Home | History | Annotate | Download | only in math
      1 /*
      2  * Copyright (C) 2011 The Guava Authors
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  * http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 package com.google.common.math;
     18 
     19 import static com.google.common.base.Preconditions.checkArgument;
     20 import static com.google.common.math.DoubleUtils.IMPLICIT_BIT;
     21 import static com.google.common.math.DoubleUtils.SIGNIFICAND_BITS;
     22 import static com.google.common.math.DoubleUtils.getSignificand;
     23 import static com.google.common.math.DoubleUtils.isFinite;
     24 import static com.google.common.math.DoubleUtils.isNormal;
     25 import static com.google.common.math.DoubleUtils.scaleNormalize;
     26 import static com.google.common.math.MathPreconditions.checkInRange;
     27 import static com.google.common.math.MathPreconditions.checkNonNegative;
     28 import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
     29 import static java.lang.Math.abs;
     30 import static java.lang.Math.copySign;
     31 import static java.lang.Math.getExponent;
     32 import static java.lang.Math.log;
     33 import static java.lang.Math.rint;
     34 
     35 import com.google.common.annotations.GwtCompatible;
     36 import com.google.common.annotations.GwtIncompatible;
     37 import com.google.common.annotations.VisibleForTesting;
     38 import com.google.common.primitives.Booleans;
     39 
     40 import java.math.BigInteger;
     41 import java.math.RoundingMode;
     42 import java.util.Iterator;
     43 
     44 /**
     45  * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}.
     46  *
     47  * @author Louis Wasserman
     48  * @since 11.0
     49  */
     50 @GwtCompatible(emulated = true)
     51 public final class DoubleMath {
     52   /*
     53    * This method returns a value y such that rounding y DOWN (towards zero) gives the same result
     54    * as rounding x according to the specified mode.
     55    */
     56   @GwtIncompatible("#isMathematicalInteger, com.google.common.math.DoubleUtils")
     57   static double roundIntermediate(double x, RoundingMode mode) {
     58     if (!isFinite(x)) {
     59       throw new ArithmeticException("input is infinite or NaN");
     60     }
     61     switch (mode) {
     62       case UNNECESSARY:
     63         checkRoundingUnnecessary(isMathematicalInteger(x));
     64         return x;
     65 
     66       case FLOOR:
     67         if (x >= 0.0 || isMathematicalInteger(x)) {
     68           return x;
     69         } else {
     70           return x - 1.0;
     71         }
     72 
     73       case CEILING:
     74         if (x <= 0.0 || isMathematicalInteger(x)) {
     75           return x;
     76         } else {
     77           return x + 1.0;
     78         }
     79 
     80       case DOWN:
     81         return x;
     82 
     83       case UP:
     84         if (isMathematicalInteger(x)) {
     85           return x;
     86         } else {
     87           return x + Math.copySign(1.0, x);
     88         }
     89 
     90       case HALF_EVEN:
     91         return rint(x);
     92 
     93       case HALF_UP: {
     94         double z = rint(x);
     95         if (abs(x - z) == 0.5) {
     96           return x + copySign(0.5, x);
     97         } else {
     98           return z;
     99         }
    100       }
    101 
    102       case HALF_DOWN: {
    103         double z = rint(x);
    104         if (abs(x - z) == 0.5) {
    105           return x;
    106         } else {
    107           return z;
    108         }
    109       }
    110 
    111       default:
    112         throw new AssertionError();
    113     }
    114   }
    115 
    116   /**
    117    * Returns the {@code int} value that is equal to {@code x} rounded with the specified rounding
    118    * mode, if possible.
    119    *
    120    * @throws ArithmeticException if
    121    *         <ul>
    122    *         <li>{@code x} is infinite or NaN
    123    *         <li>{@code x}, after being rounded to a mathematical integer using the specified
    124    *         rounding mode, is either less than {@code Integer.MIN_VALUE} or greater than {@code
    125    *         Integer.MAX_VALUE}
    126    *         <li>{@code x} is not a mathematical integer and {@code mode} is
    127    *         {@link RoundingMode#UNNECESSARY}
    128    *         </ul>
    129    */
    130   @GwtIncompatible("#roundIntermediate")
    131   public static int roundToInt(double x, RoundingMode mode) {
    132     double z = roundIntermediate(x, mode);
    133     checkInRange(z > MIN_INT_AS_DOUBLE - 1.0 & z < MAX_INT_AS_DOUBLE + 1.0);
    134     return (int) z;
    135   }
    136 
    137   private static final double MIN_INT_AS_DOUBLE = -0x1p31;
    138   private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;
    139 
    140   /**
    141    * Returns the {@code long} value that is equal to {@code x} rounded with the specified rounding
    142    * mode, if possible.
    143    *
    144    * @throws ArithmeticException if
    145    *         <ul>
    146    *         <li>{@code x} is infinite or NaN
    147    *         <li>{@code x}, after being rounded to a mathematical integer using the specified
    148    *         rounding mode, is either less than {@code Long.MIN_VALUE} or greater than {@code
    149    *         Long.MAX_VALUE}
    150    *         <li>{@code x} is not a mathematical integer and {@code mode} is
    151    *         {@link RoundingMode#UNNECESSARY}
    152    *         </ul>
    153    */
    154   @GwtIncompatible("#roundIntermediate")
    155   public static long roundToLong(double x, RoundingMode mode) {
    156     double z = roundIntermediate(x, mode);
    157     checkInRange(MIN_LONG_AS_DOUBLE - z < 1.0 & z < MAX_LONG_AS_DOUBLE_PLUS_ONE);
    158     return (long) z;
    159   }
    160 
    161   private static final double MIN_LONG_AS_DOUBLE = -0x1p63;
    162   /*
    163    * We cannot store Long.MAX_VALUE as a double without losing precision.  Instead, we store
    164    * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1.
    165    */
    166   private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;
    167 
    168   /**
    169    * Returns the {@code BigInteger} value that is equal to {@code x} rounded with the specified
    170    * rounding mode, if possible.
    171    *
    172    * @throws ArithmeticException if
    173    *         <ul>
    174    *         <li>{@code x} is infinite or NaN
    175    *         <li>{@code x} is not a mathematical integer and {@code mode} is
    176    *         {@link RoundingMode#UNNECESSARY}
    177    *         </ul>
    178    */
    179   @GwtIncompatible("#roundIntermediate, java.lang.Math.getExponent, "
    180       + "com.google.common.math.DoubleUtils")
    181   public static BigInteger roundToBigInteger(double x, RoundingMode mode) {
    182     x = roundIntermediate(x, mode);
    183     if (MIN_LONG_AS_DOUBLE - x < 1.0 & x < MAX_LONG_AS_DOUBLE_PLUS_ONE) {
    184       return BigInteger.valueOf((long) x);
    185     }
    186     int exponent = getExponent(x);
    187     long significand = getSignificand(x);
    188     BigInteger result = BigInteger.valueOf(significand).shiftLeft(exponent - SIGNIFICAND_BITS);
    189     return (x < 0) ? result.negate() : result;
    190   }
    191 
    192   /**
    193    * Returns {@code true} if {@code x} is exactly equal to {@code 2^k} for some finite integer
    194    * {@code k}.
    195    */
    196   @GwtIncompatible("com.google.common.math.DoubleUtils")
    197   public static boolean isPowerOfTwo(double x) {
    198     return x > 0.0 && isFinite(x) && LongMath.isPowerOfTwo(getSignificand(x));
    199   }
    200 
    201   /**
    202    * Returns the base 2 logarithm of a double value.
    203    *
    204    * <p>Special cases:
    205    * <ul>
    206    * <li>If {@code x} is NaN or less than zero, the result is NaN.
    207    * <li>If {@code x} is positive infinity, the result is positive infinity.
    208    * <li>If {@code x} is positive or negative zero, the result is negative infinity.
    209    * </ul>
    210    *
    211    * <p>The computed result is within 1 ulp of the exact result.
    212    *
    213    * <p>If the result of this method will be immediately rounded to an {@code int},
    214    * {@link #log2(double, RoundingMode)} is faster.
    215    */
    216   public static double log2(double x) {
    217     return log(x) / LN_2; // surprisingly within 1 ulp according to tests
    218   }
    219 
    220   private static final double LN_2 = log(2);
    221 
    222   /**
    223    * Returns the base 2 logarithm of a double value, rounded with the specified rounding mode to an
    224    * {@code int}.
    225    *
    226    * <p>Regardless of the rounding mode, this is faster than {@code (int) log2(x)}.
    227    *
    228    * @throws IllegalArgumentException if {@code x <= 0.0}, {@code x} is NaN, or {@code x} is
    229    *         infinite
    230    */
    231   @GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils")
    232   @SuppressWarnings("fallthrough")
    233   public static int log2(double x, RoundingMode mode) {
    234     checkArgument(x > 0.0 && isFinite(x), "x must be positive and finite");
    235     int exponent = getExponent(x);
    236     if (!isNormal(x)) {
    237       return log2(x * IMPLICIT_BIT, mode) - SIGNIFICAND_BITS;
    238       // Do the calculation on a normal value.
    239     }
    240     // x is positive, finite, and normal
    241     boolean increment;
    242     switch (mode) {
    243       case UNNECESSARY:
    244         checkRoundingUnnecessary(isPowerOfTwo(x));
    245         // fall through
    246       case FLOOR:
    247         increment = false;
    248         break;
    249       case CEILING:
    250         increment = !isPowerOfTwo(x);
    251         break;
    252       case DOWN:
    253         increment = exponent < 0 & !isPowerOfTwo(x);
    254         break;
    255       case UP:
    256         increment = exponent >= 0 & !isPowerOfTwo(x);
    257         break;
    258       case HALF_DOWN:
    259       case HALF_EVEN:
    260       case HALF_UP:
    261         double xScaled = scaleNormalize(x);
    262         // sqrt(2) is irrational, and the spec is relative to the "exact numerical result,"
    263         // so log2(x) is never exactly exponent + 0.5.
    264         increment = (xScaled * xScaled) > 2.0;
    265         break;
    266       default:
    267         throw new AssertionError();
    268     }
    269     return increment ? exponent + 1 : exponent;
    270   }
    271 
    272   /**
    273    * Returns {@code true} if {@code x} represents a mathematical integer.
    274    *
    275    * <p>This is equivalent to, but not necessarily implemented as, the expression {@code
    276    * !Double.isNaN(x) && !Double.isInfinite(x) && x == Math.rint(x)}.
    277    */
    278   @GwtIncompatible("java.lang.Math.getExponent, com.google.common.math.DoubleUtils")
    279   public static boolean isMathematicalInteger(double x) {
    280     return isFinite(x)
    281         && (x == 0.0 ||
    282             SIGNIFICAND_BITS - Long.numberOfTrailingZeros(getSignificand(x)) <= getExponent(x));
    283   }
    284 
    285   /**
    286    * Returns {@code n!}, that is, the product of the first {@code n} positive
    287    * integers, {@code 1} if {@code n == 0}, or {@code n!}, or
    288    * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}.
    289    *
    290    * <p>The result is within 1 ulp of the true value.
    291    *
    292    * @throws IllegalArgumentException if {@code n < 0}
    293    */
    294   public static double factorial(int n) {
    295     checkNonNegative("n", n);
    296     if (n > MAX_FACTORIAL) {
    297       return Double.POSITIVE_INFINITY;
    298     } else {
    299       // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate
    300       // result than multiplying by everySixteenthFactorial[n >> 4] directly.
    301       double accum = 1.0;
    302       for (int i = 1 + (n & ~0xf); i <= n; i++) {
    303         accum *= i;
    304       }
    305       return accum * everySixteenthFactorial[n >> 4];
    306     }
    307   }
    308 
    309   @VisibleForTesting
    310   static final int MAX_FACTORIAL = 170;
    311 
    312   @VisibleForTesting
    313   static final double[] everySixteenthFactorial = {
    314       0x1.0p0,
    315       0x1.30777758p44,
    316       0x1.956ad0aae33a4p117,
    317       0x1.ee69a78d72cb6p202,
    318       0x1.fe478ee34844ap295,
    319       0x1.c619094edabffp394,
    320       0x1.3638dd7bd6347p498,
    321       0x1.7cac197cfe503p605,
    322       0x1.1e5dfc140e1e5p716,
    323       0x1.8ce85fadb707ep829,
    324       0x1.95d5f3d928edep945};
    325 
    326   /**
    327    * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other.
    328    *
    329    * <p>Technically speaking, this is equivalent to
    330    * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}.
    331    *
    332    * <p>Notable special cases include:
    333    * <ul>
    334    * <li>All NaNs are fuzzily equal.
    335    * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal.
    336    * <li>Positive and negative zero are always fuzzily equal.
    337    * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then
    338    * {@code a} and {@code b} are fuzzily equal if and only if {@code a == b}.
    339    * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal.
    340    * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code
    341    * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves.
    342    * </li>
    343    *
    344    * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an
    345    * equivalence relation and <em>not</em> suitable for use in {@link Object#equals}
    346    * implementations.
    347    *
    348    * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
    349    * @since 13.0
    350    */
    351   public static boolean fuzzyEquals(double a, double b, double tolerance) {
    352     MathPreconditions.checkNonNegative("tolerance", tolerance);
    353     return
    354           Math.copySign(a - b, 1.0) <= tolerance
    355            // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics
    356           || (a == b) // needed to ensure that infinities equal themselves
    357           || (Double.isNaN(a) && Double.isNaN(b));
    358   }
    359 
    360   /**
    361    * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values.
    362    *
    363    * <p>This method is equivalent to
    364    * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like
    365    * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all
    366    * other values (including {@link Double#POSITIVE_INFINITY}).
    367    *
    368    * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in
    369    * {@link Comparable#compareTo} implementations.  In particular, it is not transitive.
    370    *
    371    * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
    372    * @since 13.0
    373    */
    374   public static int fuzzyCompare(double a, double b, double tolerance) {
    375     if (fuzzyEquals(a, b, tolerance)) {
    376       return 0;
    377     } else if (a < b) {
    378       return -1;
    379     } else if (a > b) {
    380       return 1;
    381     } else {
    382       return Booleans.compare(Double.isNaN(a), Double.isNaN(b));
    383     }
    384   }
    385 
    386   @GwtIncompatible("com.google.common.math.DoubleUtils")
    387   private static final class MeanAccumulator {
    388 
    389     private long count = 0;
    390     private double mean = 0.0;
    391 
    392     void add(double value) {
    393       checkArgument(isFinite(value));
    394       ++count;
    395       // Art of Computer Programming vol. 2, Knuth, 4.2.2, (15)
    396       mean += (value - mean) / count;
    397     }
    398 
    399     double mean() {
    400       checkArgument(count > 0, "Cannot take mean of 0 values");
    401       return mean;
    402     }
    403   }
    404 
    405   /**
    406    * Returns the arithmetic mean of the values. There must be at least one value, and they must all
    407    * be finite.
    408    */
    409   @GwtIncompatible("MeanAccumulator")
    410   public static double mean(double... values) {
    411     MeanAccumulator accumulator = new MeanAccumulator();
    412     for (double value : values) {
    413       accumulator.add(value);
    414     }
    415     return accumulator.mean();
    416   }
    417 
    418   /**
    419    * Returns the arithmetic mean of the values. There must be at least one value. The values will
    420    * be converted to doubles, which does not cause any loss of precision for ints.
    421    */
    422   @GwtIncompatible("MeanAccumulator")
    423   public static double mean(int... values) {
    424     MeanAccumulator accumulator = new MeanAccumulator();
    425     for (int value : values) {
    426       accumulator.add(value);
    427     }
    428     return accumulator.mean();
    429   }
    430 
    431   /**
    432    * Returns the arithmetic mean of the values. There must be at least one value. The values will
    433    * be converted to doubles, which causes loss of precision for longs of magnitude over 2^53
    434    * (slightly over 9e15).
    435    */
    436   @GwtIncompatible("MeanAccumulator")
    437   public static double mean(long... values) {
    438     MeanAccumulator accumulator = new MeanAccumulator();
    439     for (long value : values) {
    440       accumulator.add(value);
    441     }
    442     return accumulator.mean();
    443   }
    444 
    445   /**
    446    * Returns the arithmetic mean of the values. There must be at least one value, and they must all
    447    * be finite. The values will be converted to doubles, which may cause loss of precision for some
    448    * numeric types.
    449    */
    450   @GwtIncompatible("MeanAccumulator")
    451   public static double mean(Iterable<? extends Number> values) {
    452     MeanAccumulator accumulator = new MeanAccumulator();
    453     for (Number value : values) {
    454       accumulator.add(value.doubleValue());
    455     }
    456     return accumulator.mean();
    457   }
    458 
    459   /**
    460    * Returns the arithmetic mean of the values. There must be at least one value, and they must all
    461    * be finite. The values will be converted to doubles, which may cause loss of precision for some
    462    * numeric types.
    463    */
    464   @GwtIncompatible("MeanAccumulator")
    465   public static double mean(Iterator<? extends Number> values) {
    466     MeanAccumulator accumulator = new MeanAccumulator();
    467     while (values.hasNext()) {
    468       accumulator.add(values.next().doubleValue());
    469     }
    470     return accumulator.mean();
    471   }
    472 
    473   private DoubleMath() {}
    474 }
    475