Home | History | Annotate | Download | only in coll
      1 /* GENERATED SOURCE. DO NOT MODIFY. */
      2 //  2016 and later: Unicode, Inc. and others.
      3 // License & terms of use: http://www.unicode.org/copyright.html#License
      4 /*
      5 *******************************************************************************
      6 * Copyright (C) 2013-2015, International Business Machines
      7 * Corporation and others.  All Rights Reserved.
      8 *******************************************************************************
      9 * CollationBuilder.java, ported from collationbuilder.h/.cpp
     10 *
     11 * C++ version created on: 2013may06
     12 * created by: Markus W. Scherer
     13 */
     14 
     15 package android.icu.impl.coll;
     16 
     17 import java.text.ParseException;
     18 
     19 import android.icu.impl.Norm2AllModes;
     20 import android.icu.impl.Normalizer2Impl;
     21 import android.icu.impl.Normalizer2Impl.Hangul;
     22 import android.icu.lang.UScript;
     23 import android.icu.text.CanonicalIterator;
     24 import android.icu.text.Collator;
     25 import android.icu.text.Normalizer2;
     26 import android.icu.text.UnicodeSet;
     27 import android.icu.text.UnicodeSetIterator;
     28 import android.icu.util.ULocale;
     29 
     30 /**
     31  * @hide Only a subset of ICU is exposed in Android
     32  */
     33 public final class CollationBuilder extends CollationRuleParser.Sink {
     34     private static final boolean DEBUG = false;
     35     private static final class BundleImporter implements CollationRuleParser.Importer {
     36         BundleImporter() {}
     37         @Override
     38         public String getRules(String localeID, String collationType) {
     39             return CollationLoader.loadRules(new ULocale(localeID), collationType);
     40         }
     41     }
     42 
     43     public CollationBuilder(CollationTailoring b) {
     44         nfd = Normalizer2.getNFDInstance();
     45         fcd = Norm2AllModes.getFCDNormalizer2();
     46         nfcImpl = Norm2AllModes.getNFCInstance().impl;
     47         base = b;
     48         baseData = b.data;
     49         rootElements = new CollationRootElements(b.data.rootElements);
     50         variableTop = 0;
     51         dataBuilder = new CollationDataBuilder();
     52         fastLatinEnabled = true;
     53         cesLength = 0;
     54         rootPrimaryIndexes = new UVector32();
     55         nodes = new UVector64();
     56         nfcImpl.ensureCanonIterData();
     57         dataBuilder.initForTailoring(baseData);
     58     }
     59 
     60     public CollationTailoring parseAndBuild(String ruleString) throws ParseException {
     61         if(baseData.rootElements == null) {
     62             // C++ U_MISSING_RESOURCE_ERROR
     63             throw new UnsupportedOperationException(
     64                     "missing root elements data, tailoring not supported");
     65         }
     66         CollationTailoring tailoring = new CollationTailoring(base.settings);
     67         CollationRuleParser parser = new CollationRuleParser(baseData);
     68         // Note: This always bases &[last variable] and &[first regular]
     69         // on the root collator's maxVariable/variableTop.
     70         // If we wanted this to change after [maxVariable x], then we would keep
     71         // the tailoring.settings pointer here and read its variableTop when we need it.
     72         // See http://unicode.org/cldr/trac/ticket/6070
     73         variableTop = base.settings.readOnly().variableTop;
     74         parser.setSink(this);
     75         // In Java, there is only one Importer implementation.
     76         // In C++, the importer is a parameter for this method.
     77         parser.setImporter(new BundleImporter());
     78         CollationSettings ownedSettings = tailoring.settings.copyOnWrite();
     79         parser.parse(ruleString, ownedSettings);
     80         if(dataBuilder.hasMappings()) {
     81             makeTailoredCEs();
     82             closeOverComposites();
     83             finalizeCEs();
     84             // Copy all of ASCII, and Latin-1 letters, into each tailoring.
     85             optimizeSet.add(0, 0x7f);
     86             optimizeSet.add(0xc0, 0xff);
     87             // Hangul is decomposed on the fly during collation,
     88             // and the tailoring data is always built with HANGUL_TAG specials.
     89             optimizeSet.remove(Hangul.HANGUL_BASE, Hangul.HANGUL_END);
     90             dataBuilder.optimize(optimizeSet);
     91             tailoring.ensureOwnedData();
     92             if(fastLatinEnabled) { dataBuilder.enableFastLatin(); }
     93             dataBuilder.build(tailoring.ownedData);
     94             // C++ tailoring.builder = dataBuilder;
     95             dataBuilder = null;
     96         } else {
     97             tailoring.data = baseData;
     98         }
     99         ownedSettings.fastLatinOptions = CollationFastLatin.getOptions(
    100                 tailoring.data, ownedSettings,
    101                 ownedSettings.fastLatinPrimaries);
    102         tailoring.setRules(ruleString);
    103         // In Java, we do not have a rules version.
    104         // In C++, the genrb build tool reads and supplies one,
    105         // and the rulesVersion is a parameter for this method.
    106         tailoring.setVersion(base.version, 0 /* rulesVersion */);
    107         return tailoring;
    108     }
    109 
    110     /** Implements CollationRuleParser.Sink. */
    111     @Override
    112     void addReset(int strength, CharSequence str) {
    113         assert(str.length() != 0);
    114         if(str.charAt(0) == CollationRuleParser.POS_LEAD) {
    115             ces[0] = getSpecialResetPosition(str);
    116             cesLength = 1;
    117             assert((ces[0] & Collation.CASE_AND_QUATERNARY_MASK) == 0);
    118         } else {
    119             // normal reset to a character or string
    120             String nfdString = nfd.normalize(str);
    121             cesLength = dataBuilder.getCEs(nfdString, ces, 0);
    122             if(cesLength > Collation.MAX_EXPANSION_LENGTH) {
    123                 throw new IllegalArgumentException(
    124                         "reset position maps to too many collation elements (more than 31)");
    125             }
    126         }
    127         if(strength == Collator.IDENTICAL) { return; }  // simple reset-at-position
    128 
    129         // &[before strength]position
    130         assert(Collator.PRIMARY <= strength && strength <= Collator.TERTIARY);
    131         int index = findOrInsertNodeForCEs(strength);
    132 
    133         long node = nodes.elementAti(index);
    134         // If the index is for a "weaker" node,
    135         // then skip backwards over this and further "weaker" nodes.
    136         while(strengthFromNode(node) > strength) {
    137             index = previousIndexFromNode(node);
    138             node = nodes.elementAti(index);
    139         }
    140 
    141         // Find or insert a node whose index we will put into a temporary CE.
    142         if(strengthFromNode(node) == strength && isTailoredNode(node)) {
    143             // Reset to just before this same-strength tailored node.
    144             index = previousIndexFromNode(node);
    145         } else if(strength == Collator.PRIMARY) {
    146             // root primary node (has no previous index)
    147             long p = weight32FromNode(node);
    148             if(p == 0) {
    149                 throw new UnsupportedOperationException(
    150                         "reset primary-before ignorable not possible");
    151             }
    152             if(p <= rootElements.getFirstPrimary()) {
    153                 // There is no primary gap between ignorables and the space-first-primary.
    154                 throw new UnsupportedOperationException(
    155                         "reset primary-before first non-ignorable not supported");
    156             }
    157             if(p == Collation.FIRST_TRAILING_PRIMARY) {
    158                 // We do not support tailoring to an unassigned-implicit CE.
    159                 throw new UnsupportedOperationException(
    160                         "reset primary-before [first trailing] not supported");
    161             }
    162             p = rootElements.getPrimaryBefore(p, baseData.isCompressiblePrimary(p));
    163             index = findOrInsertNodeForPrimary(p);
    164             // Go to the last node in this list:
    165             // Tailor after the last node between adjacent root nodes.
    166             for(;;) {
    167                 node = nodes.elementAti(index);
    168                 int nextIndex = nextIndexFromNode(node);
    169                 if(nextIndex == 0) { break; }
    170                 index = nextIndex;
    171             }
    172         } else {
    173             // &[before 2] or &[before 3]
    174             index = findCommonNode(index, Collator.SECONDARY);
    175             if(strength >= Collator.TERTIARY) {
    176                 index = findCommonNode(index, Collator.TERTIARY);
    177             }
    178             // findCommonNode() stayed on the stronger node or moved to
    179             // an explicit common-weight node of the reset-before strength.
    180             node = nodes.elementAti(index);
    181             if(strengthFromNode(node) == strength) {
    182                 // Found a same-strength node with an explicit weight.
    183                 int weight16 = weight16FromNode(node);
    184                 if(weight16 == 0) {
    185                     throw new UnsupportedOperationException(
    186                             (strength == Collator.SECONDARY) ?
    187                                     "reset secondary-before secondary ignorable not possible" :
    188                                     "reset tertiary-before completely ignorable not possible");
    189                 }
    190                 assert(weight16 > Collation.BEFORE_WEIGHT16);
    191                 // Reset to just before this node.
    192                 // Insert the preceding same-level explicit weight if it is not there already.
    193                 // Which explicit weight immediately precedes this one?
    194                 weight16 = getWeight16Before(index, node, strength);
    195                 // Does this preceding weight have a node?
    196                 int previousWeight16;
    197                 int previousIndex = previousIndexFromNode(node);
    198                 for(int i = previousIndex;; i = previousIndexFromNode(node)) {
    199                     node = nodes.elementAti(i);
    200                     int previousStrength = strengthFromNode(node);
    201                     if(previousStrength < strength) {
    202                         assert(weight16 >= Collation.COMMON_WEIGHT16 || i == previousIndex);
    203                         // Either the reset element has an above-common weight and
    204                         // the parent node provides the implied common weight,
    205                         // or the reset element has a weight<=common in the node
    206                         // right after the parent, and we need to insert the preceding weight.
    207                         previousWeight16 = Collation.COMMON_WEIGHT16;
    208                         break;
    209                     } else if(previousStrength == strength && !isTailoredNode(node)) {
    210                         previousWeight16 = weight16FromNode(node);
    211                         break;
    212                     }
    213                     // Skip weaker nodes and same-level tailored nodes.
    214                 }
    215                 if(previousWeight16 == weight16) {
    216                     // The preceding weight has a node,
    217                     // maybe with following weaker or tailored nodes.
    218                     // Reset to the last of them.
    219                     index = previousIndex;
    220                 } else {
    221                     // Insert a node with the preceding weight, reset to that.
    222                     node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
    223                     index = insertNodeBetween(previousIndex, index, node);
    224                 }
    225             } else {
    226                 // Found a stronger node with implied strength-common weight.
    227                 int weight16 = getWeight16Before(index, node, strength);
    228                 index = findOrInsertWeakNode(index, weight16, strength);
    229             }
    230             // Strength of the temporary CE = strength of its reset position.
    231             // Code above raises an error if the before-strength is stronger.
    232             strength = ceStrength(ces[cesLength - 1]);
    233         }
    234         ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
    235     }
    236 
    237     /**
    238      * Returns the secondary or tertiary weight preceding the current node's weight.
    239      * node=nodes[index].
    240      */
    241     private int getWeight16Before(int index, long node, int level) {
    242         assert(strengthFromNode(node) < level || !isTailoredNode(node));
    243         // Collect the root CE weights if this node is for a root CE.
    244         // If it is not, then return the low non-primary boundary for a tailored CE.
    245         int t;
    246         if(strengthFromNode(node) == Collator.TERTIARY) {
    247             t = weight16FromNode(node);
    248         } else {
    249             t = Collation.COMMON_WEIGHT16;  // Stronger node with implied common weight.
    250         }
    251         while(strengthFromNode(node) > Collator.SECONDARY) {
    252             index = previousIndexFromNode(node);
    253             node = nodes.elementAti(index);
    254         }
    255         if(isTailoredNode(node)) {
    256             return Collation.BEFORE_WEIGHT16;
    257         }
    258         int s;
    259         if(strengthFromNode(node) == Collator.SECONDARY) {
    260             s = weight16FromNode(node);
    261         } else {
    262             s = Collation.COMMON_WEIGHT16;  // Stronger node with implied common weight.
    263         }
    264         while(strengthFromNode(node) > Collator.PRIMARY) {
    265             index = previousIndexFromNode(node);
    266             node = nodes.elementAti(index);
    267         }
    268         if(isTailoredNode(node)) {
    269             return Collation.BEFORE_WEIGHT16;
    270         }
    271         // [p, s, t] is a root CE. Return the preceding weight for the requested level.
    272         long p = weight32FromNode(node);
    273         int weight16;
    274         if(level == Collator.SECONDARY) {
    275             weight16 = rootElements.getSecondaryBefore(p, s);
    276         } else {
    277             weight16 = rootElements.getTertiaryBefore(p, s, t);
    278             assert((weight16 & ~Collation.ONLY_TERTIARY_MASK) == 0);
    279         }
    280         return weight16;
    281     }
    282 
    283     private long getSpecialResetPosition(CharSequence str) {
    284         assert(str.length() == 2);
    285         long ce;
    286         int strength = Collator.PRIMARY;
    287         boolean isBoundary = false;
    288         CollationRuleParser.Position pos =
    289                 CollationRuleParser.POSITION_VALUES[str.charAt(1) - CollationRuleParser.POS_BASE];
    290         switch(pos) {
    291         case FIRST_TERTIARY_IGNORABLE:
    292             // Quaternary CEs are not supported.
    293             // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
    294             return 0;
    295         case LAST_TERTIARY_IGNORABLE:
    296             return 0;
    297         case FIRST_SECONDARY_IGNORABLE: {
    298             // Look for a tailored tertiary node after [0, 0, 0].
    299             int index = findOrInsertNodeForRootCE(0, Collator.TERTIARY);
    300             long node = nodes.elementAti(index);
    301             if((index = nextIndexFromNode(node)) != 0) {
    302                 node = nodes.elementAti(index);
    303                 assert(strengthFromNode(node) <= Collator.TERTIARY);
    304                 if(isTailoredNode(node) && strengthFromNode(node) == Collator.TERTIARY) {
    305                     return tempCEFromIndexAndStrength(index, Collator.TERTIARY);
    306                 }
    307             }
    308             return rootElements.getFirstTertiaryCE();
    309             // No need to look for nodeHasAnyBefore() on a tertiary node.
    310         }
    311         case LAST_SECONDARY_IGNORABLE:
    312             ce = rootElements.getLastTertiaryCE();
    313             strength = Collator.TERTIARY;
    314             break;
    315         case FIRST_PRIMARY_IGNORABLE: {
    316             // Look for a tailored secondary node after [0, 0, *].
    317             int index = findOrInsertNodeForRootCE(0, Collator.SECONDARY);
    318             long node = nodes.elementAti(index);
    319             while((index = nextIndexFromNode(node)) != 0) {
    320                 node = nodes.elementAti(index);
    321                 strength = strengthFromNode(node);
    322                 if(strength < Collator.SECONDARY) { break; }
    323                 if(strength == Collator.SECONDARY) {
    324                     if(isTailoredNode(node)) {
    325                         if(nodeHasBefore3(node)) {
    326                             index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
    327                             assert(isTailoredNode(nodes.elementAti(index)));
    328                         }
    329                         return tempCEFromIndexAndStrength(index, Collator.SECONDARY);
    330                     } else {
    331                         break;
    332                     }
    333                 }
    334             }
    335             ce = rootElements.getFirstSecondaryCE();
    336             strength = Collator.SECONDARY;
    337             break;
    338         }
    339         case LAST_PRIMARY_IGNORABLE:
    340             ce = rootElements.getLastSecondaryCE();
    341             strength = Collator.SECONDARY;
    342             break;
    343         case FIRST_VARIABLE:
    344             ce = rootElements.getFirstPrimaryCE();
    345             isBoundary = true;  // FractionalUCA.txt: FDD1 00A0, SPACE first primary
    346             break;
    347         case LAST_VARIABLE:
    348             ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
    349             break;
    350         case FIRST_REGULAR:
    351             ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
    352             isBoundary = true;  // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
    353             break;
    354         case LAST_REGULAR:
    355             // Use the Hani-first-primary rather than the actual last "regular" CE before it,
    356             // for backward compatibility with behavior before the introduction of
    357             // script-first-primary CEs in the root collator.
    358             ce = rootElements.firstCEWithPrimaryAtLeast(
    359                 baseData.getFirstPrimaryForGroup(UScript.HAN));
    360             break;
    361         case FIRST_IMPLICIT:
    362             ce = baseData.getSingleCE(0x4e00);
    363             break;
    364         case LAST_IMPLICIT:
    365             // We do not support tailoring to an unassigned-implicit CE.
    366             throw new UnsupportedOperationException(
    367                     "reset to [last implicit] not supported");
    368         case FIRST_TRAILING:
    369             ce = Collation.makeCE(Collation.FIRST_TRAILING_PRIMARY);
    370             isBoundary = true;  // trailing first primary (there is no mapping for it)
    371             break;
    372         case LAST_TRAILING:
    373             throw new IllegalArgumentException("LDML forbids tailoring to U+FFFF");
    374         default:
    375             assert(false);
    376             return 0;
    377         }
    378 
    379         int index = findOrInsertNodeForRootCE(ce, strength);
    380         long node = nodes.elementAti(index);
    381         if((pos.ordinal() & 1) == 0) {
    382             // even pos = [first xyz]
    383             if(!nodeHasAnyBefore(node) && isBoundary) {
    384                 // A <group> first primary boundary is artificially added to FractionalUCA.txt.
    385                 // It is reachable via its special contraction, but is not normally used.
    386                 // Find the first character tailored after the boundary CE,
    387                 // or the first real root CE after it.
    388                 if((index = nextIndexFromNode(node)) != 0) {
    389                     // If there is a following node, then it must be tailored
    390                     // because there are no root CEs with a boundary primary
    391                     // and non-common secondary/tertiary weights.
    392                     node = nodes.elementAti(index);
    393                     assert(isTailoredNode(node));
    394                     ce = tempCEFromIndexAndStrength(index, strength);
    395                 } else {
    396                     assert(strength == Collator.PRIMARY);
    397                     long p = ce >>> 32;
    398                     int pIndex = rootElements.findPrimary(p);
    399                     boolean isCompressible = baseData.isCompressiblePrimary(p);
    400                     p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
    401                     ce = Collation.makeCE(p);
    402                     index = findOrInsertNodeForRootCE(ce, Collator.PRIMARY);
    403                     node = nodes.elementAti(index);
    404                 }
    405             }
    406             if(nodeHasAnyBefore(node)) {
    407                 // Get the first node that was tailored before this one at a weaker strength.
    408                 if(nodeHasBefore2(node)) {
    409                     index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
    410                     node = nodes.elementAti(index);
    411                 }
    412                 if(nodeHasBefore3(node)) {
    413                     index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
    414                 }
    415                 assert(isTailoredNode(nodes.elementAti(index)));
    416                 ce = tempCEFromIndexAndStrength(index, strength);
    417             }
    418         } else {
    419             // odd pos = [last xyz]
    420             // Find the last node that was tailored after the [last xyz]
    421             // at a strength no greater than the position's strength.
    422             for(;;) {
    423                 int nextIndex = nextIndexFromNode(node);
    424                 if(nextIndex == 0) { break; }
    425                 long nextNode = nodes.elementAti(nextIndex);
    426                 if(strengthFromNode(nextNode) < strength) { break; }
    427                 index = nextIndex;
    428                 node = nextNode;
    429             }
    430             // Do not make a temporary CE for a root node.
    431             // This last node might be the node for the root CE itself,
    432             // or a node with a common secondary or tertiary weight.
    433             if(isTailoredNode(node)) {
    434                 ce = tempCEFromIndexAndStrength(index, strength);
    435             }
    436         }
    437         return ce;
    438     }
    439 
    440     /** Implements CollationRuleParser.Sink. */
    441     @Override
    442     void addRelation(int strength, CharSequence prefix, CharSequence str, CharSequence extension) {
    443         String nfdPrefix;
    444         if(prefix.length() == 0) {
    445             nfdPrefix = "";
    446         } else {
    447             nfdPrefix = nfd.normalize(prefix);
    448         }
    449         String nfdString = nfd.normalize(str);
    450 
    451         // The runtime code decomposes Hangul syllables on the fly,
    452         // with recursive processing but without making the Jamo pieces visible for matching.
    453         // It does not work with certain types of contextual mappings.
    454         int nfdLength = nfdString.length();
    455         if(nfdLength >= 2) {
    456             char c = nfdString.charAt(0);
    457             if(Hangul.isJamoL(c) || Hangul.isJamoV(c)) {
    458                 // While handling a Hangul syllable, contractions starting with Jamo L or V
    459                 // would not see the following Jamo of that syllable.
    460                 throw new UnsupportedOperationException(
    461                         "contractions starting with conjoining Jamo L or V not supported");
    462             }
    463             c = nfdString.charAt(nfdLength - 1);
    464             if(Hangul.isJamoL(c) ||
    465                     (Hangul.isJamoV(c) && Hangul.isJamoL(nfdString.charAt(nfdLength - 2)))) {
    466                 // A contraction ending with Jamo L or L+V would require
    467                 // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
    468                 // or decomposing a following Hangul syllable on the fly, during contraction matching.
    469                 throw new UnsupportedOperationException(
    470                         "contractions ending with conjoining Jamo L or L+V not supported");
    471             }
    472             // A Hangul syllable completely inside a contraction is ok.
    473         }
    474         // Note: If there is a prefix, then the parser checked that
    475         // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
    476         // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
    477         // (While handling a Hangul syllable, prefixes on Jamo V or T
    478         // would not see the previous Jamo of that syllable.)
    479 
    480         if(strength != Collator.IDENTICAL) {
    481             // Find the node index after which we insert the new tailored node.
    482             int index = findOrInsertNodeForCEs(strength);
    483             assert(cesLength > 0);
    484             long ce = ces[cesLength - 1];
    485             if(strength == Collator.PRIMARY && !isTempCE(ce) && (ce >>> 32) == 0) {
    486                 // There is no primary gap between ignorables and the space-first-primary.
    487                 throw new UnsupportedOperationException(
    488                         "tailoring primary after ignorables not supported");
    489             }
    490             if(strength == Collator.QUATERNARY && ce == 0) {
    491                 // The CE data structure does not support non-zero quaternary weights
    492                 // on tertiary ignorables.
    493                 throw new UnsupportedOperationException(
    494                         "tailoring quaternary after tertiary ignorables not supported");
    495             }
    496             // Insert the new tailored node.
    497             index = insertTailoredNodeAfter(index, strength);
    498             // Strength of the temporary CE:
    499             // The new relation may yield a stronger CE but not a weaker one.
    500             int tempStrength = ceStrength(ce);
    501             if(strength < tempStrength) { tempStrength = strength; }
    502             ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
    503         }
    504 
    505         setCaseBits(nfdString);
    506 
    507         int cesLengthBeforeExtension = cesLength;
    508         if(extension.length() != 0) {
    509             String nfdExtension = nfd.normalize(extension);
    510             cesLength = dataBuilder.getCEs(nfdExtension, ces, cesLength);
    511             if(cesLength > Collation.MAX_EXPANSION_LENGTH) {
    512                 throw new IllegalArgumentException(
    513                         "extension string adds too many collation elements (more than 31 total)");
    514             }
    515         }
    516         int ce32 = Collation.UNASSIGNED_CE32;
    517         if((!nfdPrefix.contentEquals(prefix) || !nfdString.contentEquals(str)) &&
    518                 !ignorePrefix(prefix) && !ignoreString(str)) {
    519             // Map from the original input to the CEs.
    520             // We do this in case the canonical closure is incomplete,
    521             // so that it is possible to explicitly provide the missing mappings.
    522             ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32);
    523         }
    524         addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32);
    525         cesLength = cesLengthBeforeExtension;
    526     }
    527 
    528     /**
    529      * Picks one of the current CEs and finds or inserts a node in the graph
    530      * for the CE + strength.
    531      */
    532     private int findOrInsertNodeForCEs(int strength) {
    533         assert(Collator.PRIMARY <= strength && strength <= Collator.QUATERNARY);
    534 
    535         // Find the last CE that is at least as "strong" as the requested difference.
    536         // Note: Stronger is smaller (Collator.PRIMARY=0).
    537         long ce;
    538         for(;; --cesLength) {
    539             if(cesLength == 0) {
    540                 ce = ces[0] = 0;
    541                 cesLength = 1;
    542                 break;
    543             } else {
    544                 ce = ces[cesLength - 1];
    545             }
    546             if(ceStrength(ce) <= strength) { break; }
    547         }
    548 
    549         if(isTempCE(ce)) {
    550             // No need to findCommonNode() here for lower levels
    551             // because insertTailoredNodeAfter() will do that anyway.
    552             return indexFromTempCE(ce);
    553         }
    554 
    555         // root CE
    556         if((int)(ce >>> 56) == Collation.UNASSIGNED_IMPLICIT_BYTE) {
    557             throw new UnsupportedOperationException(
    558                     "tailoring relative to an unassigned code point not supported");
    559         }
    560         return findOrInsertNodeForRootCE(ce, strength);
    561     }
    562 
    563     private int findOrInsertNodeForRootCE(long ce, int strength) {
    564         assert((int)(ce >>> 56) != Collation.UNASSIGNED_IMPLICIT_BYTE);
    565 
    566         // Find or insert the node for each of the root CE's weights,
    567         // down to the requested level/strength.
    568         // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
    569         assert((ce & 0xc0) == 0);
    570         int index = findOrInsertNodeForPrimary(ce >>> 32);
    571         if(strength >= Collator.SECONDARY) {
    572             int lower32 = (int)ce;
    573             index = findOrInsertWeakNode(index, lower32 >>> 16, Collator.SECONDARY);
    574             if(strength >= Collator.TERTIARY) {
    575                 index = findOrInsertWeakNode(index, lower32 & Collation.ONLY_TERTIARY_MASK,
    576                                             Collator.TERTIARY);
    577             }
    578         }
    579         return index;
    580     }
    581 
    582     /**
    583      * Like Java Collections.binarySearch(List, key, Comparator).
    584      *
    585      * @return the index>=0 where the item was found,
    586      *         or the index<0 for inserting the string at ~index in sorted order
    587      *         (index into rootPrimaryIndexes)
    588      */
    589     private static final int binarySearchForRootPrimaryNode(
    590             int[] rootPrimaryIndexes, int length, long[] nodes, long p) {
    591         if(length == 0) { return ~0; }
    592         int start = 0;
    593         int limit = length;
    594         for (;;) {
    595             int i = (int)(((long)start + (long)limit) / 2);
    596             long node = nodes[rootPrimaryIndexes[i]];
    597             long nodePrimary = node >>> 32;  // weight32FromNode(node)
    598             if (p == nodePrimary) {
    599                 return i;
    600             } else if (p < nodePrimary) {
    601                 if (i == start) {
    602                     return ~start;  // insert s before i
    603                 }
    604                 limit = i;
    605             } else {
    606                 if (i == start) {
    607                     return ~(start + 1);  // insert s after i
    608                 }
    609                 start = i;
    610             }
    611         }
    612     }
    613 
    614     /** Finds or inserts the node for a root CE's primary weight. */
    615     private int findOrInsertNodeForPrimary(long p) {
    616         int rootIndex = binarySearchForRootPrimaryNode(
    617             rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
    618         if(rootIndex >= 0) {
    619             return rootPrimaryIndexes.elementAti(rootIndex);
    620         } else {
    621             // Start a new list of nodes with this primary.
    622             int index = nodes.size();
    623             nodes.addElement(nodeFromWeight32(p));
    624             rootPrimaryIndexes.insertElementAt(index, ~rootIndex);
    625             return index;
    626         }
    627     }
    628 
    629     /** Finds or inserts the node for a secondary or tertiary weight. */
    630     private int findOrInsertWeakNode(int index, int weight16, int level) {
    631         assert(0 <= index && index < nodes.size());
    632         assert(Collator.SECONDARY <= level && level <= Collator.TERTIARY);
    633 
    634         if(weight16 == Collation.COMMON_WEIGHT16) {
    635             return findCommonNode(index, level);
    636         }
    637 
    638         // If this will be the first below-common weight for the parent node,
    639         // then we will also need to insert a common weight after it.
    640         long node = nodes.elementAti(index);
    641         assert(strengthFromNode(node) < level);  // parent node is stronger
    642         if(weight16 != 0 && weight16 < Collation.COMMON_WEIGHT16) {
    643             int hasThisLevelBefore = level == Collator.SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
    644             if((node & hasThisLevelBefore) == 0) {
    645                 // The parent node has an implied level-common weight.
    646                 long commonNode =
    647                     nodeFromWeight16(Collation.COMMON_WEIGHT16) | nodeFromStrength(level);
    648                 if(level == Collator.SECONDARY) {
    649                     // Move the HAS_BEFORE3 flag from the parent node
    650                     // to the new secondary common node.
    651                     commonNode |= node & HAS_BEFORE3;
    652                     node &= ~(long)HAS_BEFORE3;
    653                 }
    654                 nodes.setElementAt(node | hasThisLevelBefore, index);
    655                 // Insert below-common-weight node.
    656                 int nextIndex = nextIndexFromNode(node);
    657                 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
    658                 index = insertNodeBetween(index, nextIndex, node);
    659                 // Insert common-weight node.
    660                 insertNodeBetween(index, nextIndex, commonNode);
    661                 // Return index of below-common-weight node.
    662                 return index;
    663             }
    664         }
    665 
    666         // Find the root CE's weight for this level.
    667         // Postpone insertion if not found:
    668         // Insert the new root node before the next stronger node,
    669         // or before the next root node with the same strength and a larger weight.
    670         int nextIndex;
    671         while((nextIndex = nextIndexFromNode(node)) != 0) {
    672             node = nodes.elementAti(nextIndex);
    673             int nextStrength = strengthFromNode(node);
    674             if(nextStrength <= level) {
    675                 // Insert before a stronger node.
    676                 if(nextStrength < level) { break; }
    677                 // nextStrength == level
    678                 if(!isTailoredNode(node)) {
    679                     int nextWeight16 = weight16FromNode(node);
    680                     if(nextWeight16 == weight16) {
    681                         // Found the node for the root CE up to this level.
    682                         return nextIndex;
    683                     }
    684                     // Insert before a node with a larger same-strength weight.
    685                     if(nextWeight16 > weight16) { break; }
    686                 }
    687             }
    688             // Skip the next node.
    689             index = nextIndex;
    690         }
    691         node = nodeFromWeight16(weight16) | nodeFromStrength(level);
    692         return insertNodeBetween(index, nextIndex, node);
    693     }
    694 
    695     /**
    696      * Makes and inserts a new tailored node into the list, after the one at index.
    697      * Skips over nodes of weaker strength to maintain collation order
    698      * ("postpone insertion").
    699      * @return the new node's index
    700      */
    701     private int insertTailoredNodeAfter(int index, int strength) {
    702         assert(0 <= index && index < nodes.size());
    703         if(strength >= Collator.SECONDARY) {
    704             index = findCommonNode(index, Collator.SECONDARY);
    705             if(strength >= Collator.TERTIARY) {
    706                 index = findCommonNode(index, Collator.TERTIARY);
    707             }
    708         }
    709         // Postpone insertion:
    710         // Insert the new node before the next one with a strength at least as strong.
    711         long node = nodes.elementAti(index);
    712         int nextIndex;
    713         while((nextIndex = nextIndexFromNode(node)) != 0) {
    714             node = nodes.elementAti(nextIndex);
    715             if(strengthFromNode(node) <= strength) { break; }
    716             // Skip the next node which has a weaker (larger) strength than the new one.
    717             index = nextIndex;
    718         }
    719         node = IS_TAILORED | nodeFromStrength(strength);
    720         return insertNodeBetween(index, nextIndex, node);
    721     }
    722 
    723     /**
    724      * Inserts a new node into the list, between list-adjacent items.
    725      * The node's previous and next indexes must not be set yet.
    726      * @return the new node's index
    727      */
    728     private int insertNodeBetween(int index, int nextIndex, long node) {
    729         assert(previousIndexFromNode(node) == 0);
    730         assert(nextIndexFromNode(node) == 0);
    731         assert(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
    732         // Append the new node and link it to the existing nodes.
    733         int newIndex = nodes.size();
    734         node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
    735         nodes.addElement(node);
    736         // nodes[index].nextIndex = newIndex
    737         node = nodes.elementAti(index);
    738         nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
    739         // nodes[nextIndex].previousIndex = newIndex
    740         if(nextIndex != 0) {
    741             node = nodes.elementAti(nextIndex);
    742             nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
    743         }
    744         return newIndex;
    745     }
    746 
    747     /**
    748      * Finds the node which implies or contains a common=05 weight of the given strength
    749      * (secondary or tertiary), if the current node is stronger.
    750      * Skips weaker nodes and tailored nodes if the current node is stronger
    751      * and is followed by an explicit-common-weight node.
    752      * Always returns the input index if that node is no stronger than the given strength.
    753      */
    754     private int findCommonNode(int index, int strength) {
    755         assert(Collator.SECONDARY <= strength && strength <= Collator.TERTIARY);
    756         long node = nodes.elementAti(index);
    757         if(strengthFromNode(node) >= strength) {
    758             // The current node is no stronger.
    759             return index;
    760         }
    761         if(strength == Collator.SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
    762             // The current node implies the strength-common weight.
    763             return index;
    764         }
    765         index = nextIndexFromNode(node);
    766         node = nodes.elementAti(index);
    767         assert(!isTailoredNode(node) && strengthFromNode(node) == strength &&
    768                 weight16FromNode(node) < Collation.COMMON_WEIGHT16);
    769         // Skip to the explicit common node.
    770         do {
    771             index = nextIndexFromNode(node);
    772             node = nodes.elementAti(index);
    773             assert(strengthFromNode(node) >= strength);
    774         } while(isTailoredNode(node) || strengthFromNode(node) > strength ||
    775                 weight16FromNode(node) < Collation.COMMON_WEIGHT16);
    776         assert(weight16FromNode(node) == Collation.COMMON_WEIGHT16);
    777         return index;
    778     }
    779 
    780     private void setCaseBits(CharSequence nfdString) {
    781         int numTailoredPrimaries = 0;
    782         for(int i = 0; i < cesLength; ++i) {
    783             if(ceStrength(ces[i]) == Collator.PRIMARY) { ++numTailoredPrimaries; }
    784         }
    785         // We should not be able to get too many case bits because
    786         // cesLength<=31==MAX_EXPANSION_LENGTH.
    787         // 31 pairs of case bits fit into an long without setting its sign bit.
    788         assert(numTailoredPrimaries <= 31);
    789 
    790         long cases = 0;
    791         if(numTailoredPrimaries > 0) {
    792             CharSequence s = nfdString;
    793             UTF16CollationIterator baseCEs = new UTF16CollationIterator(baseData, false, s, 0);
    794             int baseCEsLength = baseCEs.fetchCEs() - 1;
    795             assert(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation.NO_CE);
    796 
    797             int lastCase = 0;
    798             int numBasePrimaries = 0;
    799             for(int i = 0; i < baseCEsLength; ++i) {
    800                 long ce = baseCEs.getCE(i);
    801                 if((ce >>> 32) != 0) {
    802                     ++numBasePrimaries;
    803                     int c = ((int)ce >> 14) & 3;
    804                     assert(c == 0 || c == 2);  // lowercase or uppercase, no mixed case in any base CE
    805                     if(numBasePrimaries < numTailoredPrimaries) {
    806                         cases |= (long)c << ((numBasePrimaries - 1) * 2);
    807                     } else if(numBasePrimaries == numTailoredPrimaries) {
    808                         lastCase = c;
    809                     } else if(c != lastCase) {
    810                         // There are more base primary CEs than tailored primaries.
    811                         // Set mixed case if the case bits of the remainder differ.
    812                         lastCase = 1;
    813                         // Nothing more can change.
    814                         break;
    815                     }
    816                 }
    817             }
    818             if(numBasePrimaries >= numTailoredPrimaries) {
    819                 cases |= (long)lastCase << ((numTailoredPrimaries - 1) * 2);
    820             }
    821         }
    822 
    823         for(int i = 0; i < cesLength; ++i) {
    824             long ce = ces[i] & 0xffffffffffff3fffL;  // clear old case bits
    825             int strength = ceStrength(ce);
    826             if(strength == Collator.PRIMARY) {
    827                 ce |= (cases & 3) << 14;
    828                 cases >>>= 2;
    829             } else if(strength == Collator.TERTIARY) {
    830                 // Tertiary CEs must have uppercase bits.
    831                 // See the LDML spec, and comments in class CollationCompare.
    832                 ce |= 0x8000;
    833             }
    834             // Tertiary ignorable CEs must have 0 case bits.
    835             // We set 0 case bits for secondary CEs too
    836             // since currently only U+0345 is cased and maps to a secondary CE,
    837             // and it is lowercase. Other secondaries are uncased.
    838             // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
    839             ces[i] = ce;
    840         }
    841     }
    842 
    843     /** Implements CollationRuleParser.Sink. */
    844     @Override
    845     void suppressContractions(UnicodeSet set) {
    846         dataBuilder.suppressContractions(set);
    847     }
    848 
    849     /** Implements CollationRuleParser.Sink. */
    850     @Override
    851     void optimize(UnicodeSet set) {
    852         optimizeSet.addAll(set);
    853     }
    854 
    855     /**
    856      * Adds the mapping and its canonical closure.
    857      * Takes ce32=dataBuilder.encodeCEs(...) so that the data builder
    858      * need not re-encode the CEs multiple times.
    859      */
    860     private int addWithClosure(CharSequence nfdPrefix, CharSequence nfdString,
    861                 long[] newCEs, int newCEsLength, int ce32) {
    862         // Map from the NFD input to the CEs.
    863         ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32);
    864         ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32);
    865         addTailComposites(nfdPrefix, nfdString);
    866         return ce32;
    867     }
    868 
    869     private int addOnlyClosure(CharSequence nfdPrefix, CharSequence nfdString,
    870                 long[] newCEs, int newCEsLength, int ce32) {
    871         // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
    872         // TODO: make CanonicalIterator work with CharSequence, or maybe change arguments here to String
    873         if(nfdPrefix.length() == 0) {
    874             CanonicalIterator stringIter = new CanonicalIterator(nfdString.toString());
    875             String prefix = "";
    876             for(;;) {
    877                 String str = stringIter.next();
    878                 if(str == null) { break; }
    879                 if(ignoreString(str) || str.contentEquals(nfdString)) { continue; }
    880                 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32);
    881             }
    882         } else {
    883             CanonicalIterator prefixIter = new CanonicalIterator(nfdPrefix.toString());
    884             CanonicalIterator stringIter = new CanonicalIterator(nfdString.toString());
    885             for(;;) {
    886                 String prefix = prefixIter.next();
    887                 if(prefix == null) { break; }
    888                 if(ignorePrefix(prefix)) { continue; }
    889                 boolean samePrefix = prefix.contentEquals(nfdPrefix);
    890                 for(;;) {
    891                     String str = stringIter.next();
    892                     if(str == null) { break; }
    893                     if(ignoreString(str) || (samePrefix && str.contentEquals(nfdString))) { continue; }
    894                     ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32);
    895                 }
    896                 stringIter.reset();
    897             }
    898         }
    899         return ce32;
    900     }
    901 
    902     private void addTailComposites(CharSequence nfdPrefix, CharSequence nfdString) {
    903         // Look for the last starter in the NFD string.
    904         int lastStarter;
    905         int indexAfterLastStarter = nfdString.length();
    906         for(;;) {
    907             if(indexAfterLastStarter == 0) { return; }  // no starter at all
    908             lastStarter = Character.codePointBefore(nfdString, indexAfterLastStarter);
    909             if(nfd.getCombiningClass(lastStarter) == 0) { break; }
    910             indexAfterLastStarter -= Character.charCount(lastStarter);
    911         }
    912         // No closure to Hangul syllables since we decompose them on the fly.
    913         if(Hangul.isJamoL(lastStarter)) { return; }
    914 
    915         // Are there any composites whose decomposition starts with the lastStarter?
    916         // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
    917         // We might find some more equivalent mappings here if it did.
    918         UnicodeSet composites = new UnicodeSet();
    919         if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
    920 
    921         StringBuilder newNFDString = new StringBuilder(), newString = new StringBuilder();
    922         long[] newCEs = new long[Collation.MAX_EXPANSION_LENGTH];
    923         UnicodeSetIterator iter = new UnicodeSetIterator(composites);
    924         while(iter.next()) {
    925             assert(iter.codepoint != UnicodeSetIterator.IS_STRING);
    926             int composite = iter.codepoint;
    927             String decomp = nfd.getDecomposition(composite);
    928             if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
    929                     newNFDString, newString)) {
    930                 continue;
    931             }
    932             int newCEsLength = dataBuilder.getCEs(nfdPrefix, newNFDString, newCEs, 0);
    933             if(newCEsLength > Collation.MAX_EXPANSION_LENGTH) {
    934                 // Ignore mappings that we cannot store.
    935                 continue;
    936             }
    937             // Note: It is possible that the newCEs do not make use of the mapping
    938             // for which we are adding the tail composites, in which case we might be adding
    939             // unnecessary mappings.
    940             // For example, when we add tail composites for ae^ (^=combining circumflex),
    941             // UCA discontiguous-contraction matching does not find any matches
    942             // for ae_^ (_=any combining diacritic below) *unless* there is also
    943             // a contraction mapping for ae.
    944             // Thus, if there is no ae contraction, then the ae^ mapping is ignored
    945             // while fetching the newCEs for ae_^.
    946             // TODO: Try to detect this effectively.
    947             // (Alternatively, print a warning when prefix contractions are missing.)
    948 
    949             // We do not need an explicit mapping for the NFD strings.
    950             // It is fine if the NFD input collates like this via a sequence of mappings.
    951             // It also saves a little bit of space, and may reduce the set of characters with contractions.
    952             int ce32 = addIfDifferent(nfdPrefix, newString,
    953                                           newCEs, newCEsLength, Collation.UNASSIGNED_CE32);
    954             if(ce32 != Collation.UNASSIGNED_CE32) {
    955                 // was different, was added
    956                 addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32);
    957             }
    958         }
    959     }
    960 
    961     private boolean mergeCompositeIntoString(CharSequence nfdString, int indexAfterLastStarter,
    962                 int composite, CharSequence decomp,
    963                 StringBuilder newNFDString, StringBuilder newString) {
    964         assert(Character.codePointBefore(nfdString, indexAfterLastStarter) ==
    965                 Character.codePointAt(decomp, 0));
    966         int lastStarterLength = Character.offsetByCodePoints(decomp, 0, 1);
    967         if(lastStarterLength == decomp.length()) {
    968             // Singleton decompositions should be found by addWithClosure()
    969             // and the CanonicalIterator, so we can ignore them here.
    970             return false;
    971         }
    972         if(equalSubSequences(nfdString, indexAfterLastStarter, decomp, lastStarterLength)) {
    973             // same strings, nothing new to be found here
    974             return false;
    975         }
    976 
    977         // Make new FCD strings that combine a composite, or its decomposition,
    978         // into the nfdString's last starter and the combining marks following it.
    979         // Make an NFD version, and a version with the composite.
    980         newNFDString.setLength(0);
    981         newNFDString.append(nfdString, 0, indexAfterLastStarter);
    982         newString.setLength(0);
    983         newString.append(nfdString, 0, indexAfterLastStarter - lastStarterLength)
    984             .appendCodePoint(composite);
    985 
    986         // The following is related to discontiguous contraction matching,
    987         // but builds only FCD strings (or else returns false).
    988         int sourceIndex = indexAfterLastStarter;
    989         int decompIndex = lastStarterLength;
    990         // Small optimization: We keep the source character across loop iterations
    991         // because we do not always consume it,
    992         // and then need not fetch it again nor look up its combining class again.
    993         int sourceChar = Collation.SENTINEL_CP;
    994         // The cc variables need to be declared before the loop so that at the end
    995         // they are set to the last combining classes seen.
    996         int sourceCC = 0;
    997         int decompCC = 0;
    998         for(;;) {
    999             if(sourceChar < 0) {
   1000                 if(sourceIndex >= nfdString.length()) { break; }
   1001                 sourceChar = Character.codePointAt(nfdString, sourceIndex);
   1002                 sourceCC = nfd.getCombiningClass(sourceChar);
   1003                 assert(sourceCC != 0);
   1004             }
   1005             // We consume a decomposition character in each iteration.
   1006             if(decompIndex >= decomp.length()) { break; }
   1007             int decompChar = Character.codePointAt(decomp, decompIndex);
   1008             decompCC = nfd.getCombiningClass(decompChar);
   1009             // Compare the two characters and their combining classes.
   1010             if(decompCC == 0) {
   1011                 // Unable to merge because the source contains a non-zero combining mark
   1012                 // but the composite's decomposition contains another starter.
   1013                 // The strings would not be equivalent.
   1014                 return false;
   1015             } else if(sourceCC < decompCC) {
   1016                 // Composite + sourceChar would not be FCD.
   1017                 return false;
   1018             } else if(decompCC < sourceCC) {
   1019                 newNFDString.appendCodePoint(decompChar);
   1020                 decompIndex += Character.charCount(decompChar);
   1021             } else if(decompChar != sourceChar) {
   1022                 // Blocked because same combining class.
   1023                 return false;
   1024             } else {  // match: decompChar == sourceChar
   1025                 newNFDString.appendCodePoint(decompChar);
   1026                 decompIndex += Character.charCount(decompChar);
   1027                 sourceIndex += Character.charCount(decompChar);
   1028                 sourceChar = Collation.SENTINEL_CP;
   1029             }
   1030         }
   1031         // We are at the end of at least one of the two inputs.
   1032         if(sourceChar >= 0) {  // more characters from nfdString but not from decomp
   1033             if(sourceCC < decompCC) {
   1034                 // Appending the next source character to the composite would not be FCD.
   1035                 return false;
   1036             }
   1037             newNFDString.append(nfdString, sourceIndex, nfdString.length());
   1038             newString.append(nfdString, sourceIndex, nfdString.length());
   1039         } else if(decompIndex < decomp.length()) {  // more characters from decomp, not from nfdString
   1040             newNFDString.append(decomp, decompIndex, decomp.length());
   1041         }
   1042         assert(nfd.isNormalized(newNFDString));
   1043         assert(fcd.isNormalized(newString));
   1044         assert(nfd.normalize(newString).equals(newNFDString.toString()));  // canonically equivalent
   1045         return true;
   1046     }
   1047 
   1048     private boolean equalSubSequences(CharSequence left, int leftStart, CharSequence right, int rightStart) {
   1049         // C++ UnicodeString::compare(leftStart, 0x7fffffff, right, rightStart, 0x7fffffff) == 0
   1050         int leftLength = left.length();
   1051         if((leftLength - leftStart) != (right.length() - rightStart)) { return false; }
   1052         while(leftStart < leftLength) {
   1053             if(left.charAt(leftStart++) != right.charAt(rightStart++)) {
   1054                 return false;
   1055             }
   1056         }
   1057         return true;
   1058     }
   1059     private boolean ignorePrefix(CharSequence s) {
   1060         // Do not map non-FCD prefixes.
   1061         return !isFCD(s);
   1062     }
   1063     private boolean ignoreString(CharSequence s) {
   1064         // Do not map non-FCD strings.
   1065         // Do not map strings that start with Hangul syllables: We decompose those on the fly.
   1066         return !isFCD(s) || Hangul.isHangul(s.charAt(0));
   1067     }
   1068     private boolean isFCD(CharSequence s) {
   1069         return fcd.isNormalized(s);
   1070     }
   1071 
   1072     private static final UnicodeSet COMPOSITES = new UnicodeSet("[:NFD_QC=N:]");
   1073     static {
   1074         // Hangul is decomposed on the fly during collation.
   1075         COMPOSITES.remove(Hangul.HANGUL_BASE, Hangul.HANGUL_END);
   1076     }
   1077 
   1078     private void closeOverComposites() {
   1079         String prefix = "";  // empty
   1080         UnicodeSetIterator iter = new UnicodeSetIterator(COMPOSITES);
   1081         while(iter.next()) {
   1082             assert(iter.codepoint != UnicodeSetIterator.IS_STRING);
   1083             String nfdString = nfd.getDecomposition(iter.codepoint);
   1084             cesLength = dataBuilder.getCEs(nfdString, ces, 0);
   1085             if(cesLength > Collation.MAX_EXPANSION_LENGTH) {
   1086                 // Too many CEs from the decomposition (unusual), ignore this composite.
   1087                 // We could add a capacity parameter to getCEs() and reallocate if necessary.
   1088                 // However, this can only really happen in contrived cases.
   1089                 continue;
   1090             }
   1091             String composite = iter.getString();
   1092             addIfDifferent(prefix, composite, ces, cesLength, Collation.UNASSIGNED_CE32);
   1093         }
   1094     }
   1095 
   1096     private int addIfDifferent(CharSequence prefix, CharSequence str,
   1097                 long[] newCEs, int newCEsLength, int ce32) {
   1098         long[] oldCEs = new long[Collation.MAX_EXPANSION_LENGTH];
   1099         int oldCEsLength = dataBuilder.getCEs(prefix, str, oldCEs, 0);
   1100         if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
   1101             if(ce32 == Collation.UNASSIGNED_CE32) {
   1102                 ce32 = dataBuilder.encodeCEs(newCEs, newCEsLength);
   1103             }
   1104             dataBuilder.addCE32(prefix, str, ce32);
   1105         }
   1106         return ce32;
   1107     }
   1108 
   1109     private static boolean sameCEs(long[] ces1, int ces1Length,
   1110                 long[] ces2, int ces2Length) {
   1111         if(ces1Length != ces2Length) {
   1112             return false;
   1113         }
   1114         assert(ces1Length <= Collation.MAX_EXPANSION_LENGTH);
   1115         for(int i = 0; i < ces1Length; ++i) {
   1116             if(ces1[i] != ces2[i]) { return false; }
   1117         }
   1118         return true;
   1119     }
   1120 
   1121     private static final int alignWeightRight(int w) {
   1122         if(w != 0) {
   1123             while((w & 0xff) == 0) { w >>>= 8; }
   1124         }
   1125         return w;
   1126     }
   1127 
   1128     /**
   1129      * Walks the tailoring graph and overwrites tailored nodes with new CEs.
   1130      * After this, the graph is destroyed.
   1131      * The nodes array can then be used only as a source of tailored CEs.
   1132      */
   1133     private void makeTailoredCEs() {
   1134         CollationWeights primaries = new CollationWeights();
   1135         CollationWeights secondaries = new CollationWeights();
   1136         CollationWeights tertiaries = new CollationWeights();
   1137         long[] nodesArray = nodes.getBuffer();
   1138         if(DEBUG) {
   1139             System.out.println("\nCollationBuilder.makeTailoredCEs()");
   1140         }
   1141 
   1142         for(int rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
   1143             int i = rootPrimaryIndexes.elementAti(rpi);
   1144             long node = nodesArray[i];
   1145             long p = weight32FromNode(node);
   1146             int s = p == 0 ? 0 : Collation.COMMON_WEIGHT16;
   1147             int t = s;
   1148             int q = 0;
   1149             boolean pIsTailored = false;
   1150             boolean sIsTailored = false;
   1151             boolean tIsTailored = false;
   1152             if(DEBUG) {
   1153                 System.out.printf("\nprimary     %x\n", alignWeightRight((int)p));
   1154             }
   1155             int pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
   1156             int nextIndex = nextIndexFromNode(node);
   1157             while(nextIndex != 0) {
   1158                 i = nextIndex;
   1159                 node = nodesArray[i];
   1160                 nextIndex = nextIndexFromNode(node);
   1161                 int strength = strengthFromNode(node);
   1162                 if(strength == Collator.QUATERNARY) {
   1163                     assert(isTailoredNode(node));
   1164                     if(DEBUG) {
   1165                         System.out.print("      quat+     ");
   1166                     }
   1167                     if(q == 3) {
   1168                         // C++ U_BUFFER_OVERFLOW_ERROR
   1169                         throw new UnsupportedOperationException("quaternary tailoring gap too small");
   1170                     }
   1171                     ++q;
   1172                 } else {
   1173                     if(strength == Collator.TERTIARY) {
   1174                         if(isTailoredNode(node)) {
   1175                             if(DEBUG) {
   1176                                 System.out.print("    ter+        ");
   1177                             }
   1178                             if(!tIsTailored) {
   1179                                 // First tailored tertiary node for [p, s].
   1180                                 int tCount = countTailoredNodes(nodesArray, nextIndex,
   1181                                                                     Collator.TERTIARY) + 1;
   1182                                 int tLimit;
   1183                                 if(t == 0) {
   1184                                     // Gap at the beginning of the tertiary CE range.
   1185                                     t = rootElements.getTertiaryBoundary() - 0x100;
   1186                                     tLimit = (int)rootElements.getFirstTertiaryCE() & Collation.ONLY_TERTIARY_MASK;
   1187                                 } else if(!pIsTailored && !sIsTailored) {
   1188                                     // p and s are root weights.
   1189                                     tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
   1190                                 } else if(t == Collation.BEFORE_WEIGHT16) {
   1191                                     tLimit = Collation.COMMON_WEIGHT16;
   1192                                 } else {
   1193                                     // [p, s] is tailored.
   1194                                     assert(t == Collation.COMMON_WEIGHT16);
   1195                                     tLimit = rootElements.getTertiaryBoundary();
   1196                                 }
   1197                                 assert(tLimit == 0x4000 || (tLimit & ~Collation.ONLY_TERTIARY_MASK) == 0);
   1198                                 tertiaries.initForTertiary();
   1199                                 if(!tertiaries.allocWeights(t, tLimit, tCount)) {
   1200                                     // C++ U_BUFFER_OVERFLOW_ERROR
   1201                                     throw new UnsupportedOperationException("tertiary tailoring gap too small");
   1202                                 }
   1203                                 tIsTailored = true;
   1204                             }
   1205                             t = (int)tertiaries.nextWeight();
   1206                             assert(t != 0xffffffff);
   1207                         } else {
   1208                             t = weight16FromNode(node);
   1209                             tIsTailored = false;
   1210                             if(DEBUG) {
   1211                                 System.out.printf("    ter     %x\n", alignWeightRight(t));
   1212                             }
   1213                         }
   1214                     } else {
   1215                         if(strength == Collator.SECONDARY) {
   1216                             if(isTailoredNode(node)) {
   1217                                 if(DEBUG) {
   1218                                     System.out.print("  sec+          ");
   1219                                 }
   1220                                 if(!sIsTailored) {
   1221                                     // First tailored secondary node for p.
   1222                                     int sCount = countTailoredNodes(nodesArray, nextIndex,
   1223                                                                         Collator.SECONDARY) + 1;
   1224                                     int sLimit;
   1225                                     if(s == 0) {
   1226                                         // Gap at the beginning of the secondary CE range.
   1227                                         s = rootElements.getSecondaryBoundary() - 0x100;
   1228                                         sLimit = (int)(rootElements.getFirstSecondaryCE() >> 16);
   1229                                     } else if(!pIsTailored) {
   1230                                         // p is a root primary.
   1231                                         sLimit = rootElements.getSecondaryAfter(pIndex, s);
   1232                                     } else if(s == Collation.BEFORE_WEIGHT16) {
   1233                                         sLimit = Collation.COMMON_WEIGHT16;
   1234                                     } else {
   1235                                         // p is a tailored primary.
   1236                                         assert(s == Collation.COMMON_WEIGHT16);
   1237                                         sLimit = rootElements.getSecondaryBoundary();
   1238                                     }
   1239                                     if(s == Collation.COMMON_WEIGHT16) {
   1240                                         // Do not tailor into the getSortKey() range of
   1241                                         // compressed common secondaries.
   1242                                         s = rootElements.getLastCommonSecondary();
   1243                                     }
   1244                                     secondaries.initForSecondary();
   1245                                     if(!secondaries.allocWeights(s, sLimit, sCount)) {
   1246                                         // C++ U_BUFFER_OVERFLOW_ERROR
   1247                                         if(DEBUG) {
   1248                                             System.out.printf("!secondaries.allocWeights(%x, %x, sCount=%d)\n",
   1249                                                     alignWeightRight(s), alignWeightRight(sLimit),
   1250                                                     alignWeightRight(sCount));
   1251                                         }
   1252                                         throw new UnsupportedOperationException("secondary tailoring gap too small");
   1253                                     }
   1254                                     sIsTailored = true;
   1255                                 }
   1256                                 s = (int)secondaries.nextWeight();
   1257                                 assert(s != 0xffffffff);
   1258                             } else {
   1259                                 s = weight16FromNode(node);
   1260                                 sIsTailored = false;
   1261                                 if(DEBUG) {
   1262                                     System.out.printf("  sec       %x\n", alignWeightRight(s));
   1263                                 }
   1264                             }
   1265                         } else /* Collator.PRIMARY */ {
   1266                             assert(isTailoredNode(node));
   1267                             if(DEBUG) {
   1268                                 System.out.print("pri+            ");
   1269                             }
   1270                             if(!pIsTailored) {
   1271                                 // First tailored primary node in this list.
   1272                                 int pCount = countTailoredNodes(nodesArray, nextIndex,
   1273                                                                     Collator.PRIMARY) + 1;
   1274                                 boolean isCompressible = baseData.isCompressiblePrimary(p);
   1275                                 long pLimit =
   1276                                     rootElements.getPrimaryAfter(p, pIndex, isCompressible);
   1277                                 primaries.initForPrimary(isCompressible);
   1278                                 if(!primaries.allocWeights(p, pLimit, pCount)) {
   1279                                     // C++ U_BUFFER_OVERFLOW_ERROR  // TODO: introduce a more specific UErrorCode?
   1280                                     throw new UnsupportedOperationException("primary tailoring gap too small");
   1281                                 }
   1282                                 pIsTailored = true;
   1283                             }
   1284                             p = primaries.nextWeight();
   1285                             assert(p != 0xffffffffL);
   1286                             s = Collation.COMMON_WEIGHT16;
   1287                             sIsTailored = false;
   1288                         }
   1289                         t = s == 0 ? 0 : Collation.COMMON_WEIGHT16;
   1290                         tIsTailored = false;
   1291                     }
   1292                     q = 0;
   1293                 }
   1294                 if(isTailoredNode(node)) {
   1295                     nodesArray[i] = Collation.makeCE(p, s, t, q);
   1296                     if(DEBUG) {
   1297                         System.out.printf("%016x\n", nodesArray[i]);
   1298                     }
   1299                 }
   1300             }
   1301         }
   1302     }
   1303 
   1304     /**
   1305      * Counts the tailored nodes of the given strength up to the next node
   1306      * which is either stronger or has an explicit weight of this strength.
   1307      */
   1308     private static int countTailoredNodes(long[] nodesArray, int i, int strength) {
   1309         int count = 0;
   1310         for(;;) {
   1311             if(i == 0) { break; }
   1312             long node = nodesArray[i];
   1313             if(strengthFromNode(node) < strength) { break; }
   1314             if(strengthFromNode(node) == strength) {
   1315                 if(isTailoredNode(node)) {
   1316                     ++count;
   1317                 } else {
   1318                     break;
   1319                 }
   1320             }
   1321             i = nextIndexFromNode(node);
   1322         }
   1323         return count;
   1324     }
   1325 
   1326     private static final class CEFinalizer implements CollationDataBuilder.CEModifier {
   1327         CEFinalizer(long[] ces) {
   1328             finalCEs = ces;
   1329         }
   1330         @Override
   1331         public long modifyCE32(int ce32) {
   1332             assert(!Collation.isSpecialCE32(ce32));
   1333             if(CollationBuilder.isTempCE32(ce32)) {
   1334                 // retain case bits
   1335                 return finalCEs[CollationBuilder.indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
   1336             } else {
   1337                 return Collation.NO_CE;
   1338             }
   1339         }
   1340         @Override
   1341         public long modifyCE(long ce) {
   1342             if(CollationBuilder.isTempCE(ce)) {
   1343                 // retain case bits
   1344                 return finalCEs[CollationBuilder.indexFromTempCE(ce)] | (ce & 0xc000);
   1345             } else {
   1346                 return Collation.NO_CE;
   1347             }
   1348         }
   1349 
   1350         private long[] finalCEs;
   1351     };
   1352 
   1353     /** Replaces temporary CEs with the final CEs they point to. */
   1354     private void finalizeCEs() {
   1355         CollationDataBuilder newBuilder = new CollationDataBuilder();
   1356         newBuilder.initForTailoring(baseData);
   1357         CEFinalizer finalizer = new CEFinalizer(nodes.getBuffer());
   1358         newBuilder.copyFrom(dataBuilder, finalizer);
   1359         dataBuilder = newBuilder;
   1360     }
   1361 
   1362     /**
   1363      * Encodes "temporary CE" data into a CE that fits into the CE32 data structure,
   1364      * with 2-byte primary, 1-byte secondary and 6-bit tertiary,
   1365      * with valid CE byte values.
   1366      *
   1367      * The index must not exceed 20 bits (0xfffff).
   1368      * The strength must fit into 2 bits (Collator.PRIMARY..Collator.QUATERNARY).
   1369      *
   1370      * Temporary CEs are distinguished from real CEs by their use of
   1371      * secondary weights 06..45 which are otherwise reserved for compressed sort keys.
   1372      *
   1373      * The case bits are unused and available.
   1374      */
   1375     private static long tempCEFromIndexAndStrength(int index, int strength) {
   1376         return
   1377             // CE byte offsets, to ensure valid CE bytes, and case bits 11
   1378             0x4040000006002000L +
   1379             // index bits 19..13 -> primary byte 1 = CE bits 63..56 (byte values 40..BF)
   1380             ((long)(index & 0xfe000) << 43) +
   1381             // index bits 12..6 -> primary byte 2 = CE bits 55..48 (byte values 40..BF)
   1382             ((long)(index & 0x1fc0) << 42) +
   1383             // index bits 5..0 -> secondary byte 1 = CE bits 31..24 (byte values 06..45)
   1384             ((index & 0x3f) << 24) +
   1385             // strength bits 1..0 -> tertiary byte 1 = CE bits 13..8 (byte values 20..23)
   1386             (strength << 8);
   1387     }
   1388     private static int indexFromTempCE(long tempCE) {
   1389         tempCE -= 0x4040000006002000L;
   1390         return
   1391             ((int)(tempCE >> 43) & 0xfe000) |
   1392             ((int)(tempCE >> 42) & 0x1fc0) |
   1393             ((int)(tempCE >> 24) & 0x3f);
   1394     }
   1395     private static int strengthFromTempCE(long tempCE) {
   1396         return ((int)tempCE >> 8) & 3;
   1397     }
   1398     private static boolean isTempCE(long ce) {
   1399         int sec = (int)ce >>> 24;
   1400         return 6 <= sec && sec <= 0x45;
   1401     }
   1402 
   1403     private static int indexFromTempCE32(int tempCE32) {
   1404         tempCE32 -= 0x40400620;
   1405         return
   1406             ((tempCE32 >> 11) & 0xfe000) |
   1407             ((tempCE32 >> 10) & 0x1fc0) |
   1408             ((tempCE32 >> 8) & 0x3f);
   1409     }
   1410     private static boolean isTempCE32(int ce32) {
   1411         return
   1412             (ce32 & 0xff) >= 2 &&  // not a long-primary/long-secondary CE32
   1413             6 <= ((ce32 >> 8) & 0xff) && ((ce32 >> 8) & 0xff) <= 0x45;
   1414     }
   1415 
   1416     private static int ceStrength(long ce) {
   1417         return
   1418             isTempCE(ce) ? strengthFromTempCE(ce) :
   1419             (ce & 0xff00000000000000L) != 0 ? Collator.PRIMARY :
   1420             ((int)ce & 0xff000000) != 0 ? Collator.SECONDARY :
   1421             ce != 0 ? Collator.TERTIARY :
   1422             Collator.IDENTICAL;
   1423     }
   1424 
   1425     /** At most 1M nodes, limited by the 20 bits in node bit fields. */
   1426     private static final int MAX_INDEX = 0xfffff;
   1427     /**
   1428      * Node bit 6 is set on a primary node if there are nodes
   1429      * with secondary values below the common secondary weight (05).
   1430      */
   1431     private static final int HAS_BEFORE2 = 0x40;
   1432     /**
   1433      * Node bit 5 is set on a primary or secondary node if there are nodes
   1434      * with tertiary values below the common tertiary weight (05).
   1435      */
   1436     private static final int HAS_BEFORE3 = 0x20;
   1437     /**
   1438      * Node bit 3 distinguishes a tailored node, which has no weight value,
   1439      * from a node with an explicit (root or default) weight.
   1440      */
   1441     private static final int IS_TAILORED = 8;
   1442 
   1443     private static long nodeFromWeight32(long weight32) {
   1444         return weight32 << 32;
   1445     }
   1446     private static long nodeFromWeight16(int weight16) {
   1447         return (long)weight16 << 48;
   1448     }
   1449     private static long nodeFromPreviousIndex(int previous) {
   1450         return (long)previous << 28;
   1451     }
   1452     private static long nodeFromNextIndex(int next) {
   1453         return next << 8;
   1454     }
   1455     private static long nodeFromStrength(int strength) {
   1456         return strength;
   1457     }
   1458 
   1459     private static long weight32FromNode(long node) {
   1460         return node >>> 32;
   1461     }
   1462     private static int weight16FromNode(long node) {
   1463         return (int)(node >> 48) & 0xffff;
   1464     }
   1465     private static int previousIndexFromNode(long node) {
   1466         return (int)(node >> 28) & MAX_INDEX;
   1467     }
   1468     private static int nextIndexFromNode(long node) {
   1469         return ((int)node >> 8) & MAX_INDEX;
   1470     }
   1471     private static int strengthFromNode(long node) {
   1472         return (int)node & 3;
   1473     }
   1474 
   1475     private static boolean nodeHasBefore2(long node) {
   1476         return (node & HAS_BEFORE2) != 0;
   1477     }
   1478     private static boolean nodeHasBefore3(long node) {
   1479         return (node & HAS_BEFORE3) != 0;
   1480     }
   1481     private static boolean nodeHasAnyBefore(long node) {
   1482         return (node & (HAS_BEFORE2 | HAS_BEFORE3)) != 0;
   1483     }
   1484     private static boolean isTailoredNode(long node) {
   1485         return (node & IS_TAILORED) != 0;
   1486     }
   1487 
   1488     private static long changeNodePreviousIndex(long node, int previous) {
   1489         return (node & 0xffff00000fffffffL) | nodeFromPreviousIndex(previous);
   1490     }
   1491     private static long changeNodeNextIndex(long node, int next) {
   1492         return (node & 0xfffffffff00000ffL) | nodeFromNextIndex(next);
   1493     }
   1494 
   1495     private Normalizer2 nfd, fcd;
   1496     private Normalizer2Impl nfcImpl;
   1497 
   1498     private CollationTailoring base;
   1499     private CollationData baseData;
   1500     private CollationRootElements rootElements;
   1501     private long variableTop;
   1502 
   1503     private CollationDataBuilder dataBuilder;
   1504     private boolean fastLatinEnabled;
   1505     private UnicodeSet optimizeSet = new UnicodeSet();
   1506 
   1507     private long[] ces = new long[Collation.MAX_EXPANSION_LENGTH];
   1508     private int cesLength;
   1509 
   1510     /**
   1511      * Indexes of nodes with root primary weights, sorted by primary.
   1512      * Compact form of a TreeMap from root primary to node index.
   1513      *
   1514      * This is a performance optimization for finding reset positions.
   1515      * Without this, we would have to search through the entire nodes list.
   1516      * It also allows storing root primary weights in list head nodes,
   1517      * without previous index, leaving room in root primary nodes for 32-bit primary weights.
   1518      */
   1519     private UVector32 rootPrimaryIndexes;
   1520     /**
   1521      * Data structure for assigning tailored weights and CEs.
   1522      * Doubly-linked lists of nodes in mostly collation order.
   1523      * Each list starts with a root primary node and ends with a nextIndex of 0.
   1524      *
   1525      * When there are any nodes in the list, then there is always a root primary node at index 0.
   1526      * This allows some code not to have to check explicitly for nextIndex==0.
   1527      *
   1528      * Root primary nodes have 32-bit weights but do not have previous indexes.
   1529      * All other nodes have at most 16-bit weights and do have previous indexes.
   1530      *
   1531      * Nodes with explicit weights store root collator weights,
   1532      * or default weak weights (e.g., secondary 05) for stronger nodes.
   1533      * "Tailored" nodes, with the IS_TAILORED bit set,
   1534      * do not store explicit weights but rather
   1535      * create a difference of a certain strength from the preceding node.
   1536      *
   1537      * A root node is followed by either
   1538      * - a root/default node of the same strength, or
   1539      * - a root/default node of the next-weaker strength, or
   1540      * - a tailored node of the same strength.
   1541      *
   1542      * A node of a given strength normally implies "common" weights on weaker levels.
   1543      *
   1544      * A node with HAS_BEFORE2 must be immediately followed by
   1545      * a secondary node with an explicit below-common weight, then a secondary tailored node,
   1546      * and later an explicit common-secondary node.
   1547      * The below-common weight can be a root weight,
   1548      * or it can be BEFORE_WEIGHT16 for tailoring before an implied common weight
   1549      * or before the lowest root weight.
   1550      * (&[before 2] resets to an explicit secondary node so that
   1551      * the following addRelation(secondary) tailors right after that.
   1552      * If we did not have this node and instead were to reset on the primary node,
   1553      * then addRelation(secondary) would skip forward to the the COMMON_WEIGHT16 node.)
   1554      *
   1555      * If the flag is not set, then there are no explicit secondary nodes
   1556      * with the common or lower weights.
   1557      *
   1558      * Same for HAS_BEFORE3 for tertiary nodes and weights.
   1559      * A node must not have both flags set.
   1560      *
   1561      * Tailored CEs are initially represented in a CollationDataBuilder as temporary CEs
   1562      * which point to stable indexes in this list,
   1563      * and temporary CEs stored in a CollationDataBuilder only point to tailored nodes.
   1564      *
   1565      * A temporary CE in the ces[] array may point to a non-tailored reset-before-position node,
   1566      * until the next relation is added.
   1567      *
   1568      * At the end, the tailored weights are allocated as necessary,
   1569      * then the tailored nodes are replaced with final CEs,
   1570      * and the CollationData is rewritten by replacing temporary CEs with final ones.
   1571      *
   1572      * We cannot simply insert new nodes in the middle of the array
   1573      * because that would invalidate the indexes stored in existing temporary CEs.
   1574      * We need to use a linked graph with stable indexes to existing nodes.
   1575      * A doubly-linked list seems easiest to maintain.
   1576      *
   1577      * Each node is stored as an long, with its fields stored as bit fields.
   1578      *
   1579      * Root primary node:
   1580      * - primary weight: 32 bits 63..32
   1581      * - reserved/unused/zero: 4 bits 31..28
   1582      *
   1583      * Weaker root nodes & tailored nodes:
   1584      * - a weight: 16 bits 63..48
   1585      *   + a root or default weight for a non-tailored node
   1586      *   + unused/zero for a tailored node
   1587      * - index to the previous node: 20 bits 47..28
   1588      *
   1589      * All types of nodes:
   1590      * - index to the next node: 20 bits 27..8
   1591      *   + nextIndex=0 in last node per root-primary list
   1592      * - reserved/unused/zero bits: bits 7, 4, 2
   1593      * - HAS_BEFORE2: bit 6
   1594      * - HAS_BEFORE3: bit 5
   1595      * - IS_TAILORED: bit 3
   1596      * - the difference strength (primary/secondary/tertiary/quaternary): 2 bits 1..0
   1597      *
   1598      * We could allocate structs with pointers, but we would have to store them
   1599      * in a pointer list so that they can be indexed from temporary CEs,
   1600      * and they would require more memory allocations.
   1601      */
   1602     private UVector64 nodes;
   1603 }
   1604