXPECT_NONFATAL_FAILURE(EXPECT_EQ(1, 2) << "expected failure",
   6661                           "expected failure");
   6662   EXPECT_FATAL_FAILURE(ASSERT_EQ(1, 2) << "expected failure",
   6663                        "expected failure");
   6664 }
   6665 
   6666 TEST(StreamingAssertionsTest, IntegerLessThan) {
   6667   EXPECT_LT(1, 2) << "unexpected failure";
   6668   ASSERT_LT(1, 2) << "unexpected failure";
   6669   EXPECT_NONFATAL_FAILURE(EXPECT_LT(2, 1) << "expected failure",
   6670                           "expected failure");
   6671   EXPECT_FATAL_FAILURE(ASSERT_LT(2, 1) << "expected failure",
   6672                        "expected failure");
   6673 }
   6674 
   6675 TEST(StreamingAssertionsTest, StringsEqual) {
   6676   EXPECT_STREQ("foo", "foo") << "unexpected failure";
   6677   ASSERT_STREQ("foo", "foo") << "unexpected failure";
   6678   EXPECT_NONFATAL_FAILURE(EXPECT_STREQ("foo", "bar") << "expected failure",
   6679                           "expected failure");
   6680   EXPECT_FATAL_FAILURE(ASSERT_STREQ("foo", "bar") << "expected failure",
   6681                        "expected failure");
   6682 }
   6683 
   6684 TEST(StreamingAssertionsTest, StringsNotEqual) {
   6685   EXPECT_STRNE("foo", "bar") << "unexpected failure";
   6686   ASSERT_STRNE("foo", "bar") << "unexpected failure";
   6687   EXPECT_NONFATAL_FAILURE(EXPECT_STRNE("foo", "foo") << "expected failure",
   6688                           "expected failure");
   6689   EXPECT_FATAL_FAILURE(ASSERT_STRNE("foo", "foo") << "expected failure",
   6690                        "expected failure");
   6691 }
   6692 
   6693 TEST(StreamingAssertionsTest, StringsEqualIgnoringCase) {
   6694   EXPECT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6695   ASSERT_STRCASEEQ("foo", "FOO") << "unexpected failure";
   6696   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASEEQ("foo", "bar") << "expected failure",
   6697                           "expected failure");
   6698   EXPECT_FATAL_FAILURE(ASSERT_STRCASEEQ("foo", "bar") << "expected failure",
   6699                        "expected failure");
   6700 }
   6701 
   6702 TEST(StreamingAssertionsTest, StringNotEqualIgnoringCase) {
   6703   EXPECT_STRCASENE("foo", "bar") << "unexpected failure";
   6704   ASSERT_STRCASENE("foo", "bar") << "unexpected failure";
   6705   EXPECT_NONFATAL_FAILURE(EXPECT_STRCASENE("foo", "FOO") << "expected failure",
   6706                           "expected failure");
   6707   EXPECT_FATAL_FAILURE(ASSERT_STRCASENE("bar", "BAR") << "expected failure",
   6708                        "expected failure");
   6709 }
   6710 
   6711 TEST(StreamingAssertionsTest, FloatingPointEquals) {
   6712   EXPECT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6713   ASSERT_FLOAT_EQ(1.0, 1.0) << "unexpected failure";
   6714   EXPECT_NONFATAL_FAILURE(EXPECT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6715                           "expected failure");
   6716   EXPECT_FATAL_FAILURE(ASSERT_FLOAT_EQ(0.0, 1.0) << "expected failure",
   6717                        "expected failure");
   6718 }
   6719 
   6720 #if GTEST_HAS_EXCEPTIONS
   6721 
   6722 TEST(StreamingAssertionsTest, Throw) {
   6723   EXPECT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6724   ASSERT_THROW(ThrowAnInteger(), int) << "unexpected failure";
   6725   EXPECT_NONFATAL_FAILURE(EXPECT_THROW(ThrowAnInteger(), bool) <<
   6726                           "expected failure", "expected failure");
   6727   EXPECT_FATAL_FAILURE(ASSERT_THROW(ThrowAnInteger(), bool) <<
   6728                        "expected failure", "expected failure");
   6729 }
   6730 
   6731 TEST(StreamingAssertionsTest, NoThrow) {
   6732   EXPECT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6733   ASSERT_NO_THROW(ThrowNothing()) << "unexpected failure";
   6734   EXPECT_NONFATAL_FAILURE(EXPECT_NO_THROW(ThrowAnInteger()) <<
   6735                           "expected failure", "expected failure");
   6736   EXPECT_FATAL_FAILURE(ASSERT_NO_THROW(ThrowAnInteger()) <<
   6737                        "expected failure", "expected failure");
   6738 }
   6739 
   6740 TEST(StreamingAssertionsTest, AnyThrow) {
   6741   EXPECT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6742   ASSERT_ANY_THROW(ThrowAnInteger()) << "unexpected failure";
   6743   EXPECT_NONFATAL_FAILURE(EXPECT_ANY_THROW(ThrowNothing()) <<
   6744                           "expected failure", "expected failure");
   6745   EXPECT_FATAL_FAILURE(ASSERT_ANY_THROW(ThrowNothing()) <<
   6746                        "expected failure", "expected failure");
   6747 }
   6748 
   6749 #endif  // GTEST_HAS_EXCEPTIONS
   6750 
   6751 // Tests that Google Test correctly decides whether to use colors in the output.
   6752 
   6753 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsYes) {
   6754   GTEST_FLAG(color) = "yes";
   6755 
   6756   SetEnv("TERM", "xterm");  // TERM supports colors.
   6757   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6758   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6759 
   6760   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6761   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6762   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6763 }
   6764 
   6765 TEST(ColoredOutputTest, UsesColorsWhenGTestColorFlagIsAliasOfYes) {
   6766   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6767 
   6768   GTEST_FLAG(color) = "True";
   6769   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6770 
   6771   GTEST_FLAG(color) = "t";
   6772   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6773 
   6774   GTEST_FLAG(color) = "1";
   6775   EXPECT_TRUE(ShouldUseColor(false));  // Stdout is not a TTY.
   6776 }
   6777 
   6778 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsNo) {
   6779   GTEST_FLAG(color) = "no";
   6780 
   6781   SetEnv("TERM", "xterm");  // TERM supports colors.
   6782   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6783   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6784 
   6785   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6786   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6787   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6788 }
   6789 
   6790 TEST(ColoredOutputTest, UsesNoColorWhenGTestColorFlagIsInvalid) {
   6791   SetEnv("TERM", "xterm");  // TERM supports colors.
   6792 
   6793   GTEST_FLAG(color) = "F";
   6794   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6795 
   6796   GTEST_FLAG(color) = "0";
   6797   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6798 
   6799   GTEST_FLAG(color) = "unknown";
   6800   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6801 }
   6802 
   6803 TEST(ColoredOutputTest, UsesColorsWhenStdoutIsTty) {
   6804   GTEST_FLAG(color) = "auto";
   6805 
   6806   SetEnv("TERM", "xterm");  // TERM supports colors.
   6807   EXPECT_FALSE(ShouldUseColor(false));  // Stdout is not a TTY.
   6808   EXPECT_TRUE(ShouldUseColor(true));    // Stdout is a TTY.
   6809 }
   6810 
   6811 TEST(ColoredOutputTest, UsesColorsWhenTermSupportsColors) {
   6812   GTEST_FLAG(color) = "auto";
   6813 
   6814 #if GTEST_OS_WINDOWS
   6815   // On Windows, we ignore the TERM variable as it's usually not set.
   6816 
   6817   SetEnv("TERM", "dumb");
   6818   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6819 
   6820   SetEnv("TERM", "");
   6821   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6822 
   6823   SetEnv("TERM", "xterm");
   6824   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6825 #else
   6826   // On non-Windows platforms, we rely on TERM to determine if the
   6827   // terminal supports colors.
   6828 
   6829   SetEnv("TERM", "dumb");  // TERM doesn't support colors.
   6830   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6831 
   6832   SetEnv("TERM", "emacs");  // TERM doesn't support colors.
   6833   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6834 
   6835   SetEnv("TERM", "vt100");  // TERM doesn't support colors.
   6836   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6837 
   6838   SetEnv("TERM", "xterm-mono");  // TERM doesn't support colors.
   6839   EXPECT_FALSE(ShouldUseColor(true));  // Stdout is a TTY.
   6840 
   6841   SetEnv("TERM", "xterm");  // TERM supports colors.
   6842   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6843 
   6844   SetEnv("TERM", "xterm-color");  // TERM supports colors.
   6845   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6846 
   6847   SetEnv("TERM", "xterm-256color");  // TERM supports colors.
   6848   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6849 
   6850   SetEnv("TERM", "screen");  // TERM supports colors.
   6851   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6852 
   6853   SetEnv("TERM", "screen-256color");  // TERM supports colors.
   6854   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6855 
   6856   SetEnv("TERM", "tmux");  // TERM supports colors.
   6857   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6858 
   6859   SetEnv("TERM", "tmux-256color");  // TERM supports colors.
   6860   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6861 
   6862   SetEnv("TERM", "rxvt-unicode");  // TERM supports colors.
   6863   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6864 
   6865   SetEnv("TERM", "rxvt-unicode-256color");  // TERM supports colors.
   6866   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6867 
   6868   SetEnv("TERM", "linux");  // TERM supports colors.
   6869   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6870 
   6871   SetEnv("TERM", "cygwin");  // TERM supports colors.
   6872   EXPECT_TRUE(ShouldUseColor(true));  // Stdout is a TTY.
   6873 #endif  // GTEST_OS_WINDOWS
   6874 }
   6875 
   6876 // Verifies that StaticAssertTypeEq works in a namespace scope.
   6877 
   6878 static bool dummy1 GTEST_ATTRIBUTE_UNUSED_ = StaticAssertTypeEq<bool, bool>();
   6879 static bool dummy2 GTEST_ATTRIBUTE_UNUSED_ =
   6880     StaticAssertTypeEq<const int, const int>();
   6881 
   6882 // Verifies that StaticAssertTypeEq works in a class.
   6883 
   6884 template <typename T>
   6885 class StaticAssertTypeEqTestHelper {
   6886  public:
   6887   StaticAssertTypeEqTestHelper() { StaticAssertTypeEq<bool, T>(); }
   6888 };
   6889 
   6890 TEST(StaticAssertTypeEqTest, WorksInClass) {
   6891   StaticAssertTypeEqTestHelper<bool>();
   6892 }
   6893 
   6894 // Verifies that StaticAssertTypeEq works inside a function.
   6895 
   6896 typedef int IntAlias;
   6897 
   6898 TEST(StaticAssertTypeEqTest, CompilesForEqualTypes) {
   6899   StaticAssertTypeEq<int, IntAlias>();
   6900   StaticAssertTypeEq<int*, IntAlias*>();
   6901 }
   6902 
   6903 TEST(GetCurrentOsStackTraceExceptTopTest, ReturnsTheStackTrace) {
   6904   testing::UnitTest* const unit_test = testing::UnitTest::GetInstance();
   6905 
   6906   // We don't have a stack walker in Google Test yet.
   6907   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 0).c_str());
   6908   EXPECT_STREQ("", GetCurrentOsStackTraceExceptTop(unit_test, 1).c_str());
   6909 }
   6910 
   6911 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6912   EXPECT_FALSE(HasNonfatalFailure());
   6913 }
   6914 
   6915 static void FailFatally() { FAIL(); }
   6916 
   6917 TEST(HasNonfatalFailureTest, ReturnsFalseWhenThereIsOnlyFatalFailure) {
   6918   FailFatally();
   6919   const bool has_nonfatal_failure = HasNonfatalFailure();
   6920   ClearCurrentTestPartResults();
   6921   EXPECT_FALSE(has_nonfatal_failure);
   6922 }
   6923 
   6924 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6925   ADD_FAILURE();
   6926   const bool has_nonfatal_failure = HasNonfatalFailure();
   6927   ClearCurrentTestPartResults();
   6928   EXPECT_TRUE(has_nonfatal_failure);
   6929 }
   6930 
   6931 TEST(HasNonfatalFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6932   FailFatally();
   6933   ADD_FAILURE();
   6934   const bool has_nonfatal_failure = HasNonfatalFailure();
   6935   ClearCurrentTestPartResults();
   6936   EXPECT_TRUE(has_nonfatal_failure);
   6937 }
   6938 
   6939 // A wrapper for calling HasNonfatalFailure outside of a test body.
   6940 static bool HasNonfatalFailureHelper() {
   6941   return testing::Test::HasNonfatalFailure();
   6942 }
   6943 
   6944 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody) {
   6945   EXPECT_FALSE(HasNonfatalFailureHelper());
   6946 }
   6947 
   6948 TEST(HasNonfatalFailureTest, WorksOutsideOfTestBody2) {
   6949   ADD_FAILURE();
   6950   const bool has_nonfatal_failure = HasNonfatalFailureHelper();
   6951   ClearCurrentTestPartResults();
   6952   EXPECT_TRUE(has_nonfatal_failure);
   6953 }
   6954 
   6955 TEST(HasFailureTest, ReturnsFalseWhenThereIsNoFailure) {
   6956   EXPECT_FALSE(HasFailure());
   6957 }
   6958 
   6959 TEST(HasFailureTest, ReturnsTrueWhenThereIsFatalFailure) {
   6960   FailFatally();
   6961   const bool has_failure = HasFailure();
   6962   ClearCurrentTestPartResults();
   6963   EXPECT_TRUE(has_failure);
   6964 }
   6965 
   6966 TEST(HasFailureTest, ReturnsTrueWhenThereIsNonfatalFailure) {
   6967   ADD_FAILURE();
   6968   const bool has_failure = HasFailure();
   6969   ClearCurrentTestPartResults();
   6970   EXPECT_TRUE(has_failure);
   6971 }
   6972 
   6973 TEST(HasFailureTest, ReturnsTrueWhenThereAreFatalAndNonfatalFailures) {
   6974   FailFatally();
   6975   ADD_FAILURE();
   6976   const bool has_failure = HasFailure();
   6977   ClearCurrentTestPartResults();
   6978   EXPECT_TRUE(has_failure);
   6979 }
   6980 
   6981 // A wrapper for calling HasFailure outside of a test body.
   6982 static bool HasFailureHelper() { return testing::Test::HasFailure(); }
   6983 
   6984 TEST(HasFailureTest, WorksOutsideOfTestBody) {
   6985   EXPECT_FALSE(HasFailureHelper());
   6986 }
   6987 
   6988 TEST(HasFailureTest, WorksOutsideOfTestBody2) {
   6989   ADD_FAILURE();
   6990   const bool has_failure = HasFailureHelper();
   6991   ClearCurrentTestPartResults();
   6992   EXPECT_TRUE(has_failure);
   6993 }
   6994 
   6995 class TestListener : public EmptyTestEventListener {
   6996  public:
   6997   TestListener() : on_start_counter_(NULL), is_destroyed_(NULL) {}
   6998   TestListener(int* on_start_counter, bool* is_destroyed)
   6999       : on_start_counter_(on_start_counter),
   7000         is_destroyed_(is_destroyed) {}
   7001 
   7002   virtual ~TestListener() {
   7003     if (is_destroyed_)
   7004       *is_destroyed_ = true;
   7005   }
   7006 
   7007  protected:
   7008   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   7009     if (on_start_counter_ != NULL)
   7010       (*on_start_counter_)++;
   7011   }
   7012 
   7013  private:
   7014   int* on_start_counter_;
   7015   bool* is_destroyed_;
   7016 };
   7017 
   7018 // Tests the constructor.
   7019 TEST(TestEventListenersTest, ConstructionWorks) {
   7020   TestEventListeners listeners;
   7021 
   7022   EXPECT_TRUE(TestEventListenersAccessor::GetRepeater(&listeners) != NULL);
   7023   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   7024   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7025 }
   7026 
   7027 // Tests that the TestEventListeners destructor deletes all the listeners it
   7028 // owns.
   7029 TEST(TestEventListenersTest, DestructionWorks) {
   7030   bool default_result_printer_is_destroyed = false;
   7031   bool default_xml_printer_is_destroyed = false;
   7032   bool extra_listener_is_destroyed = false;
   7033   TestListener* default_result_printer = new TestListener(
   7034       NULL, &default_result_printer_is_destroyed);
   7035   TestListener* default_xml_printer = new TestListener(
   7036       NULL, &default_xml_printer_is_destroyed);
   7037   TestListener* extra_listener = new TestListener(
   7038       NULL, &extra_listener_is_destroyed);
   7039 
   7040   {
   7041     TestEventListeners listeners;
   7042     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners,
   7043                                                         default_result_printer);
   7044     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners,
   7045                                                        default_xml_printer);
   7046     listeners.Append(extra_listener);
   7047   }
   7048   EXPECT_TRUE(default_result_printer_is_destroyed);
   7049   EXPECT_TRUE(default_xml_printer_is_destroyed);
   7050   EXPECT_TRUE(extra_listener_is_destroyed);
   7051 }
   7052 
   7053 // Tests that a listener Append'ed to a TestEventListeners list starts
   7054 // receiving events.
   7055 TEST(TestEventListenersTest, Append) {
   7056   int on_start_counter = 0;
   7057   bool is_destroyed = false;
   7058   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7059   {
   7060     TestEventListeners listeners;
   7061     listeners.Append(listener);
   7062     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7063         *UnitTest::GetInstance());
   7064     EXPECT_EQ(1, on_start_counter);
   7065   }
   7066   EXPECT_TRUE(is_destroyed);
   7067 }
   7068 
   7069 // Tests that listeners receive events in the order they were appended to
   7070 // the list, except for *End requests, which must be received in the reverse
   7071 // order.
   7072 class SequenceTestingListener : public EmptyTestEventListener {
   7073  public:
   7074   SequenceTestingListener(std::vector<std::string>* vector, const char* id)
   7075       : vector_(vector), id_(id) {}
   7076 
   7077  protected:
   7078   virtual void OnTestProgramStart(const UnitTest& /*unit_test*/) {
   7079     vector_->push_back(GetEventDescription("OnTestProgramStart"));
   7080   }
   7081 
   7082   virtual void OnTestProgramEnd(const UnitTest& /*unit_test*/) {
   7083     vector_->push_back(GetEventDescription("OnTestProgramEnd"));
   7084   }
   7085 
   7086   virtual void OnTestIterationStart(const UnitTest& /*unit_test*/,
   7087                                     int /*iteration*/) {
   7088     vector_->push_back(GetEventDescription("OnTestIterationStart"));
   7089   }
   7090 
   7091   virtual void OnTestIterationEnd(const UnitTest& /*unit_test*/,
   7092                                   int /*iteration*/) {
   7093     vector_->push_back(GetEventDescription("OnTestIterationEnd"));
   7094   }
   7095 
   7096  private:
   7097   std::string GetEventDescription(const char* method) {
   7098     Message message;
   7099     message << id_ << "." << method;
   7100     return message.GetString();
   7101   }
   7102 
   7103   std::vector<std::string>* vector_;
   7104   const char* const id_;
   7105 
   7106   GTEST_DISALLOW_COPY_AND_ASSIGN_(SequenceTestingListener);
   7107 };
   7108 
   7109 TEST(EventListenerTest, AppendKeepsOrder) {
   7110   std::vector<std::string> vec;
   7111   TestEventListeners listeners;
   7112   listeners.Append(new SequenceTestingListener(&vec, "1st"));
   7113   listeners.Append(new SequenceTestingListener(&vec, "2nd"));
   7114   listeners.Append(new SequenceTestingListener(&vec, "3rd"));
   7115 
   7116   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7117       *UnitTest::GetInstance());
   7118   ASSERT_EQ(3U, vec.size());
   7119   EXPECT_STREQ("1st.OnTestProgramStart", vec[0].c_str());
   7120   EXPECT_STREQ("2nd.OnTestProgramStart", vec[1].c_str());
   7121   EXPECT_STREQ("3rd.OnTestProgramStart", vec[2].c_str());
   7122 
   7123   vec.clear();
   7124   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramEnd(
   7125       *UnitTest::GetInstance());
   7126   ASSERT_EQ(3U, vec.size());
   7127   EXPECT_STREQ("3rd.OnTestProgramEnd", vec[0].c_str());
   7128   EXPECT_STREQ("2nd.OnTestProgramEnd", vec[1].c_str());
   7129   EXPECT_STREQ("1st.OnTestProgramEnd", vec[2].c_str());
   7130 
   7131   vec.clear();
   7132   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationStart(
   7133       *UnitTest::GetInstance(), 0);
   7134   ASSERT_EQ(3U, vec.size());
   7135   EXPECT_STREQ("1st.OnTestIterationStart", vec[0].c_str());
   7136   EXPECT_STREQ("2nd.OnTestIterationStart", vec[1].c_str());
   7137   EXPECT_STREQ("3rd.OnTestIterationStart", vec[2].c_str());
   7138 
   7139   vec.clear();
   7140   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestIterationEnd(
   7141       *UnitTest::GetInstance(), 0);
   7142   ASSERT_EQ(3U, vec.size());
   7143   EXPECT_STREQ("3rd.OnTestIterationEnd", vec[0].c_str());
   7144   EXPECT_STREQ("2nd.OnTestIterationEnd", vec[1].c_str());
   7145   EXPECT_STREQ("1st.OnTestIterationEnd", vec[2].c_str());
   7146 }
   7147 
   7148 // Tests that a listener removed from a TestEventListeners list stops receiving
   7149 // events and is not deleted when the list is destroyed.
   7150 TEST(TestEventListenersTest, Release) {
   7151   int on_start_counter = 0;
   7152   bool is_destroyed = false;
   7153   // Although Append passes the ownership of this object to the list,
   7154   // the following calls release it, and we need to delete it before the
   7155   // test ends.
   7156   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7157   {
   7158     TestEventListeners listeners;
   7159     listeners.Append(listener);
   7160     EXPECT_EQ(listener, listeners.Release(listener));
   7161     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7162         *UnitTest::GetInstance());
   7163     EXPECT_TRUE(listeners.Release(listener) == NULL);
   7164   }
   7165   EXPECT_EQ(0, on_start_counter);
   7166   EXPECT_FALSE(is_destroyed);
   7167   delete listener;
   7168 }
   7169 
   7170 // Tests that no events are forwarded when event forwarding is disabled.
   7171 TEST(EventListenerTest, SuppressEventForwarding) {
   7172   int on_start_counter = 0;
   7173   TestListener* listener = new TestListener(&on_start_counter, NULL);
   7174 
   7175   TestEventListeners listeners;
   7176   listeners.Append(listener);
   7177   ASSERT_TRUE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   7178   TestEventListenersAccessor::SuppressEventForwarding(&listeners);
   7179   ASSERT_FALSE(TestEventListenersAccessor::EventForwardingEnabled(listeners));
   7180   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7181       *UnitTest::GetInstance());
   7182   EXPECT_EQ(0, on_start_counter);
   7183 }
   7184 
   7185 // Tests that events generated by Google Test are not forwarded in
   7186 // death test subprocesses.
   7187 TEST(EventListenerDeathTest, EventsNotForwardedInDeathTestSubprecesses) {
   7188   EXPECT_DEATH_IF_SUPPORTED({
   7189       GTEST_CHECK_(TestEventListenersAccessor::EventForwardingEnabled(
   7190           *GetUnitTestImpl()->listeners())) << "expected failure";},
   7191       "expected failure");
   7192 }
   7193 
   7194 // Tests that a listener installed via SetDefaultResultPrinter() starts
   7195 // receiving events and is returned via default_result_printer() and that
   7196 // the previous default_result_printer is removed from the list and deleted.
   7197 TEST(EventListenerTest, default_result_printer) {
   7198   int on_start_counter = 0;
   7199   bool is_destroyed = false;
   7200   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7201 
   7202   TestEventListeners listeners;
   7203   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   7204 
   7205   EXPECT_EQ(listener, listeners.default_result_printer());
   7206 
   7207   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7208       *UnitTest::GetInstance());
   7209 
   7210   EXPECT_EQ(1, on_start_counter);
   7211 
   7212   // Replacing default_result_printer with something else should remove it
   7213   // from the list and destroy it.
   7214   TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, NULL);
   7215 
   7216   EXPECT_TRUE(listeners.default_result_printer() == NULL);
   7217   EXPECT_TRUE(is_destroyed);
   7218 
   7219   // After broadcasting an event the counter is still the same, indicating
   7220   // the listener is not in the list anymore.
   7221   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7222       *UnitTest::GetInstance());
   7223   EXPECT_EQ(1, on_start_counter);
   7224 }
   7225 
   7226 // Tests that the default_result_printer listener stops receiving events
   7227 // when removed via Release and that is not owned by the list anymore.
   7228 TEST(EventListenerTest, RemovingDefaultResultPrinterWorks) {
   7229   int on_start_counter = 0;
   7230   bool is_destroyed = false;
   7231   // Although Append passes the ownership of this object to the list,
   7232   // the following calls release it, and we need to delete it before the
   7233   // test ends.
   7234   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7235   {
   7236     TestEventListeners listeners;
   7237     TestEventListenersAccessor::SetDefaultResultPrinter(&listeners, listener);
   7238 
   7239     EXPECT_EQ(listener, listeners.Release(listener));
   7240     EXPECT_TRUE(listeners.default_result_printer() == NULL);
   7241     EXPECT_FALSE(is_destroyed);
   7242 
   7243     // Broadcasting events now should not affect default_result_printer.
   7244     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7245         *UnitTest::GetInstance());
   7246     EXPECT_EQ(0, on_start_counter);
   7247   }
   7248   // Destroying the list should not affect the listener now, too.
   7249   EXPECT_FALSE(is_destroyed);
   7250   delete listener;
   7251 }
   7252 
   7253 // Tests that a listener installed via SetDefaultXmlGenerator() starts
   7254 // receiving events and is returned via default_xml_generator() and that
   7255 // the previous default_xml_generator is removed from the list and deleted.
   7256 TEST(EventListenerTest, default_xml_generator) {
   7257   int on_start_counter = 0;
   7258   bool is_destroyed = false;
   7259   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7260 
   7261   TestEventListeners listeners;
   7262   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   7263 
   7264   EXPECT_EQ(listener, listeners.default_xml_generator());
   7265 
   7266   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7267       *UnitTest::GetInstance());
   7268 
   7269   EXPECT_EQ(1, on_start_counter);
   7270 
   7271   // Replacing default_xml_generator with something else should remove it
   7272   // from the list and destroy it.
   7273   TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, NULL);
   7274 
   7275   EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7276   EXPECT_TRUE(is_destroyed);
   7277 
   7278   // After broadcasting an event the counter is still the same, indicating
   7279   // the listener is not in the list anymore.
   7280   TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7281       *UnitTest::GetInstance());
   7282   EXPECT_EQ(1, on_start_counter);
   7283 }
   7284 
   7285 // Tests that the default_xml_generator listener stops receiving events
   7286 // when removed via Release and that is not owned by the list anymore.
   7287 TEST(EventListenerTest, RemovingDefaultXmlGeneratorWorks) {
   7288   int on_start_counter = 0;
   7289   bool is_destroyed = false;
   7290   // Although Append passes the ownership of this object to the list,
   7291   // the following calls release it, and we need to delete it before the
   7292   // test ends.
   7293   TestListener* listener = new TestListener(&on_start_counter, &is_destroyed);
   7294   {
   7295     TestEventListeners listeners;
   7296     TestEventListenersAccessor::SetDefaultXmlGenerator(&listeners, listener);
   7297 
   7298     EXPECT_EQ(listener, listeners.Release(listener));
   7299     EXPECT_TRUE(listeners.default_xml_generator() == NULL);
   7300     EXPECT_FALSE(is_destroyed);
   7301 
   7302     // Broadcasting events now should not affect default_xml_generator.
   7303     TestEventListenersAccessor::GetRepeater(&listeners)->OnTestProgramStart(
   7304         *UnitTest::GetInstance());
   7305     EXPECT_EQ(0, on_start_counter);
   7306   }
   7307   // Destroying the list should not affect the listener now, too.
   7308   EXPECT_FALSE(is_destroyed);
   7309   delete listener;
   7310 }
   7311 
   7312 // Sanity tests to ensure that the alternative, verbose spellings of
   7313 // some of the macros work.  We don't test them thoroughly as that
   7314 // would be quite involved.  Since their implementations are
   7315 // straightforward, and they are rarely used, we'll just rely on the
   7316 // users to tell us when they are broken.
   7317 GTEST_TEST(AlternativeNameTest, Works) {  // GTEST_TEST is the same as TEST.
   7318   GTEST_SUCCEED() << "OK";  // GTEST_SUCCEED is the same as SUCCEED.
   7319 
   7320   // GTEST_FAIL is the same as FAIL.
   7321   EXPECT_FATAL_FAILURE(GTEST_FAIL() << "An expected failure",
   7322                        "An expected failure");
   7323 
   7324   // GTEST_ASSERT_XY is the same as ASSERT_XY.
   7325 
   7326   GTEST_ASSERT_EQ(0, 0);
   7327   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(0, 1) << "An expected failure",
   7328                        "An expected failure");
   7329   EXPECT_FATAL_FAILURE(GTEST_ASSERT_EQ(1, 0) << "An expected failure",
   7330                        "An expected failure");
   7331 
   7332   GTEST_ASSERT_NE(0, 1);
   7333   GTEST_ASSERT_NE(1, 0);
   7334   EXPECT_FATAL_FAILURE(GTEST_ASSERT_NE(0, 0) << "An expected failure",
   7335                        "An expected failure");
   7336 
   7337   GTEST_ASSERT_LE(0, 0);
   7338   GTEST_ASSERT_LE(0, 1);
   7339   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LE(1, 0) << "An expected failure",
   7340                        "An expected failure");
   7341 
   7342   GTEST_ASSERT_LT(0, 1);
   7343   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(0, 0) << "An expected failure",
   7344                        "An expected failure");
   7345   EXPECT_FATAL_FAILURE(GTEST_ASSERT_LT(1, 0) << "An expected failure",
   7346                        "An expected failure");
   7347 
   7348   GTEST_ASSERT_GE(0, 0);
   7349   GTEST_ASSERT_GE(1, 0);
   7350   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GE(0, 1) << "An expected failure",
   7351                        "An expected failure");
   7352 
   7353   GTEST_ASSERT_GT(1, 0);
   7354   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(0, 1) << "An expected failure",
   7355                        "An expected failure");
   7356   EXPECT_FATAL_FAILURE(GTEST_ASSERT_GT(1, 1) << "An expected failure",
   7357                        "An expected failure");
   7358 }
   7359 
   7360 // Tests for internal utilities necessary for implementation of the universal
   7361 // printing.
   7362 // TODO(vladl (at) google.com): Find a better home for them.
   7363 
   7364 class ConversionHelperBase {};
   7365 class ConversionHelperDerived : public ConversionHelperBase {};
   7366 
   7367 // Tests that IsAProtocolMessage<T>::value is a compile-time constant.
   7368 TEST(IsAProtocolMessageTest, ValueIsCompileTimeConstant) {
   7369   GTEST_COMPILE_ASSERT_(IsAProtocolMessage<ProtocolMessage>::value,
   7370                         const_true);
   7371   GTEST_COMPILE_ASSERT_(!IsAProtocolMessage<int>::value, const_false);
   7372 }
   7373 
   7374 // Tests that IsAProtocolMessage<T>::value is true when T is
   7375 // proto2::Message or a sub-class of it.
   7376 TEST(IsAProtocolMessageTest, ValueIsTrueWhenTypeIsAProtocolMessage) {
   7377   EXPECT_TRUE(IsAProtocolMessage< ::proto2::Message>::value);
   7378   EXPECT_TRUE(IsAProtocolMessage<ProtocolMessage>::value);
   7379 }
   7380 
   7381 // Tests that IsAProtocolMessage<T>::value is false when T is neither
   7382 // ProtocolMessage nor a sub-class of it.
   7383 TEST(IsAProtocolMessageTest, ValueIsFalseWhenTypeIsNotAProtocolMessage) {
   7384   EXPECT_FALSE(IsAProtocolMessage<int>::value);
   7385   EXPECT_FALSE(IsAProtocolMessage<const ConversionHelperBase>::value);
   7386 }
   7387 
   7388 // Tests that CompileAssertTypesEqual compiles when the type arguments are
   7389 // equal.
   7390 TEST(CompileAssertTypesEqual, CompilesWhenTypesAreEqual) {
   7391   CompileAssertTypesEqual<void, void>();
   7392   CompileAssertTypesEqual<int*, int*>();
   7393 }
   7394 
   7395 // Tests that RemoveReference does not affect non-reference types.
   7396 TEST(RemoveReferenceTest, DoesNotAffectNonReferenceType) {
   7397   CompileAssertTypesEqual<int, RemoveReference<int>::type>();
   7398   CompileAssertTypesEqual<const char, RemoveReference<const char>::type>();
   7399 }
   7400 
   7401 // Tests that RemoveReference removes reference from reference types.
   7402 TEST(RemoveReferenceTest, RemovesReference) {
   7403   CompileAssertTypesEqual<int, RemoveReference<int&>::type>();
   7404   CompileAssertTypesEqual<const char, RemoveReference<const char&>::type>();
   7405 }
   7406 
   7407 // Tests GTEST_REMOVE_REFERENCE_.
   7408 
   7409 template <typename T1, typename T2>
   7410 void TestGTestRemoveReference() {
   7411   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_(T2)>();
   7412 }
   7413 
   7414 TEST(RemoveReferenceTest, MacroVersion) {
   7415   TestGTestRemoveReference<int, int>();
   7416   TestGTestRemoveReference<const char, const char&>();
   7417 }
   7418 
   7419 
   7420 // Tests that RemoveConst does not affect non-const types.
   7421 TEST(RemoveConstTest, DoesNotAffectNonConstType) {
   7422   CompileAssertTypesEqual<int, RemoveConst<int>::type>();
   7423   CompileAssertTypesEqual<char&, RemoveConst<char&>::type>();
   7424 }
   7425 
   7426 // Tests that RemoveConst removes const from const types.
   7427 TEST(RemoveConstTest, RemovesConst) {
   7428   CompileAssertTypesEqual<int, RemoveConst<const int>::type>();
   7429   CompileAssertTypesEqual<char[2], RemoveConst<const char[2]>::type>();
   7430   CompileAssertTypesEqual<char[2][3], RemoveConst<const char[2][3]>::type>();
   7431 }
   7432 
   7433 // Tests GTEST_REMOVE_CONST_.
   7434 
   7435 template <typename T1, typename T2>
   7436 void TestGTestRemoveConst() {
   7437   CompileAssertTypesEqual<T1, GTEST_REMOVE_CONST_(T2)>();
   7438 }
   7439 
   7440 TEST(RemoveConstTest, MacroVersion) {
   7441   TestGTestRemoveConst<int, int>();
   7442   TestGTestRemoveConst<double&, double&>();
   7443   TestGTestRemoveConst<char, const char>();
   7444 }
   7445 
   7446 // Tests GTEST_REMOVE_REFERENCE_AND_CONST_.
   7447 
   7448 template <typename T1, typename T2>
   7449 void TestGTestRemoveReferenceAndConst() {
   7450   CompileAssertTypesEqual<T1, GTEST_REMOVE_REFERENCE_AND_CONST_(T2)>();
   7451 }
   7452 
   7453 TEST(RemoveReferenceToConstTest, Works) {
   7454   TestGTestRemoveReferenceAndConst<int, int>();
   7455   TestGTestRemoveReferenceAndConst<double, double&>();
   7456   TestGTestRemoveReferenceAndConst<char, const char>();
   7457   TestGTestRemoveReferenceAndConst<char, const char&>();
   7458   TestGTestRemoveReferenceAndConst<const char*, const char*>();
   7459 }
   7460 
   7461 // Tests that AddReference does not affect reference types.
   7462 TEST(AddReferenceTest, DoesNotAffectReferenceType) {
   7463   CompileAssertTypesEqual<int&, AddReference<int&>::type>();
   7464   CompileAssertTypesEqual<const char&, AddReference<const char&>::type>();
   7465 }
   7466 
   7467 // Tests that AddReference adds reference to non-reference types.
   7468 TEST(AddReferenceTest, AddsReference) {
   7469   CompileAssertTypesEqual<int&, AddReference<int>::type>();
   7470   CompileAssertTypesEqual<const char&, AddReference<const char>::type>();
   7471 }
   7472 
   7473 // Tests GTEST_ADD_REFERENCE_.
   7474 
   7475 template <typename T1, typename T2>
   7476 void TestGTestAddReference() {
   7477   CompileAssertTypesEqual<T1, GTEST_ADD_REFERENCE_(T2)>();
   7478 }
   7479 
   7480 TEST(AddReferenceTest, MacroVersion) {
   7481   TestGTestAddReference<int&, int>();
   7482   TestGTestAddReference<const char&, const char&>();
   7483 }
   7484 
   7485 // Tests GTEST_REFERENCE_TO_CONST_.
   7486 
   7487 template <typename T1, typename T2>
   7488 void TestGTestReferenceToConst() {
   7489   CompileAssertTypesEqual<T1, GTEST_REFERENCE_TO_CONST_(T2)>();
   7490 }
   7491 
   7492 TEST(GTestReferenceToConstTest, Works) {
   7493   TestGTestReferenceToConst<const char&, char>();
   7494   TestGTestReferenceToConst<const int&, const int>();
   7495   TestGTestReferenceToConst<const double&, double>();
   7496   TestGTestReferenceToConst<const std::string&, const std::string&>();
   7497 }
   7498 
   7499 // Tests that ImplicitlyConvertible<T1, T2>::value is a compile-time constant.
   7500 TEST(ImplicitlyConvertibleTest, ValueIsCompileTimeConstant) {
   7501   GTEST_COMPILE_ASSERT_((ImplicitlyConvertible<int, int>::value), const_true);
   7502   GTEST_COMPILE_ASSERT_((!ImplicitlyConvertible<void*, int*>::value),
   7503                         const_false);
   7504 }
   7505 
   7506 // Tests that ImplicitlyConvertible<T1, T2>::value is true when T1 can
   7507 // be implicitly converted to T2.
   7508 TEST(ImplicitlyConvertibleTest, ValueIsTrueWhenConvertible) {
   7509   EXPECT_TRUE((ImplicitlyConvertible<int, double>::value));
   7510   EXPECT_TRUE((ImplicitlyConvertible<double, int>::value));
   7511   EXPECT_TRUE((ImplicitlyConvertible<int*, void*>::value));
   7512   EXPECT_TRUE((ImplicitlyConvertible<int*, const int*>::value));
   7513   EXPECT_TRUE((ImplicitlyConvertible<ConversionHelperDerived&,
   7514                                      const ConversionHelperBase&>::value));
   7515   EXPECT_TRUE((ImplicitlyConvertible<const ConversionHelperBase,
   7516                                      ConversionHelperBase>::value));
   7517 }
   7518 
   7519 // Tests that ImplicitlyConvertible<T1, T2>::value is false when T1
   7520 // cannot be implicitly converted to T2.
   7521 TEST(ImplicitlyConvertibleTest, ValueIsFalseWhenNotConvertible) {
   7522   EXPECT_FALSE((ImplicitlyConvertible<double, int*>::value));
   7523   EXPECT_FALSE((ImplicitlyConvertible<void*, int*>::value));
   7524   EXPECT_FALSE((ImplicitlyConvertible<const int*, int*>::value));
   7525   EXPECT_FALSE((ImplicitlyConvertible<ConversionHelperBase&,
   7526                                       ConversionHelperDerived&>::value));
   7527 }
   7528 
   7529 // Tests IsContainerTest.
   7530 
   7531 class NonContainer {};
   7532 
   7533 TEST(IsContainerTestTest, WorksForNonContainer) {
   7534   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<int>(0)));
   7535   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<char[5]>(0)));
   7536   EXPECT_EQ(sizeof(IsNotContainer), sizeof(IsContainerTest<NonContainer>(0)));
   7537 }
   7538 
   7539 TEST(IsContainerTestTest, WorksForContainer) {
   7540   EXPECT_EQ(sizeof(IsContainer),
   7541             sizeof(IsContainerTest<std::vector<bool> >(0)));
   7542   EXPECT_EQ(sizeof(IsContainer),
   7543             sizeof(IsContainerTest<std::map<int, double> >(0)));
   7544 }
   7545 
   7546 // Tests ArrayEq().
   7547 
   7548 TEST(ArrayEqTest, WorksForDegeneratedArrays) {
   7549   EXPECT_TRUE(ArrayEq(5, 5L));
   7550   EXPECT_FALSE(ArrayEq('a', 0));
   7551 }
   7552 
   7553 TEST(ArrayEqTest, WorksForOneDimensionalArrays) {
   7554   // Note that a and b are distinct but compatible types.
   7555   const int a[] = { 0, 1 };
   7556   long b[] = { 0, 1 };
   7557   EXPECT_TRUE(ArrayEq(a, b));
   7558   EXPECT_TRUE(ArrayEq(a, 2, b));
   7559 
   7560   b[0] = 2;
   7561   EXPECT_FALSE(ArrayEq(a, b));
   7562   EXPECT_FALSE(ArrayEq(a, 1, b));
   7563 }
   7564 
   7565 TEST(ArrayEqTest, WorksForTwoDimensionalArrays) {
   7566   const char a[][3] = { "hi", "lo" };
   7567   const char b[][3] = { "hi", "lo" };
   7568   const char c[][3] = { "hi", "li" };
   7569 
   7570   EXPECT_TRUE(ArrayEq(a, b));
   7571   EXPECT_TRUE(ArrayEq(a, 2, b));
   7572 
   7573   EXPECT_FALSE(ArrayEq(a, c));
   7574   EXPECT_FALSE(ArrayEq(a, 2, c));
   7575 }
   7576 
   7577 // Tests ArrayAwareFind().
   7578 
   7579 TEST(ArrayAwareFindTest, WorksForOneDimensionalArray) {
   7580   const char a[] = "hello";
   7581   EXPECT_EQ(a + 4, ArrayAwareFind(a, a + 5, 'o'));
   7582   EXPECT_EQ(a + 5, ArrayAwareFind(a, a + 5, 'x'));
   7583 }
   7584 
   7585 TEST(ArrayAwareFindTest, WorksForTwoDimensionalArray) {
   7586   int a[][2] = { { 0, 1 }, { 2, 3 }, { 4, 5 } };
   7587   const int b[2] = { 2, 3 };
   7588   EXPECT_EQ(a + 1, ArrayAwareFind(a, a + 3, b));
   7589 
   7590   const int c[2] = { 6, 7 };
   7591   EXPECT_EQ(a + 3, ArrayAwareFind(a, a + 3, c));
   7592 }
   7593 
   7594 // Tests CopyArray().
   7595 
   7596 TEST(CopyArrayTest, WorksForDegeneratedArrays) {
   7597   int n = 0;
   7598   CopyArray('a', &n);
   7599   EXPECT_EQ('a', n);
   7600 }
   7601 
   7602 TEST(CopyArrayTest, WorksForOneDimensionalArrays) {
   7603   const char a[3] = "hi";
   7604   int b[3];
   7605 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7606   CopyArray(a, &b);
   7607   EXPECT_TRUE(ArrayEq(a, b));
   7608 #endif
   7609 
   7610   int c[3];
   7611   CopyArray(a, 3, c);
   7612   EXPECT_TRUE(ArrayEq(a, c));
   7613 }
   7614 
   7615 TEST(CopyArrayTest, WorksForTwoDimensionalArrays) {
   7616   const int a[2][3] = { { 0, 1, 2 }, { 3, 4, 5 } };
   7617   int b[2][3];
   7618 #ifndef __BORLANDC__  // C++Builder cannot compile some array size deductions.
   7619   CopyArray(a, &b);
   7620   EXPECT_TRUE(ArrayEq(a, b));
   7621 #endif
   7622 
   7623   int c[2][3];
   7624   CopyArray(a, 2, c);
   7625   EXPECT_TRUE(ArrayEq(a, c));
   7626 }
   7627 
   7628 // Tests NativeArray.
   7629 
   7630 TEST(NativeArrayTest, ConstructorFromArrayWorks) {
   7631   const int a[3] = { 0, 1, 2 };
   7632   NativeArray<int> na(a, 3, RelationToSourceReference());
   7633   EXPECT_EQ(3U, na.size());
   7634   EXPECT_EQ(a, na.begin());
   7635 }
   7636 
   7637 TEST(NativeArrayTest, CreatesAndDeletesCopyOfArrayWhenAskedTo) {
   7638   typedef int Array[2];
   7639   Array* a = new Array[1];
   7640   (*a)[0] = 0;
   7641   (*a)[1] = 1;
   7642   NativeArray<int> na(*a, 2, RelationToSourceCopy());
   7643   EXPECT_NE(*a, na.begin());
   7644   delete[] a;
   7645   EXPECT_EQ(0, na.begin()[0]);
   7646   EXPECT_EQ(1, na.begin()[1]);
   7647 
   7648   // We rely on the heap checker to verify that na deletes the copy of
   7649   // array.
   7650 }
   7651 
   7652 TEST(NativeArrayTest, TypeMembersAreCorrect) {
   7653   StaticAssertTypeEq<char, NativeArray<char>::value_type>();
   7654   StaticAssertTypeEq<int[2], NativeArray<int[2]>::value_type>();
   7655 
   7656   StaticAssertTypeEq<const char*, NativeArray<char>::const_iterator>();
   7657   StaticAssertTypeEq<const bool(*)[2], NativeArray<bool[2]>::const_iterator>();
   7658 }
   7659 
   7660 TEST(NativeArrayTest, MethodsWork) {
   7661   const int a[3] = { 0, 1, 2 };
   7662   NativeArray<int> na(a, 3, RelationToSourceCopy());
   7663   ASSERT_EQ(3U, na.size());
   7664   EXPECT_EQ(3, na.end() - na.begin());
   7665 
   7666   NativeArray<int>::const_iterator it = na.begin();
   7667   EXPECT_EQ(0, *it);
   7668   ++it;
   7669   EXPECT_EQ(1, *it);
   7670   ++it;
   7671   EXPECT_EQ(2, *it);
   7672   ++it;
   7673   EXPECT_EQ(na.end(), it);
   7674 
   7675   EXPECT_TRUE(na == na);
   7676 
   7677   NativeArray<int> na2(a, 3, RelationToSourceReference());
   7678   EXPECT_TRUE(na == na2);
   7679 
   7680   const int b1[3] = { 0, 1, 1 };
   7681   const int b2[4] = { 0, 1, 2, 3 };
   7682   EXPECT_FALSE(na == NativeArray<int>(b1, 3, RelationToSourceReference()));
   7683   EXPECT_FALSE(na == NativeArray<int>(b2, 4, RelationToSourceCopy()));
   7684 }
   7685 
   7686 TEST(NativeArrayTest, WorksForTwoDimensionalArray) {
   7687   const char a[2][3] = { "hi", "lo" };
   7688   NativeArray<char[3]> na(a, 2, RelationToSourceReference());
   7689   ASSERT_EQ(2U, na.size());
   7690   EXPECT_EQ(a, na.begin());
   7691 }
   7692 
   7693 // Tests SkipPrefix().
   7694 
   7695 TEST(SkipPrefixTest, SkipsWhenPrefixMatches) {
   7696   const char* const str = "hello";
   7697 
   7698   const char* p = str;
   7699   EXPECT_TRUE(SkipPrefix("", &p));
   7700   EXPECT_EQ(str, p);
   7701 
   7702   p = str;
   7703   EXPECT_TRUE(SkipPrefix("hell", &p));
   7704   EXPECT_EQ(str + 4, p);
   7705 }
   7706 
   7707 TEST(SkipPrefixTest, DoesNotSkipWhenPrefixDoesNotMatch) {
   7708   const char* const str = "world";
   7709 
   7710   const char* p = str;
   7711   EXPECT_FALSE(SkipPrefix("W", &p));
   7712   EXPECT_EQ(str, p);
   7713 
   7714   p = str;
   7715   EXPECT_FALSE(SkipPrefix("world!", &p));
   7716   EXPECT_EQ(str, p);
   7717 }
   7718