Home | History | Annotate | Download | only in math
      1 /*
      2  * Copyright (C) 2011 The Guava Authors
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  * http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package com.google.common.math;
     18 
     19 import static com.google.common.math.MathBenchmarking.ARRAY_MASK;
     20 import static com.google.common.math.MathBenchmarking.ARRAY_SIZE;
     21 import static com.google.common.math.MathBenchmarking.RANDOM_SOURCE;
     22 import static com.google.common.math.MathBenchmarking.randomExponent;
     23 import static com.google.common.math.MathBenchmarking.randomNonNegativeBigInteger;
     24 import static com.google.common.math.MathBenchmarking.randomPositiveBigInteger;
     25 
     26 import com.google.caliper.BeforeExperiment;
     27 import com.google.caliper.Benchmark;
     28 import com.google.common.math.LongMath;
     29 
     30 /**
     31  * Benchmarks for the non-rounding methods of {@code LongMath}.
     32  *
     33  * @author Louis Wasserman
     34  */
     35 public class LongMathBenchmark {
     36   private static final int[] exponents = new int[ARRAY_SIZE];
     37   private static final int[] factorialArguments = new int[ARRAY_SIZE];
     38   private static final int[][] binomialArguments = new int[ARRAY_SIZE][2];
     39   private static final long[] positive = new long[ARRAY_SIZE];
     40   private static final long[] nonnegative = new long[ARRAY_SIZE];
     41   private static final long[] longs = new long[ARRAY_SIZE];
     42 
     43   @BeforeExperiment
     44   void setUp() {
     45     for (int i = 0; i < ARRAY_SIZE; i++) {
     46       exponents[i] = randomExponent();
     47       positive[i] = randomPositiveBigInteger(Long.SIZE - 1).longValue();
     48       nonnegative[i] = randomNonNegativeBigInteger(Long.SIZE - 1).longValue();
     49       longs[i] = RANDOM_SOURCE.nextLong();
     50       factorialArguments[i] = RANDOM_SOURCE.nextInt(30);
     51       binomialArguments[i][1] = RANDOM_SOURCE.nextInt(MathBenchmarking.biggestBinomials.length);
     52       int k = binomialArguments[i][1];
     53       binomialArguments[i][0] =
     54           RANDOM_SOURCE.nextInt(MathBenchmarking.biggestBinomials[k] - k) + k;
     55     }
     56   }
     57 
     58   @Benchmark int pow(int reps) {
     59     int tmp = 0;
     60     for (int i = 0; i < reps; i++) {
     61       int j = i & ARRAY_MASK;
     62       tmp += LongMath.pow(positive[j], exponents[j]);
     63     }
     64     return tmp;
     65   }
     66 
     67   @Benchmark int mod(int reps) {
     68     int tmp = 0;
     69     for (int i = 0; i < reps; i++) {
     70       int j = i & ARRAY_MASK;
     71       tmp += LongMath.mod(longs[j], positive[j]);
     72     }
     73     return tmp;
     74   }
     75 
     76   @Benchmark int gCD(int reps) {
     77     int tmp = 0;
     78     for (int i = 0; i < reps; i++) {
     79       int j = i & ARRAY_MASK;
     80       tmp += LongMath.mod(nonnegative[j], positive[j]);
     81     }
     82     return tmp;
     83   }
     84 
     85   @Benchmark int factorial(int reps) {
     86     int tmp = 0;
     87     for (int i = 0; i < reps; i++) {
     88       int j = i & ARRAY_MASK;
     89       tmp += LongMath.factorial(factorialArguments[j]);
     90     }
     91     return tmp;
     92   }
     93 
     94   @Benchmark int binomial(int reps) {
     95     int tmp = 0;
     96     for (int i = 0; i < reps; i++) {
     97       int j = i & ARRAY_MASK;
     98       tmp += LongMath.binomial(binomialArguments[j][0], binomialArguments[j][1]);
     99     }
    100     return tmp;
    101   }
    102 }
    103