1 // 2016 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 /* 4 ******************************************************************************* 5 * 6 * Copyright (C) 2000-2016, International Business Machines 7 * Corporation and others. All Rights Reserved. 8 * 9 ******************************************************************************* 10 * file name: genmbcs.cpp 11 * encoding: UTF-8 12 * tab size: 8 (not used) 13 * indentation:4 14 * 15 * created on: 2000jul06 16 * created by: Markus W. Scherer 17 */ 18 19 #include <stdio.h> 20 #include "unicode/utypes.h" 21 #include "cstring.h" 22 #include "cmemory.h" 23 #include "unewdata.h" 24 #include "ucnv_cnv.h" 25 #include "ucnvmbcs.h" 26 #include "ucm.h" 27 #include "makeconv.h" 28 #include "genmbcs.h" 29 30 /* 31 * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode files. 32 * Reduce tests for maxCharLength. 33 */ 34 35 struct MBCSData { 36 NewConverter newConverter; 37 38 UCMFile *ucm; 39 40 /* toUnicode (state table in ucm->states) */ 41 _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT]; 42 int32_t countToUFallbacks; 43 uint16_t *unicodeCodeUnits; 44 45 /* fromUnicode */ 46 uint16_t stage1[MBCS_STAGE_1_SIZE]; 47 uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepages */ 48 uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */ 49 uint8_t *fromUBytes; 50 uint32_t stage2Top, stage3Top; 51 52 /* fromUTF8 */ 53 uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0xffff */ 54 55 /* 56 * Maximum UTF-8-friendly code point. 57 * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100. 58 * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff. 59 */ 60 uint16_t utf8Max; 61 62 UBool utf8Friendly; 63 UBool omitFromU; 64 }; 65 66 /* prototypes */ 67 U_CDECL_BEGIN 68 static void 69 MBCSClose(NewConverter *cnvData); 70 71 static UBool 72 MBCSStartMappings(MBCSData *mbcsData); 73 74 static UBool 75 MBCSAddToUnicode(MBCSData *mbcsData, 76 const uint8_t *bytes, int32_t length, 77 UChar32 c, 78 int8_t flag); 79 80 static UBool 81 MBCSIsValid(NewConverter *cnvData, 82 const uint8_t *bytes, int32_t length); 83 84 static UBool 85 MBCSSingleAddFromUnicode(MBCSData *mbcsData, 86 const uint8_t *bytes, int32_t length, 87 UChar32 c, 88 int8_t flag); 89 90 static UBool 91 MBCSAddFromUnicode(MBCSData *mbcsData, 92 const uint8_t *bytes, int32_t length, 93 UChar32 c, 94 int8_t flag); 95 96 static void 97 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData); 98 99 static UBool 100 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); 101 102 static uint32_t 103 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, 104 UNewDataMemory *pData, int32_t tableType); 105 U_CDECL_END 106 107 /* helper ------------------------------------------------------------------- */ 108 109 static inline char 110 hexDigit(uint8_t digit) { 111 return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); 112 } 113 114 static inline char * 115 printBytes(char *buffer, const uint8_t *bytes, int32_t length) { 116 char *s=buffer; 117 while(length>0) { 118 *s++=hexDigit((uint8_t)(*bytes>>4)); 119 *s++=hexDigit((uint8_t)(*bytes&0xf)); 120 ++bytes; 121 --length; 122 } 123 124 *s=0; 125 return buffer; 126 } 127 128 /* implementation ----------------------------------------------------------- */ 129 130 static MBCSData gDummy; 131 132 133 U_CFUNC const MBCSData * 134 MBCSGetDummy() { 135 uprv_memset(&gDummy, 0, sizeof(MBCSData)); 136 137 /* 138 * Set "pessimistic" values which may sometimes move too many 139 * mappings to the extension table (but never too few). 140 * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the 141 * largest set of mappings. 142 * Assume maxCharLength>1. 143 */ 144 gDummy.utf8Friendly=TRUE; 145 if(SMALL) { 146 gDummy.utf8Max=0xffff; 147 gDummy.omitFromU=TRUE; 148 } else { 149 gDummy.utf8Max=MBCS_UTF8_MAX; 150 } 151 return &gDummy; 152 } 153 154 static void 155 MBCSInit(MBCSData *mbcsData, UCMFile *ucm) { 156 uprv_memset(mbcsData, 0, sizeof(MBCSData)); 157 158 mbcsData->ucm=ucm; /* aliased, not owned */ 159 160 mbcsData->newConverter.close=MBCSClose; 161 mbcsData->newConverter.isValid=MBCSIsValid; 162 mbcsData->newConverter.addTable=MBCSAddTable; 163 mbcsData->newConverter.write=MBCSWrite; 164 } 165 166 U_CFUNC NewConverter * 167 MBCSOpen(UCMFile *ucm) { 168 MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData)); 169 if(mbcsData==NULL) { 170 printf("out of memory\n"); 171 exit(U_MEMORY_ALLOCATION_ERROR); 172 } 173 174 MBCSInit(mbcsData, ucm); 175 return &mbcsData->newConverter; 176 } 177 178 static void 179 MBCSDestruct(MBCSData *mbcsData) { 180 uprv_free(mbcsData->unicodeCodeUnits); 181 uprv_free(mbcsData->fromUBytes); 182 } 183 184 U_CDECL_BEGIN 185 static void 186 MBCSClose(NewConverter *cnvData) { 187 MBCSData *mbcsData=(MBCSData *)cnvData; 188 if(mbcsData!=NULL) { 189 MBCSDestruct(mbcsData); 190 uprv_free(mbcsData); 191 } 192 } 193 U_CDECL_END 194 195 static UBool 196 MBCSStartMappings(MBCSData *mbcsData) { 197 int32_t i, sum, maxCharLength, 198 stage2NullLength, stage2AllocLength, 199 stage3NullLength, stage3AllocLength; 200 201 /* toUnicode */ 202 203 /* allocate the code unit array and prefill it with "unassigned" values */ 204 sum=mbcsData->ucm->states.countToUCodeUnits; 205 if(VERBOSE) { 206 printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)sum); 207 } 208 209 if(sum>0) { 210 mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t)); 211 if(mbcsData->unicodeCodeUnits==NULL) { 212 fprintf(stderr, "error: out of memory allocating %ld 16-bit code units\n", 213 (long)sum); 214 return FALSE; 215 } 216 for(i=0; i<sum; ++i) { 217 mbcsData->unicodeCodeUnits[i]=0xfffe; 218 } 219 } 220 221 /* fromUnicode */ 222 maxCharLength=mbcsData->ucm->states.maxCharLength; 223 224 /* allocate the codepage mappings and preset the first 16 characters to 0 */ 225 if(maxCharLength==1) { 226 /* allocate 64k 16-bit results for single-byte codepages */ 227 sum=0x20000; 228 } else { 229 /* allocate 1M * maxCharLength bytes for at most 1M mappings */ 230 sum=0x100000*maxCharLength; 231 } 232 mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum); 233 if(mbcsData->fromUBytes==NULL) { 234 fprintf(stderr, "error: out of memory allocating %ld B for target mappings\n", (long)sum); 235 return FALSE; 236 } 237 uprv_memset(mbcsData->fromUBytes, 0, sum); 238 239 /* 240 * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time. 241 * See ucnvmbcs.h for details. 242 * 243 * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which 244 * assumes that the initial stage 2/3 blocks are the all-unassigned ones. 245 * Therefore, we refine the data structure while maintaining this placement 246 * even though it would be convenient to allocate the ASCII block at the 247 * beginning of stage 3, for example. 248 * 249 * UTF-8-friendly fromUnicode tries work from sorted tables and are built 250 * pre-compacted, overlapping adjacent stage 2/3 blocks. 251 * This is necessary because the block allocation and compaction changes 252 * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional 253 * stage table uses direct indexes into stage 3, without a multiplier and 254 * thus with a smaller reach. 255 * 256 * Non-UTF-8-friendly fromUnicode tries work from unsorted tables 257 * (because implicit precision is used), and are compacted 258 * in post-processing. 259 * 260 * Preallocation for UTF-8-friendly fromUnicode tries: 261 * 262 * Stage 3: 263 * 64-entry all-unassigned first block followed by ASCII (128 entries). 264 * 265 * Stage 2: 266 * 64-entry all-unassigned first block followed by preallocated 267 * 64-block for ASCII. 268 */ 269 270 /* Preallocate ASCII as a linear 128-entry stage 3 block. */ 271 stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE; 272 stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE; 273 274 stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE; 275 stage3AllocLength=128; /* ASCII U+0000..U+007f */ 276 277 /* Initialize stage 1 for the preallocated blocks. */ 278 sum=stage2NullLength; 279 for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) { 280 mbcsData->stage1[i]=sum; 281 sum+=MBCS_STAGE_2_BLOCK_SIZE; 282 } 283 mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */ 284 285 /* 286 * Stage 2 indexes count 16-blocks in stage 3 as follows: 287 * SBCS: directly, indexes increment by 16 288 * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes increment by 1 289 * MBCS UTF-8: directly, indexes increment by 16 290 */ 291 if(maxCharLength==1) { 292 sum=stage3NullLength; 293 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { 294 mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum; 295 sum+=MBCS_STAGE_3_BLOCK_SIZE; 296 } 297 } else { 298 sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY; 299 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { 300 mbcsData->stage2[mbcsData->stage1[0]+i]=sum; 301 sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY; 302 } 303 } 304 305 sum=stage3NullLength; 306 for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) { 307 mbcsData->stageUTF8[i]=sum; 308 sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE; 309 } 310 311 /* 312 * Allocate a 64-entry all-unassigned first stage 3 block, 313 * for UTF-8-friendly lookup with a trail byte, 314 * plus 128 entries for ASCII. 315 */ 316 mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* ==sum*maxCharLength */ 317 318 return TRUE; 319 } 320 321 /* return TRUE for success */ 322 static UBool 323 setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) { 324 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); 325 if(i>=0) { 326 /* if there is already a fallback for this offset, then overwrite it */ 327 mbcsData->toUFallbacks[i].codePoint=c; 328 return TRUE; 329 } else { 330 /* if there is no fallback for this offset, then add one */ 331 i=mbcsData->countToUFallbacks; 332 if(i>=MBCS_MAX_FALLBACK_COUNT) { 333 fprintf(stderr, "error: too many toUnicode fallbacks, currently at: U+%x\n", (int)c); 334 return FALSE; 335 } else { 336 mbcsData->toUFallbacks[i].offset=offset; 337 mbcsData->toUFallbacks[i].codePoint=c; 338 mbcsData->countToUFallbacks=i+1; 339 return TRUE; 340 } 341 } 342 } 343 344 /* remove fallback if there is one with this offset; return the code point if there was such a fallback, otherwise -1 */ 345 static int32_t 346 removeFallback(MBCSData *mbcsData, uint32_t offset) { 347 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbacks, offset); 348 if(i>=0) { 349 _MBCSToUFallback *toUFallbacks; 350 int32_t limit, old; 351 352 toUFallbacks=mbcsData->toUFallbacks; 353 limit=mbcsData->countToUFallbacks; 354 old=(int32_t)toUFallbacks[i].codePoint; 355 356 /* copy the last fallback entry here to keep the list contiguous */ 357 toUFallbacks[i].offset=toUFallbacks[limit-1].offset; 358 toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint; 359 mbcsData->countToUFallbacks=limit-1; 360 return old; 361 } else { 362 return -1; 363 } 364 } 365 366 /* 367 * isFallback is almost a boolean: 368 * 1 (TRUE) this is a fallback mapping 369 * 0 (FALSE) this is a precise mapping 370 * -1 the precision of this mapping is not specified 371 */ 372 static UBool 373 MBCSAddToUnicode(MBCSData *mbcsData, 374 const uint8_t *bytes, int32_t length, 375 UChar32 c, 376 int8_t flag) { 377 char buffer[10]; 378 uint32_t offset=0; 379 int32_t i=0, entry, old; 380 uint8_t state=0; 381 382 if(mbcsData->ucm->states.countStates==0) { 383 fprintf(stderr, "error: there is no state information!\n"); 384 return FALSE; 385 } 386 387 /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1 */ 388 if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) { 389 state=1; 390 } 391 392 /* 393 * Walk down the state table like in conversion, 394 * much like getNextUChar(). 395 * We assume that c<=0x10ffff. 396 */ 397 for(i=0;;) { 398 entry=mbcsData->ucm->states.stateTable[state][bytes[i++]]; 399 if(MBCS_ENTRY_IS_TRANSITION(entry)) { 400 if(i==length) { 401 fprintf(stderr, "error: byte sequence too short, ends in non-final state %hu: 0x%s (U+%x)\n", 402 (short)state, printBytes(buffer, bytes, length), (int)c); 403 return FALSE; 404 } 405 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); 406 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); 407 } else { 408 if(i<length) { 409 fprintf(stderr, "error: byte sequence too long by %d bytes, final state %u: 0x%s (U+%x)\n", 410 (int)(length-i), state, printBytes(buffer, bytes, length), (int)c); 411 return FALSE; 412 } 413 switch(MBCS_ENTRY_FINAL_ACTION(entry)) { 414 case MBCS_STATE_ILLEGAL: 415 fprintf(stderr, "error: byte sequence ends in illegal state at U+%04x<->0x%s\n", 416 (int)c, printBytes(buffer, bytes, length)); 417 return FALSE; 418 case MBCS_STATE_CHANGE_ONLY: 419 fprintf(stderr, "error: byte sequence ends in state-change-only at U+%04x<->0x%s\n", 420 (int)c, printBytes(buffer, bytes, length)); 421 return FALSE; 422 case MBCS_STATE_UNASSIGNED: 423 fprintf(stderr, "error: byte sequence ends in unassigned state at U+%04x<->0x%s\n", 424 (int)c, printBytes(buffer, bytes, length)); 425 return FALSE; 426 case MBCS_STATE_FALLBACK_DIRECT_16: 427 case MBCS_STATE_VALID_DIRECT_16: 428 case MBCS_STATE_FALLBACK_DIRECT_20: 429 case MBCS_STATE_VALID_DIRECT_20: 430 if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16, 0xfffe)) { 431 /* the "direct" action's value is not "valid-direct-16-unassigned" any more */ 432 if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_16 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) { 433 old=MBCS_ENTRY_FINAL_VALUE(entry); 434 } else { 435 old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); 436 } 437 if(flag>=0) { 438 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", 439 (int)c, printBytes(buffer, bytes, length), (int)old); 440 return FALSE; 441 } else if(VERBOSE) { 442 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", 443 (int)c, printBytes(buffer, bytes, length), (int)old); 444 } 445 /* 446 * Continue after the above warning 447 * if the precision of the mapping is unspecified. 448 */ 449 } 450 /* reassign the correct action code */ 451 entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIRECT_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0))); 452 453 /* put the code point into bits 22..7 for BMP, c-0x10000 into 26..7 for others */ 454 if(c<=0xffff) { 455 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c); 456 } else { 457 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000); 458 } 459 mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry; 460 break; 461 case MBCS_STATE_VALID_16: 462 /* bits 26..16 are not used, 0 */ 463 /* bits 15..7 contain the final offset delta to one 16-bit code unit */ 464 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 465 /* check that this byte sequence is still unassigned */ 466 if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=removeFallback(mbcsData, offset))!=-1) { 467 if(flag>=0) { 468 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", 469 (int)c, printBytes(buffer, bytes, length), (int)old); 470 return FALSE; 471 } else if(VERBOSE) { 472 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", 473 (int)c, printBytes(buffer, bytes, length), (int)old); 474 } 475 } 476 if(c>=0x10000) { 477 fprintf(stderr, "error: code point does not fit into valid-16-bit state at U+%04x<->0x%s\n", 478 (int)c, printBytes(buffer, bytes, length)); 479 return FALSE; 480 } 481 if(flag>0) { 482 /* assign only if there is no precise mapping */ 483 if(mbcsData->unicodeCodeUnits[offset]==0xfffe) { 484 return setFallback(mbcsData, offset, c); 485 } 486 } else { 487 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; 488 } 489 break; 490 case MBCS_STATE_VALID_16_PAIR: 491 /* bits 26..16 are not used, 0 */ 492 /* bits 15..7 contain the final offset delta to two 16-bit code units */ 493 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); 494 /* check that this byte sequence is still unassigned */ 495 old=mbcsData->unicodeCodeUnits[offset]; 496 if(old<0xfffe) { 497 int32_t real; 498 if(old<0xd800) { 499 real=old; 500 } else if(old<=0xdfff) { 501 real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUnits[offset+1])&0x3ff); 502 } else /* old<=0xe001 */ { 503 real=mbcsData->unicodeCodeUnits[offset+1]; 504 } 505 if(flag>=0) { 506 fprintf(stderr, "error: duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", 507 (int)c, printBytes(buffer, bytes, length), (int)real); 508 return FALSE; 509 } else if(VERBOSE) { 510 fprintf(stderr, "duplicate codepage byte sequence at U+%04x<->0x%s see U+%04x\n", 511 (int)c, printBytes(buffer, bytes, length), (int)real); 512 } 513 } 514 if(flag>0) { 515 /* assign only if there is no precise mapping */ 516 if(old<=0xdbff || old==0xe000) { 517 /* do nothing */ 518 } else if(c<=0xffff) { 519 /* set a BMP fallback code point as a pair with 0xe001 */ 520 mbcsData->unicodeCodeUnits[offset++]=0xe001; 521 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; 522 } else { 523 /* set a fallback surrogate pair with two second surrogates */ 524 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(c>>10)); 525 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); 526 } 527 } else { 528 if(c<0xd800) { 529 /* set a BMP code point */ 530 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; 531 } else if(c<=0xffff) { 532 /* set a BMP code point above 0xd800 as a pair with 0xe000 */ 533 mbcsData->unicodeCodeUnits[offset++]=0xe000; 534 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; 535 } else { 536 /* set a surrogate pair */ 537 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(c>>10)); 538 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&0x3ff)); 539 } 540 } 541 break; 542 default: 543 /* reserved, must never occur */ 544 fprintf(stderr, "internal error: byte sequence reached reserved action code, entry 0x%02x: 0x%s (U+%x)\n", 545 (int)entry, printBytes(buffer, bytes, length), (int)c); 546 return FALSE; 547 } 548 549 return TRUE; 550 } 551 } 552 } 553 554 U_CDECL_BEGIN 555 /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode()) */ 556 static UBool 557 MBCSIsValid(NewConverter *cnvData, 558 const uint8_t *bytes, int32_t length) { 559 MBCSData *mbcsData=(MBCSData *)cnvData; 560 561 return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length)); 562 } 563 U_CDECL_END 564 static UBool 565 MBCSSingleAddFromUnicode(MBCSData *mbcsData, 566 const uint8_t *bytes, int32_t /*length*/, 567 UChar32 c, 568 int8_t flag) { 569 uint16_t *stage3, *p; 570 uint32_t idx; 571 uint16_t old; 572 uint8_t b; 573 574 uint32_t blockSize, newTop, i, nextOffset, newBlock, min; 575 576 /* ignore |2 SUB mappings */ 577 if(flag==2) { 578 return TRUE; 579 } 580 581 /* 582 * Walk down the triple-stage compact array ("trie") and 583 * allocate parts as necessary. 584 * Note that the first stage 2 and 3 blocks are reserved for all-unassigned mappings. 585 * We assume that length<=maxCharLength and that c<=0x10ffff. 586 */ 587 stage3=(uint16_t *)mbcsData->fromUBytes; 588 b=*bytes; 589 590 /* inspect stage 1 */ 591 idx=c>>MBCS_STAGE_1_SHIFT; 592 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { 593 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); 594 } else { 595 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; 596 } 597 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { 598 /* allocate another block in stage 2 */ 599 newBlock=mbcsData->stage2Top; 600 if(mbcsData->utf8Friendly) { 601 min=newBlock-nextOffset; /* minimum block start with overlap */ 602 while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) { 603 --newBlock; 604 } 605 } 606 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; 607 608 if(newTop>MBCS_MAX_STAGE_2_TOP) { 609 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\n", (int)c, b); 610 return FALSE; 611 } 612 613 /* 614 * each stage 2 block contains 64 16-bit words: 615 * 6 code point bits 9..4 with 1 stage 3 index 616 */ 617 mbcsData->stage1[idx]=(uint16_t)newBlock; 618 mbcsData->stage2Top=newTop; 619 } 620 621 /* inspect stage 2 */ 622 idx=mbcsData->stage1[idx]+nextOffset; 623 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { 624 /* allocate 64-entry blocks for UTF-8-friendly lookup */ 625 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE; 626 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; 627 } else { 628 blockSize=MBCS_STAGE_3_BLOCK_SIZE; 629 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; 630 } 631 if(mbcsData->stage2Single[idx]==0) { 632 /* allocate another block in stage 3 */ 633 newBlock=mbcsData->stage3Top; 634 if(mbcsData->utf8Friendly) { 635 min=newBlock-nextOffset; /* minimum block start with overlap */ 636 while(min<newBlock && stage3[newBlock-1]==0) { 637 --newBlock; 638 } 639 } 640 newTop=newBlock+blockSize; 641 642 if(newTop>MBCS_STAGE_3_SBCS_SIZE) { 643 fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n", (int)c, b); 644 return FALSE; 645 } 646 /* each block has 16 uint16_t entries */ 647 i=idx; 648 while(newBlock<newTop) { 649 mbcsData->stage2Single[i++]=(uint16_t)newBlock; 650 newBlock+=MBCS_STAGE_3_BLOCK_SIZE; 651 } 652 mbcsData->stage3Top=newTop; /* ==newBlock */ 653 } 654 655 /* write the codepage entry into stage 3 and get the previous entry */ 656 p=stage3+mbcsData->stage2Single[idx]+nextOffset; 657 old=*p; 658 if(flag<=0) { 659 *p=(uint16_t)(0xf00|b); 660 } else if(IS_PRIVATE_USE(c)) { 661 *p=(uint16_t)(0xc00|b); 662 } else { 663 *p=(uint16_t)(0x800|b); 664 } 665 666 /* check that this Unicode code point was still unassigned */ 667 if(old>=0x100) { 668 if(flag>=0) { 669 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", 670 (int)c, b, old&0xff); 671 return FALSE; 672 } else if(VERBOSE) { 673 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see 0x%02x\n", 674 (int)c, b, old&0xff); 675 } 676 /* continue after the above warning if the precision of the mapping is unspecified */ 677 } 678 679 return TRUE; 680 } 681 682 static UBool 683 MBCSAddFromUnicode(MBCSData *mbcsData, 684 const uint8_t *bytes, int32_t length, 685 UChar32 c, 686 int8_t flag) { 687 char buffer[10]; 688 const uint8_t *pb; 689 uint8_t *stage3, *p; 690 uint32_t idx, b, old, stage3Index; 691 int32_t maxCharLength; 692 693 uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverlap; 694 695 maxCharLength=mbcsData->ucm->states.maxCharLength; 696 697 if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO && 698 (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf)) 699 ) { 700 fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage: U+%04x<->0x%s\n", 701 (int)c, printBytes(buffer, bytes, length)); 702 return FALSE; 703 } 704 705 if(flag==1 && length==1 && *bytes==0) { 706 fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x%02x\n", 707 (int)c, *bytes); 708 return FALSE; 709 } 710 711 /* 712 * Walk down the triple-stage compact array ("trie") and 713 * allocate parts as necessary. 714 * Note that the first stage 2 and 3 blocks are reserved for 715 * all-unassigned mappings. 716 * We assume that length<=maxCharLength and that c<=0x10ffff. 717 */ 718 stage3=mbcsData->fromUBytes; 719 720 /* inspect stage 1 */ 721 idx=c>>MBCS_STAGE_1_SHIFT; 722 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { 723 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_STAGE_3_BLOCKS-1); 724 } else { 725 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; 726 } 727 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { 728 /* allocate another block in stage 2 */ 729 newBlock=mbcsData->stage2Top; 730 if(mbcsData->utf8Friendly) { 731 min=newBlock-nextOffset; /* minimum block start with overlap */ 732 while(min<newBlock && mbcsData->stage2[newBlock-1]==0) { 733 --newBlock; 734 } 735 } 736 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; 737 738 if(newTop>MBCS_MAX_STAGE_2_TOP) { 739 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n", 740 (int)c, printBytes(buffer, bytes, length)); 741 return FALSE; 742 } 743 744 /* 745 * each stage 2 block contains 64 32-bit words: 746 * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags and bits 15..0 stage 3 index 747 */ 748 i=idx; 749 while(newBlock<newTop) { 750 mbcsData->stage1[i++]=(uint16_t)newBlock; 751 newBlock+=MBCS_STAGE_2_BLOCK_SIZE; 752 } 753 mbcsData->stage2Top=newTop; /* ==newBlock */ 754 } 755 756 /* inspect stage 2 */ 757 idx=mbcsData->stage1[idx]+nextOffset; 758 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { 759 /* allocate 64-entry blocks for UTF-8-friendly lookup */ 760 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength; 761 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; 762 } else { 763 blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; 764 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; 765 } 766 if(mbcsData->stage2[idx]==0) { 767 /* allocate another block in stage 3 */ 768 newBlock=mbcsData->stage3Top; 769 if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) { 770 /* 771 * Overlap stage 3 blocks only in multiples of 16-entry blocks 772 * because of the indexing granularity in stage 2. 773 */ 774 maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength; 775 for(overlap=0; 776 overlap<maxOverlap && stage3[newBlock-overlap-1]==0; 777 ++overlap) {} 778 779 overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength; 780 overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength; 781 782 newBlock-=overlap; 783 } 784 newTop=newBlock+blockSize; 785 786 if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) { 787 fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n", 788 (int)c, printBytes(buffer, bytes, length)); 789 return FALSE; 790 } 791 /* each block has 16*maxCharLength bytes */ 792 i=idx; 793 while(newBlock<newTop) { 794 mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLength; 795 newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; 796 } 797 mbcsData->stage3Top=newTop; /* ==newBlock */ 798 } 799 800 stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[idx]; 801 802 /* Build an alternate, UTF-8-friendly stage table as well. */ 803 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { 804 /* Overflow for uint16_t entries in stageUTF8? */ 805 if(stage3Index>0xffff) { 806 /* 807 * This can occur only if the mapping table is nearly perfectly filled and if 808 * utf8Max==0xffff. 809 * (There is no known charset like this. GB 18030 does not map 810 * surrogate code points and LMBCS does not map 256 PUA code points.) 811 * 812 * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff 813 * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT) 814 * because we have a sorted table and there are at most MBCS_UTF8_LIMIT 815 * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also 816 * the initial all-unassigned block in stage3. 817 * 818 * Solution for the overflow: Reduce utf8Max to the next lower value, 0xfeff. 819 * 820 * (See svn revision 20866 of the markus/ucnvutf8 feature branch for 821 * code that causes MBCSAddTable() to rebuild the table not utf8Friendly 822 * in case of overflow. That code was not tested.) 823 */ 824 mbcsData->utf8Max=0xfeff; 825 } else { 826 /* 827 * The stage 3 block has been assigned for the regular trie. 828 * Just copy its index into stageUTF8[], without the granularity. 829 */ 830 mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index; 831 } 832 } 833 834 /* write the codepage bytes into stage 3 and get the previous bytes */ 835 836 /* assemble the bytes into a single integer */ 837 pb=bytes; 838 b=0; 839 switch(length) { 840 case 4: 841 b=*pb++; 842 U_FALLTHROUGH; 843 case 3: 844 b=(b<<8)|*pb++; 845 U_FALLTHROUGH; 846 case 2: 847 b=(b<<8)|*pb++; 848 U_FALLTHROUGH; 849 case 1: 850 default: 851 b=(b<<8)|*pb++; 852 break; 853 } 854 855 old=0; 856 p=stage3+(stage3Index+nextOffset)*maxCharLength; 857 switch(maxCharLength) { 858 case 2: 859 old=*(uint16_t *)p; 860 *(uint16_t *)p=(uint16_t)b; 861 break; 862 case 3: 863 old=(uint32_t)*p<<16; 864 *p++=(uint8_t)(b>>16); 865 old|=(uint32_t)*p<<8; 866 *p++=(uint8_t)(b>>8); 867 old|=*p; 868 *p=(uint8_t)b; 869 break; 870 case 4: 871 old=*(uint32_t *)p; 872 *(uint32_t *)p=b; 873 break; 874 default: 875 /* will never occur */ 876 break; 877 } 878 879 /* check that this Unicode code point was still unassigned */ 880 if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf))))!=0 || old!=0) { 881 if(flag>=0) { 882 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", 883 (int)c, printBytes(buffer, bytes, length), (int)old); 884 return FALSE; 885 } else if(VERBOSE) { 886 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0x%02x\n", 887 (int)c, printBytes(buffer, bytes, length), (int)old); 888 } 889 /* continue after the above warning if the precision of the mapping is 890 unspecified */ 891 } 892 if(flag<=0) { 893 /* set the roundtrip flag */ 894 mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf))); 895 } 896 897 return TRUE; 898 } 899 900 U_CFUNC UBool 901 MBCSOkForBaseFromUnicode(const MBCSData *mbcsData, 902 const uint8_t *bytes, int32_t length, 903 UChar32 c, int8_t flag) { 904 /* 905 * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table under 906 * the following conditions: 907 * 908 * - a |2 SUB mapping for <subchar1> (no base table data structure for them) 909 * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappable entry) 910 * - a multi-byte mapping with leading 0x00 bytes (no explicit length field) 911 * 912 * Some of these tests are redundant with ucm_mappingType(). 913 */ 914 if( (flag==2 && length==1) || 915 (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with the next test */ 916 (flag<=1 && length>1 && bytes[0]==0) 917 ) { 918 return FALSE; 919 } 920 921 /* 922 * Additional restrictions for UTF-8-friendly fromUnicode tables, 923 * for code points up to the maximum optimized one: 924 * 925 * - any mapping to 0x00 (result value 0, indistinguishable from unmappable entry) 926 * - any |1 fallback (no roundtrip flags in the optimized table) 927 */ 928 if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0 || flag==1)) { 929 return FALSE; 930 } 931 932 /* 933 * If we omit the fromUnicode data, we can only store roundtrips there 934 * because only they are recoverable from the toUnicode data. 935 * Fallbacks must go into the extension table. 936 */ 937 if(mbcsData->omitFromU && flag!=0) { 938 return FALSE; 939 } 940 941 /* All other mappings do fit into the base table. */ 942 return TRUE; 943 } 944 945 U_CDECL_BEGIN 946 /* we can assume that the table only contains 1:1 mappings with <=4 bytes each */ 947 static UBool 948 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { 949 MBCSData *mbcsData; 950 UCMapping *m; 951 UChar32 c; 952 int32_t i, maxCharLength; 953 int8_t f; 954 UBool isOK, utf8Friendly; 955 956 staticData->unicodeMask=table->unicodeMask; 957 if(staticData->unicodeMask==3) { 958 fprintf(stderr, "error: contains mappings for both supplementary and surrogate code points\n"); 959 return FALSE; 960 } 961 962 staticData->conversionType=UCNV_MBCS; 963 964 mbcsData=(MBCSData *)cnvData; 965 maxCharLength=mbcsData->ucm->states.maxCharLength; 966 967 /* 968 * Generation of UTF-8-friendly data requires 969 * a sorted table, which makeconv generates when explicit precision 970 * indicators are used. 971 */ 972 mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPLICIT)!=0); 973 if(utf8Friendly) { 974 mbcsData->utf8Max=MBCS_UTF8_MAX; 975 if(SMALL && maxCharLength>1) { 976 mbcsData->omitFromU=TRUE; 977 } 978 } else { 979 mbcsData->utf8Max=0; 980 if(SMALL && maxCharLength>1) { 981 fprintf(stderr, 982 "makeconv warning: --small not available for .ucm files without |0 etc.\n"); 983 } 984 } 985 986 if(!MBCSStartMappings(mbcsData)) { 987 return FALSE; 988 } 989 990 staticData->hasFromUnicodeFallback=FALSE; 991 staticData->hasToUnicodeFallback=FALSE; 992 993 isOK=TRUE; 994 995 m=table->mappings; 996 for(i=0; i<table->mappingsLength; ++m, ++i) { 997 c=m->u; 998 f=m->f; 999 1000 /* 1001 * Small optimization for --small .cnv files: 1002 * 1003 * If there are fromUnicode mappings above MBCS_UTF8_MAX, 1004 * then the file size will be smaller if we make utf8Max larger 1005 * because the size increase in stageUTF8 will be more than balanced by 1006 * how much less of stage2 needs to be stored. 1007 * 1008 * There is no point in doing this incrementally because stageUTF8 1009 * uses so much less space per block than stage2, 1010 * so we immediately increase utf8Max to 0xffff. 1011 * 1012 * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFromUnicode() 1013 * sets it to that value when stageUTF8 overflows. 1014 */ 1015 if( mbcsData->omitFromU && f<=1 && 1016 mbcsData->utf8Max<c && c<=0xffff && 1017 mbcsData->utf8Max<0xfeff 1018 ) { 1019 mbcsData->utf8Max=0xffff; 1020 } 1021 1022 switch(f) { 1023 case -1: 1024 /* there was no precision/fallback indicator */ 1025 /* fall through to set the mappings */ 1026 U_FALLTHROUGH; 1027 case 0: 1028 /* set roundtrip mappings */ 1029 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); 1030 1031 if(maxCharLength==1) { 1032 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); 1033 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { 1034 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); 1035 } else { 1036 m->f|=MBCS_FROM_U_EXT_FLAG; 1037 m->moveFlag=UCM_MOVE_TO_EXT; 1038 } 1039 break; 1040 case 1: 1041 /* set only a fallback mapping from Unicode to codepage */ 1042 if(maxCharLength==1) { 1043 staticData->hasFromUnicodeFallback=TRUE; 1044 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); 1045 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f)) { 1046 staticData->hasFromUnicodeFallback=TRUE; 1047 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); 1048 } else { 1049 m->f|=MBCS_FROM_U_EXT_FLAG; 1050 m->moveFlag=UCM_MOVE_TO_EXT; 1051 } 1052 break; 1053 case 2: 1054 /* ignore |2 SUB mappings, except to move <subchar1> mappings to the extension table */ 1055 if(maxCharLength>1 && m->bLen==1) { 1056 m->f|=MBCS_FROM_U_EXT_FLAG; 1057 m->moveFlag=UCM_MOVE_TO_EXT; 1058 } 1059 break; 1060 case 3: 1061 /* set only a fallback mapping from codepage to Unicode */ 1062 staticData->hasToUnicodeFallback=TRUE; 1063 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); 1064 break; 1065 case 4: 1066 /* move "good one-way" mappings to the extension table */ 1067 m->f|=MBCS_FROM_U_EXT_FLAG; 1068 m->moveFlag=UCM_MOVE_TO_EXT; 1069 break; 1070 default: 1071 /* will not occur because the parser checked it already */ 1072 fprintf(stderr, "error: illegal fallback indicator %d\n", f); 1073 return FALSE; 1074 } 1075 } 1076 1077 MBCSPostprocess(mbcsData, staticData); 1078 1079 return isOK; 1080 } 1081 U_CDECL_END 1082 static UBool 1083 transformEUC(MBCSData *mbcsData) { 1084 uint8_t *p8; 1085 uint32_t i, value, oldLength, old3Top; 1086 uint8_t b; 1087 1088 oldLength=mbcsData->ucm->states.maxCharLength; 1089 if(oldLength<3) { 1090 return FALSE; 1091 } 1092 1093 old3Top=mbcsData->stage3Top; 1094 1095 /* careful: 2-byte and 4-byte codes are stored in platform endianness! */ 1096 1097 /* test if all first bytes are in {0, 0x8e, 0x8f} */ 1098 p8=mbcsData->fromUBytes; 1099 1100 #if !U_IS_BIG_ENDIAN 1101 if(oldLength==4) { 1102 p8+=3; 1103 } 1104 #endif 1105 1106 for(i=0; i<old3Top; i+=oldLength) { 1107 b=p8[i]; 1108 if(b!=0 && b!=0x8e && b!=0x8f) { 1109 /* some first byte does not fit the EUC pattern, nothing to be done */ 1110 return FALSE; 1111 } 1112 } 1113 /* restore p if it was modified above */ 1114 p8=mbcsData->fromUBytes; 1115 1116 /* modify outputType and adjust stage3Top */ 1117 mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3); 1118 mbcsData->stage3Top=(old3Top*(oldLength-1))/oldLength; 1119 1120 /* 1121 * EUC-encode all byte sequences; 1122 * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly, 1123 * p. 161 in chapter 4 "Encoding Methods" 1124 * 1125 * This also must reverse the byte order if the platform is little-endian! 1126 */ 1127 if(oldLength==3) { 1128 uint16_t *q=(uint16_t *)p8; 1129 for(i=0; i<old3Top; i+=oldLength) { 1130 b=*p8; 1131 if(b==0) { 1132 /* short sequences are stored directly */ 1133 /* code set 0 or 1 */ 1134 (*q++)=(uint16_t)((p8[1]<<8)|p8[2]); 1135 } else if(b==0x8e) { 1136 /* code set 2 */ 1137 (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]); 1138 } else /* b==0x8f */ { 1139 /* code set 3 */ 1140 (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f)); 1141 } 1142 p8+=3; 1143 } 1144 } else /* oldLength==4 */ { 1145 uint8_t *q=p8; 1146 uint32_t *p32=(uint32_t *)p8; 1147 for(i=0; i<old3Top; i+=4) { 1148 value=(*p32++); 1149 if(value<=0xffffff) { 1150 /* short sequences are stored directly */ 1151 /* code set 0 or 1 */ 1152 (*q++)=(uint8_t)(value>>16); 1153 (*q++)=(uint8_t)(value>>8); 1154 (*q++)=(uint8_t)value; 1155 } else if(value<=0x8effffff) { 1156 /* code set 2 */ 1157 (*q++)=(uint8_t)((value>>16)&0x7f); 1158 (*q++)=(uint8_t)(value>>8); 1159 (*q++)=(uint8_t)value; 1160 } else /* first byte is 0x8f */ { 1161 /* code set 3 */ 1162 (*q++)=(uint8_t)(value>>16); 1163 (*q++)=(uint8_t)((value>>8)&0x7f); 1164 (*q++)=(uint8_t)value; 1165 } 1166 } 1167 } 1168 1169 return TRUE; 1170 } 1171 1172 /* 1173 * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far 1174 * as possible. Overlapping is done on unassigned head and tail 1175 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. 1176 * Stage 1 indexes need to be adjusted accordingly. 1177 * This function is very similar to genprops/store.c/compactStage(). 1178 */ 1179 static void 1180 singleCompactStage2(MBCSData *mbcsData) { 1181 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ 1182 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; 1183 uint16_t i, start, prevEnd, newStart; 1184 1185 /* enter the all-unassigned first stage 2 block into the map */ 1186 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; 1187 1188 /* begin with the first block after the all-unassigned one */ 1189 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; 1190 while(start<mbcsData->stage2Top) { 1191 prevEnd=(uint16_t)(newStart-1); 1192 1193 /* find the size of the overlap */ 1194 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0 && mbcsData->stage2Single[prevEnd-i]==0; ++i) {} 1195 1196 if(i>0) { 1197 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); 1198 1199 /* move the non-overlapping indexes to their new positions */ 1200 start+=i; 1201 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { 1202 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; 1203 } 1204 } else if(newStart<start) { 1205 /* move the indexes to their new positions */ 1206 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; 1207 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { 1208 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start++]; 1209 } 1210 } else /* no overlap && newStart==start */ { 1211 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; 1212 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; 1213 } 1214 } 1215 1216 /* adjust stage2Top */ 1217 if(VERBOSE && newStart<mbcsData->stage2Top) { 1218 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", 1219 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, 1220 (long)(mbcsData->stage2Top-newStart)*2); 1221 } 1222 mbcsData->stage2Top=newStart; 1223 1224 /* now adjust stage 1 */ 1225 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { 1226 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; 1227 } 1228 } 1229 1230 /* Compact stage 3 for SBCS - same algorithm as above. */ 1231 static void 1232 singleCompactStage3(MBCSData *mbcsData) { 1233 uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes; 1234 1235 /* this array maps the ordinal number of a stage 3 block to its new stage 2 index */ 1236 uint16_t map[0x1000]; 1237 uint16_t i, start, prevEnd, newStart; 1238 1239 /* enter the all-unassigned first stage 3 block into the map */ 1240 map[0]=0; 1241 1242 /* begin with the first block after the all-unassigned one */ 1243 start=newStart=16; 1244 while(start<mbcsData->stage3Top) { 1245 prevEnd=(uint16_t)(newStart-1); 1246 1247 /* find the size of the overlap */ 1248 for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {} 1249 1250 if(i>0) { 1251 map[start>>4]=(uint16_t)(newStart-i); 1252 1253 /* move the non-overlapping indexes to their new positions */ 1254 start+=i; 1255 for(i=(uint16_t)(16-i); i>0; --i) { 1256 stage3[newStart++]=stage3[start++]; 1257 } 1258 } else if(newStart<start) { 1259 /* move the indexes to their new positions */ 1260 map[start>>4]=newStart; 1261 for(i=16; i>0; --i) { 1262 stage3[newStart++]=stage3[start++]; 1263 } 1264 } else /* no overlap && newStart==start */ { 1265 map[start>>4]=start; 1266 start=newStart+=16; 1267 } 1268 } 1269 1270 /* adjust stage3Top */ 1271 if(VERBOSE && newStart<mbcsData->stage3Top) { 1272 printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld bytes\n", 1273 (unsigned long)mbcsData->stage3Top, (unsigned long)newStart, 1274 (long)(mbcsData->stage3Top-newStart)*2); 1275 } 1276 mbcsData->stage3Top=newStart; 1277 1278 /* now adjust stage 2 */ 1279 for(i=0; i<mbcsData->stage2Top; ++i) { 1280 mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4]; 1281 } 1282 } 1283 1284 /* 1285 * Compact stage 2 by overlapping adjacent stage 2 blocks as far 1286 * as possible. Overlapping is done on unassigned head and tail 1287 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. 1288 * Stage 1 indexes need to be adjusted accordingly. 1289 * This function is very similar to genprops/store.c/compactStage(). 1290 */ 1291 static void 1292 compactStage2(MBCSData *mbcsData) { 1293 /* this array maps the ordinal number of a stage 2 block to its new stage 1 index */ 1294 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; 1295 uint16_t i, start, prevEnd, newStart; 1296 1297 /* enter the all-unassigned first stage 2 block into the map */ 1298 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; 1299 1300 /* begin with the first block after the all-unassigned one */ 1301 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; 1302 while(start<mbcsData->stage2Top) { 1303 prevEnd=(uint16_t)(newStart-1); 1304 1305 /* find the size of the overlap */ 1306 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mbcsData->stage2[prevEnd-i]==0; ++i) {} 1307 1308 if(i>0) { 1309 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); 1310 1311 /* move the non-overlapping indexes to their new positions */ 1312 start+=i; 1313 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { 1314 mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; 1315 } 1316 } else if(newStart<start) { 1317 /* move the indexes to their new positions */ 1318 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; 1319 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { 1320 mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; 1321 } 1322 } else /* no overlap && newStart==start */ { 1323 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; 1324 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; 1325 } 1326 } 1327 1328 /* adjust stage2Top */ 1329 if(VERBOSE && newStart<mbcsData->stage2Top) { 1330 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld bytes\n", 1331 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, 1332 (long)(mbcsData->stage2Top-newStart)*4); 1333 } 1334 mbcsData->stage2Top=newStart; 1335 1336 /* now adjust stage 1 */ 1337 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { 1338 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]; 1339 } 1340 } 1341 1342 static void 1343 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData * /*staticData*/) { 1344 UCMStates *states; 1345 int32_t maxCharLength, stage3Width; 1346 1347 states=&mbcsData->ucm->states; 1348 stage3Width=maxCharLength=states->maxCharLength; 1349 1350 ucm_optimizeStates(states, 1351 &mbcsData->unicodeCodeUnits, 1352 mbcsData->toUFallbacks, mbcsData->countToUFallbacks, 1353 VERBOSE); 1354 1355 /* try to compact the fromUnicode tables */ 1356 if(transformEUC(mbcsData)) { 1357 --stage3Width; 1358 } 1359 1360 /* 1361 * UTF-8-friendly tries are built precompacted, to cope with variable 1362 * stage 3 allocation block sizes. 1363 * 1364 * Tables without precision indicators cannot be built that way, 1365 * because if a block was overlapped with a previous one, then a smaller 1366 * code point for the same block would not fit. 1367 * Therefore, such tables are not marked UTF-8-friendly and must be 1368 * compacted after all mappings are entered. 1369 */ 1370 if(!mbcsData->utf8Friendly) { 1371 if(maxCharLength==1) { 1372 singleCompactStage3(mbcsData); 1373 singleCompactStage2(mbcsData); 1374 } else { 1375 compactStage2(mbcsData); 1376 } 1377 } 1378 1379 if(VERBOSE) { 1380 /*uint32_t c, i1, i2, i2Limit, i3;*/ 1381 1382 printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n", 1383 maxCharLength==1 ? "16" : "32", 1384 (unsigned long)mbcsData->stage2Top, 1385 (unsigned long)mbcsData->stage2Top); 1386 printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu\n", 1387 (int)stage3Width, 1388 (unsigned long)mbcsData->stage3Top/stage3Width, 1389 (unsigned long)mbcsData->stage3Top/stage3Width); 1390 #if 0 1391 c=0; 1392 for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) { 1393 i2=mbcsData->stage1[i1]; 1394 if(i2==0) { 1395 c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE; 1396 continue; 1397 } 1398 for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) { 1399 if(maxCharLength==1) { 1400 i3=mbcsData->stage2Single[i2]; 1401 } else { 1402 i3=(uint16_t)mbcsData->stage2[i2]; 1403 } 1404 if(i3==0) { 1405 c+=MBCS_STAGE_3_BLOCK_SIZE; 1406 continue; 1407 } 1408 printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n", 1409 (unsigned long)c, 1410 (unsigned long)i1, 1411 (unsigned long)i2, 1412 (unsigned long)i3); 1413 c+=MBCS_STAGE_3_BLOCK_SIZE; 1414 } 1415 } 1416 #endif 1417 } 1418 } 1419 1420 U_CDECL_BEGIN 1421 static uint32_t 1422 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, 1423 UNewDataMemory *pData, int32_t tableType) { 1424 MBCSData *mbcsData=(MBCSData *)cnvData; 1425 uint32_t stage2Start, stage2Length; 1426 uint32_t top, stageUTF8Length=0; 1427 int32_t i, stage1Top; 1428 uint32_t headerLength; 1429 1430 _MBCSHeader header=UCNV_MBCS_HEADER_INITIALIZER; 1431 1432 stage2Length=mbcsData->stage2Top; 1433 if(mbcsData->omitFromU) { 1434 /* find how much of stage2 can be omitted */ 1435 int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1; 1436 uint32_t st2=0; /*initialized it to avoid compiler warnings */ 1437 1438 i=utf8Limit>>MBCS_STAGE_1_SHIFT; 1439 if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i])!=0) { 1440 /* utf8Limit is in the middle of an existing stage 2 block */ 1441 stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK); 1442 } else { 1443 /* find the last stage2 block with mappings before utf8Limit */ 1444 while(i>0 && (st2=mbcsData->stage1[--i])==0) {} 1445 /* stage2 up to the end of this block corresponds to stageUTF8 */ 1446 stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE; 1447 } 1448 header.options|=MBCS_OPT_NO_FROM_U; 1449 header.fullStage2Length=stage2Length; 1450 stage2Length-=stage2Start; 1451 if(VERBOSE) { 1452 printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\n", 1453 (unsigned long)stage2Start, 1454 (unsigned long)mbcsData->stage2Top, 1455 (unsigned long)mbcsData->stage3Top); 1456 printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Start*4+mbcsData->stage3Top); 1457 } 1458 } else { 1459 stage2Start=0; 1460 } 1461 1462 if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { 1463 stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */ 1464 } else { 1465 stage1Top=0x40; /* 0x40==64 */ 1466 } 1467 1468 /* adjust stage 1 entries to include the size of stage 1 in the offsets to stage 2 */ 1469 if(mbcsData->ucm->states.maxCharLength==1) { 1470 for(i=0; i<stage1Top; ++i) { 1471 mbcsData->stage1[i]+=(uint16_t)stage1Top; 1472 } 1473 1474 /* stage2Top/Length have counted 16-bit results, now we need to count bytes */ 1475 /* also round up to a multiple of 4 bytes */ 1476 stage2Length=(stage2Length*2+1)&~1; 1477 1478 /* stage3Top has counted 16-bit results, now we need to count bytes */ 1479 mbcsData->stage3Top*=2; 1480 1481 if(mbcsData->utf8Friendly) { 1482 header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max==0x1fff */ 1483 } 1484 } else { 1485 for(i=0; i<stage1Top; ++i) { 1486 mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-bit entries, stage 1 16-bit entries */ 1487 } 1488 1489 /* stage2Top/Length have counted 32-bit results, now we need to count bytes */ 1490 stage2Length*=4; 1491 /* leave stage2Start counting 32-bit units */ 1492 1493 if(mbcsData->utf8Friendly) { 1494 stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT; 1495 header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for max==0xd7ff */ 1496 } 1497 1498 /* stage3Top has already counted bytes */ 1499 } 1500 1501 /* round up stage3Top so that the sizes of all data blocks are multiples of 4 */ 1502 mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3; 1503 1504 /* fill the header */ 1505 if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) { 1506 header.version[0]=5; 1507 if(header.options&MBCS_OPT_NO_FROM_U) { 1508 headerLength=10; /* include fullStage2Length */ 1509 } else { 1510 headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */ 1511 } 1512 } else { 1513 header.version[0]=4; 1514 headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */ 1515 } 1516 header.version[1]=4; 1517 /* header.version[2] set above for utf8Friendly data */ 1518 1519 header.options|=(uint32_t)headerLength; 1520 1521 header.countStates=mbcsData->ucm->states.countStates; 1522 header.countToUFallbacks=mbcsData->countToUFallbacks; 1523 1524 header.offsetToUCodeUnits= 1525 headerLength*4+ 1526 mbcsData->ucm->states.countStates*1024+ 1527 mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback); 1528 header.offsetFromUTable= 1529 header.offsetToUCodeUnits+ 1530 mbcsData->ucm->states.countToUCodeUnits*2; 1531 header.offsetFromUBytes= 1532 header.offsetFromUTable+ 1533 stage1Top*2+ 1534 stage2Length; 1535 header.fromUBytesLength=mbcsData->stage3Top; 1536 1537 top=header.offsetFromUBytes+stageUTF8Length*2; 1538 if(!(header.options&MBCS_OPT_NO_FROM_U)) { 1539 top+=header.fromUBytesLength; 1540 } 1541 1542 header.flags=(uint8_t)(mbcsData->ucm->states.outputType); 1543 1544 if(tableType&TABLE_EXT) { 1545 if(top>0xffffff) { 1546 fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xffffff\n", (long)top); 1547 return 0; 1548 } 1549 1550 header.flags|=top<<8; 1551 } 1552 1553 /* write the MBCS data */ 1554 udata_writeBlock(pData, &header, headerLength*4); 1555 udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates*1024); 1556 udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback)); 1557 udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.countToUCodeUnits*2); 1558 udata_writeBlock(pData, mbcsData->stage1, stage1Top*2); 1559 if(mbcsData->ucm->states.maxCharLength==1) { 1560 udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length); 1561 } else { 1562 udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length); 1563 } 1564 if(!(header.options&MBCS_OPT_NO_FROM_U)) { 1565 udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top); 1566 } 1567 1568 if(stageUTF8Length>0) { 1569 udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2); 1570 } 1571 1572 /* return the number of bytes that should have been written */ 1573 return top; 1574 } 1575 U_CDECL_END 1576