Home | History | Annotate | Download | only in common
      1 //  2016 and later: Unicode, Inc. and others.
      2 // License & terms of use: http://www.unicode.org/copyright.html
      3 /*
      4  *****************************************************************************
      5  * Copyright (C) 1996-2015, International Business Machines Corporation and
      6  * others. All Rights Reserved.
      7  *****************************************************************************
      8  */
      9 
     10 #include "unicode/utypes.h"
     11 
     12 #if !UCONFIG_NO_NORMALIZATION
     13 
     14 #include "unicode/caniter.h"
     15 #include "unicode/normalizer2.h"
     16 #include "unicode/uchar.h"
     17 #include "unicode/uniset.h"
     18 #include "unicode/usetiter.h"
     19 #include "unicode/ustring.h"
     20 #include "unicode/utf16.h"
     21 #include "cmemory.h"
     22 #include "hash.h"
     23 #include "normalizer2impl.h"
     24 
     25 /**
     26  * This class allows one to iterate through all the strings that are canonically equivalent to a given
     27  * string. For example, here are some sample results:
     28 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     29 1: \u0041\u030A\u0064\u0307\u0327
     30  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     31 2: \u0041\u030A\u0064\u0327\u0307
     32  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     33 3: \u0041\u030A\u1E0B\u0327
     34  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     35 4: \u0041\u030A\u1E11\u0307
     36  = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     37 5: \u00C5\u0064\u0307\u0327
     38  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     39 6: \u00C5\u0064\u0327\u0307
     40  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     41 7: \u00C5\u1E0B\u0327
     42  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     43 8: \u00C5\u1E11\u0307
     44  = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     45 9: \u212B\u0064\u0307\u0327
     46  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA}
     47 10: \u212B\u0064\u0327\u0307
     48  = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE}
     49 11: \u212B\u1E0B\u0327
     50  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA}
     51 12: \u212B\u1E11\u0307
     52  = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE}
     53  *<br>Note: the code is intended for use with small strings, and is not suitable for larger ones,
     54  * since it has not been optimized for that situation.
     55  *@author M. Davis
     56  *@draft
     57  */
     58 
     59 // public
     60 
     61 U_NAMESPACE_BEGIN
     62 
     63 // TODO: add boilerplate methods.
     64 
     65 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator)
     66 
     67 /**
     68  *@param source string to get results for
     69  */
     70 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode &status) :
     71     pieces(NULL),
     72     pieces_length(0),
     73     pieces_lengths(NULL),
     74     current(NULL),
     75     current_length(0),
     76     nfd(*Normalizer2::getNFDInstance(status)),
     77     nfcImpl(*Normalizer2Factory::getNFCImpl(status))
     78 {
     79     if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) {
     80       setSource(sourceStr, status);
     81     }
     82 }
     83 
     84 CanonicalIterator::~CanonicalIterator() {
     85   cleanPieces();
     86 }
     87 
     88 void CanonicalIterator::cleanPieces() {
     89     int32_t i = 0;
     90     if(pieces != NULL) {
     91         for(i = 0; i < pieces_length; i++) {
     92             if(pieces[i] != NULL) {
     93                 delete[] pieces[i];
     94             }
     95         }
     96         uprv_free(pieces);
     97         pieces = NULL;
     98         pieces_length = 0;
     99     }
    100     if(pieces_lengths != NULL) {
    101         uprv_free(pieces_lengths);
    102         pieces_lengths = NULL;
    103     }
    104     if(current != NULL) {
    105         uprv_free(current);
    106         current = NULL;
    107         current_length = 0;
    108     }
    109 }
    110 
    111 /**
    112  *@return gets the source: NOTE: it is the NFD form of source
    113  */
    114 UnicodeString CanonicalIterator::getSource() {
    115   return source;
    116 }
    117 
    118 /**
    119  * Resets the iterator so that one can start again from the beginning.
    120  */
    121 void CanonicalIterator::reset() {
    122     done = FALSE;
    123     for (int i = 0; i < current_length; ++i) {
    124         current[i] = 0;
    125     }
    126 }
    127 
    128 /**
    129  *@return the next string that is canonically equivalent. The value null is returned when
    130  * the iteration is done.
    131  */
    132 UnicodeString CanonicalIterator::next() {
    133     int32_t i = 0;
    134 
    135     if (done) {
    136       buffer.setToBogus();
    137       return buffer;
    138     }
    139 
    140     // delete old contents
    141     buffer.remove();
    142 
    143     // construct return value
    144 
    145     for (i = 0; i < pieces_length; ++i) {
    146         buffer.append(pieces[i][current[i]]);
    147     }
    148     //String result = buffer.toString(); // not needed
    149 
    150     // find next value for next time
    151 
    152     for (i = current_length - 1; ; --i) {
    153         if (i < 0) {
    154             done = TRUE;
    155             break;
    156         }
    157         current[i]++;
    158         if (current[i] < pieces_lengths[i]) break; // got sequence
    159         current[i] = 0;
    160     }
    161     return buffer;
    162 }
    163 
    164 /**
    165  *@param set the source string to iterate against. This allows the same iterator to be used
    166  * while changing the source string, saving object creation.
    167  */
    168 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &status) {
    169     int32_t list_length = 0;
    170     UChar32 cp = 0;
    171     int32_t start = 0;
    172     int32_t i = 0;
    173     UnicodeString *list = NULL;
    174 
    175     nfd.normalize(newSource, source, status);
    176     if(U_FAILURE(status)) {
    177       return;
    178     }
    179     done = FALSE;
    180 
    181     cleanPieces();
    182 
    183     // catch degenerate case
    184     if (newSource.length() == 0) {
    185         pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *));
    186         pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    187         pieces_length = 1;
    188         current = (int32_t*)uprv_malloc(1 * sizeof(int32_t));
    189         current_length = 1;
    190         if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    191             status = U_MEMORY_ALLOCATION_ERROR;
    192             goto CleanPartialInitialization;
    193         }
    194         current[0] = 0;
    195         pieces[0] = new UnicodeString[1];
    196         pieces_lengths[0] = 1;
    197         if (pieces[0] == 0) {
    198             status = U_MEMORY_ALLOCATION_ERROR;
    199             goto CleanPartialInitialization;
    200         }
    201         return;
    202     }
    203 
    204 
    205     list = new UnicodeString[source.length()];
    206     if (list == 0) {
    207         status = U_MEMORY_ALLOCATION_ERROR;
    208         goto CleanPartialInitialization;
    209     }
    210 
    211     // i should initialy be the number of code units at the
    212     // start of the string
    213     i = U16_LENGTH(source.char32At(0));
    214     //int32_t i = 1;
    215     // find the segments
    216     // This code iterates through the source string and
    217     // extracts segments that end up on a codepoint that
    218     // doesn't start any decompositions. (Analysis is done
    219     // on the NFD form - see above).
    220     for (; i < source.length(); i += U16_LENGTH(cp)) {
    221         cp = source.char32At(i);
    222         if (nfcImpl.isCanonSegmentStarter(cp)) {
    223             source.extract(start, i-start, list[list_length++]); // add up to i
    224             start = i;
    225         }
    226     }
    227     source.extract(start, i-start, list[list_length++]); // add last one
    228 
    229 
    230     // allocate the arrays, and find the strings that are CE to each segment
    231     pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *));
    232     pieces_length = list_length;
    233     pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    234     current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t));
    235     current_length = list_length;
    236     if (pieces == NULL || pieces_lengths == NULL || current == NULL) {
    237         status = U_MEMORY_ALLOCATION_ERROR;
    238         goto CleanPartialInitialization;
    239     }
    240 
    241     for (i = 0; i < current_length; i++) {
    242         current[i] = 0;
    243     }
    244     // for each segment, get all the combinations that can produce
    245     // it after NFD normalization
    246     for (i = 0; i < pieces_length; ++i) {
    247         //if (PROGRESS) printf("SEGMENT\n");
    248         pieces[i] = getEquivalents(list[i], pieces_lengths[i], status);
    249     }
    250 
    251     delete[] list;
    252     return;
    253 // Common section to cleanup all local variables and reset object variables.
    254 CleanPartialInitialization:
    255     if (list != NULL) {
    256         delete[] list;
    257     }
    258     cleanPieces();
    259 }
    260 
    261 /**
    262  * Dumb recursive implementation of permutation.
    263  * TODO: optimize
    264  * @param source the string to find permutations for
    265  * @return the results in a set.
    266  */
    267 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros, Hashtable *result, UErrorCode &status) {
    268     if(U_FAILURE(status)) {
    269         return;
    270     }
    271     //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source)));
    272     int32_t i = 0;
    273 
    274     // optimization:
    275     // if zero or one character, just return a set with it
    276     // we check for length < 2 to keep from counting code points all the time
    277     if (source.length() <= 2 && source.countChar32() <= 1) {
    278         UnicodeString *toPut = new UnicodeString(source);
    279         /* test for NULL */
    280         if (toPut == 0) {
    281             status = U_MEMORY_ALLOCATION_ERROR;
    282             return;
    283         }
    284         result->put(source, toPut, status);
    285         return;
    286     }
    287 
    288     // otherwise iterate through the string, and recursively permute all the other characters
    289     UChar32 cp;
    290     Hashtable subpermute(status);
    291     if(U_FAILURE(status)) {
    292         return;
    293     }
    294     subpermute.setValueDeleter(uprv_deleteUObject);
    295 
    296     for (i = 0; i < source.length(); i += U16_LENGTH(cp)) {
    297         cp = source.char32At(i);
    298         const UHashElement *ne = NULL;
    299         int32_t el = UHASH_FIRST;
    300         UnicodeString subPermuteString = source;
    301 
    302         // optimization:
    303         // if the character is canonical combining class zero,
    304         // don't permute it
    305         if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) {
    306             //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source, i)));
    307             continue;
    308         }
    309 
    310         subpermute.removeAll();
    311 
    312         // see what the permutations of the characters before and after this one are
    313         //Hashtable *subpermute = permute(source.substring(0,i) + source.substring(i + UTF16.getCharCount(cp)));
    314         permute(subPermuteString.remove(i, U16_LENGTH(cp)), skipZeros, &subpermute, status);
    315         /* Test for buffer overflows */
    316         if(U_FAILURE(status)) {
    317             return;
    318         }
    319         // The upper remove is destructive. The question is do we have to make a copy, or we don't care about the contents
    320         // of source at this point.
    321 
    322         // prefix this character to all of them
    323         ne = subpermute.nextElement(el);
    324         while (ne != NULL) {
    325             UnicodeString *permRes = (UnicodeString *)(ne->value.pointer);
    326             UnicodeString *chStr = new UnicodeString(cp);
    327             //test for  NULL
    328             if (chStr == NULL) {
    329                 status = U_MEMORY_ALLOCATION_ERROR;
    330                 return;
    331             }
    332             chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer));
    333             //if (PROGRESS) printf("  Piece: %s\n", UToS(*chStr));
    334             result->put(*chStr, chStr, status);
    335             ne = subpermute.nextElement(el);
    336         }
    337     }
    338     //return result;
    339 }
    340 
    341 // privates
    342 
    343 // we have a segment, in NFD. Find all the strings that are canonically equivalent to it.
    344 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, int32_t &result_len, UErrorCode &status) {
    345     Hashtable result(status);
    346     Hashtable permutations(status);
    347     Hashtable basic(status);
    348     if (U_FAILURE(status)) {
    349         return 0;
    350     }
    351     result.setValueDeleter(uprv_deleteUObject);
    352     permutations.setValueDeleter(uprv_deleteUObject);
    353     basic.setValueDeleter(uprv_deleteUObject);
    354 
    355     UChar USeg[256];
    356     int32_t segLen = segment.extract(USeg, 256, status);
    357     getEquivalents2(&basic, USeg, segLen, status);
    358 
    359     // now get all the permutations
    360     // add only the ones that are canonically equivalent
    361     // TODO: optimize by not permuting any class zero.
    362 
    363     const UHashElement *ne = NULL;
    364     int32_t el = UHASH_FIRST;
    365     //Iterator it = basic.iterator();
    366     ne = basic.nextElement(el);
    367     //while (it.hasNext())
    368     while (ne != NULL) {
    369         //String item = (String) it.next();
    370         UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    371 
    372         permutations.removeAll();
    373         permute(item, CANITER_SKIP_ZEROES, &permutations, status);
    374         const UHashElement *ne2 = NULL;
    375         int32_t el2 = UHASH_FIRST;
    376         //Iterator it2 = permutations.iterator();
    377         ne2 = permutations.nextElement(el2);
    378         //while (it2.hasNext())
    379         while (ne2 != NULL) {
    380             //String possible = (String) it2.next();
    381             //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne2->value.pointer)));
    382             UnicodeString possible(*((UnicodeString *)(ne2->value.pointer)));
    383             UnicodeString attempt;
    384             nfd.normalize(possible, attempt, status);
    385 
    386             // TODO: check if operator == is semanticaly the same as attempt.equals(segment)
    387             if (attempt==segment) {
    388                 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*possible)));
    389                 // TODO: use the hashtable just to catch duplicates - store strings directly (somehow).
    390                 result.put(possible, new UnicodeString(possible), status); //add(possible);
    391             } else {
    392                 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*possible)));
    393             }
    394 
    395             ne2 = permutations.nextElement(el2);
    396         }
    397         ne = basic.nextElement(el);
    398     }
    399 
    400     /* Test for buffer overflows */
    401     if(U_FAILURE(status)) {
    402         return 0;
    403     }
    404     // convert into a String[] to clean up storage
    405     //String[] finalResult = new String[result.size()];
    406     UnicodeString *finalResult = NULL;
    407     int32_t resultCount;
    408     if((resultCount = result.count()) != 0) {
    409         finalResult = new UnicodeString[resultCount];
    410         if (finalResult == 0) {
    411             status = U_MEMORY_ALLOCATION_ERROR;
    412             return NULL;
    413         }
    414     }
    415     else {
    416         status = U_ILLEGAL_ARGUMENT_ERROR;
    417         return NULL;
    418     }
    419     //result.toArray(finalResult);
    420     result_len = 0;
    421     el = UHASH_FIRST;
    422     ne = result.nextElement(el);
    423     while(ne != NULL) {
    424         finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer));
    425         ne = result.nextElement(el);
    426     }
    427 
    428 
    429     return finalResult;
    430 }
    431 
    432 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UChar *segment, int32_t segLen, UErrorCode &status) {
    433 
    434     if (U_FAILURE(status)) {
    435         return NULL;
    436     }
    437 
    438     //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment)));
    439 
    440     UnicodeString toPut(segment, segLen);
    441 
    442     fillinResult->put(toPut, new UnicodeString(toPut), status);
    443 
    444     UnicodeSet starts;
    445 
    446     // cycle through all the characters
    447     UChar32 cp;
    448     for (int32_t i = 0; i < segLen; i += U16_LENGTH(cp)) {
    449         // see if any character is at the start of some decomposition
    450         U16_GET(segment, 0, i, segLen, cp);
    451         if (!nfcImpl.getCanonStartSet(cp, starts)) {
    452             continue;
    453         }
    454         // if so, see which decompositions match
    455         UnicodeSetIterator iter(starts);
    456         while (iter.next()) {
    457             UChar32 cp2 = iter.getCodepoint();
    458             Hashtable remainder(status);
    459             remainder.setValueDeleter(uprv_deleteUObject);
    460             if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) {
    461                 continue;
    462             }
    463 
    464             // there were some matches, so add all the possibilities to the set.
    465             UnicodeString prefix(segment, i);
    466             prefix += cp2;
    467 
    468             int32_t el = UHASH_FIRST;
    469             const UHashElement *ne = remainder.nextElement(el);
    470             while (ne != NULL) {
    471                 UnicodeString item = *((UnicodeString *)(ne->value.pointer));
    472                 UnicodeString *toAdd = new UnicodeString(prefix);
    473                 /* test for NULL */
    474                 if (toAdd == 0) {
    475                     status = U_MEMORY_ALLOCATION_ERROR;
    476                     return NULL;
    477                 }
    478                 *toAdd += item;
    479                 fillinResult->put(*toAdd, toAdd, status);
    480 
    481                 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd)));
    482 
    483                 ne = remainder.nextElement(el);
    484             }
    485         }
    486     }
    487 
    488     /* Test for buffer overflows */
    489     if(U_FAILURE(status)) {
    490         return NULL;
    491     }
    492     return fillinResult;
    493 }
    494 
    495 /**
    496  * See if the decomposition of cp2 is at segment starting at segmentPos
    497  * (with canonical rearrangment!)
    498  * If so, take the remainder, and return the equivalents
    499  */
    500 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, const UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    501 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) {
    502     //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp))));
    503     //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos);
    504 
    505     if (U_FAILURE(status)) {
    506         return NULL;
    507     }
    508 
    509     UnicodeString temp(comp);
    510     int32_t inputLen=temp.length();
    511     UnicodeString decompString;
    512     nfd.normalize(temp, decompString, status);
    513     if (U_FAILURE(status)) {
    514         return NULL;
    515     }
    516     if (decompString.isBogus()) {
    517         status = U_MEMORY_ALLOCATION_ERROR;
    518         return NULL;
    519     }
    520     const UChar *decomp=decompString.getBuffer();
    521     int32_t decompLen=decompString.length();
    522 
    523     // See if it matches the start of segment (at segmentPos)
    524     UBool ok = FALSE;
    525     UChar32 cp;
    526     int32_t decompPos = 0;
    527     UChar32 decompCp;
    528     U16_NEXT(decomp, decompPos, decompLen, decompCp);
    529 
    530     int32_t i = segmentPos;
    531     while(i < segLen) {
    532         U16_NEXT(segment, i, segLen, cp);
    533 
    534         if (cp == decompCp) { // if equal, eat another cp from decomp
    535 
    536             //if (PROGRESS) printf("  matches: %s\n", UToS(Tr(UnicodeString(cp))));
    537 
    538             if (decompPos == decompLen) { // done, have all decomp characters!
    539                 temp.append(segment+i, segLen-i);
    540                 ok = TRUE;
    541                 break;
    542             }
    543             U16_NEXT(decomp, decompPos, decompLen, decompCp);
    544         } else {
    545             //if (PROGRESS) printf("  buffer: %s\n", UToS(Tr(UnicodeString(cp))));
    546 
    547             // brute force approach
    548             temp.append(cp);
    549 
    550             /* TODO: optimize
    551             // since we know that the classes are monotonically increasing, after zero
    552             // e.g. 0 5 7 9 0 3
    553             // we can do an optimization
    554             // there are only a few cases that work: zero, less, same, greater
    555             // if both classes are the same, we fail
    556             // if the decomp class < the segment class, we fail
    557 
    558             segClass = getClass(cp);
    559             if (decompClass <= segClass) return null;
    560             */
    561         }
    562     }
    563     if (!ok)
    564         return NULL; // we failed, characters left over
    565 
    566     //if (PROGRESS) printf("Matches\n");
    567 
    568     if (inputLen == temp.length()) {
    569         fillinResult->put(UnicodeString(), new UnicodeString(), status);
    570         return fillinResult; // succeed, but no remainder
    571     }
    572 
    573     // brute force approach
    574     // check to make sure result is canonically equivalent
    575     UnicodeString trial;
    576     nfd.normalize(temp, trial, status);
    577     if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPos) != 0) {
    578         return NULL;
    579     }
    580 
    581     return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length()-inputLen, status);
    582 }
    583 
    584 U_NAMESPACE_END
    585 
    586 #endif /* #if !UCONFIG_NO_NORMALIZATION */
    587