Home | History | Annotate | Download | only in tzcode
      1 /*
      2 ** This file is in the public domain, so clarified as of
      3 ** 1996-06-05 by Arthur David Olson.
      4 */
      5 
      6 /*
      7 ** Leap second handling from Bradley White.
      8 ** POSIX-style TZ environment variable handling from Guy Harris.
      9 */
     10 
     11 /*LINTLIBRARY*/
     12 
     13 #include "private.h"
     14 #include "tzfile.h"
     15 #include "fcntl.h"
     16 
     17 #ifndef TZ_ABBR_MAX_LEN
     18 #define TZ_ABBR_MAX_LEN	16
     19 #endif /* !defined TZ_ABBR_MAX_LEN */
     20 
     21 #ifndef TZ_ABBR_CHAR_SET
     22 #define TZ_ABBR_CHAR_SET \
     23 	"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._"
     24 #endif /* !defined TZ_ABBR_CHAR_SET */
     25 
     26 #ifndef TZ_ABBR_ERR_CHAR
     27 #define TZ_ABBR_ERR_CHAR	'_'
     28 #endif /* !defined TZ_ABBR_ERR_CHAR */
     29 
     30 /*
     31 ** SunOS 4.1.1 headers lack O_BINARY.
     32 */
     33 
     34 #ifdef O_BINARY
     35 #define OPEN_MODE	(O_RDONLY | O_BINARY)
     36 #endif /* defined O_BINARY */
     37 #ifndef O_BINARY
     38 #define OPEN_MODE	O_RDONLY
     39 #endif /* !defined O_BINARY */
     40 
     41 #ifndef WILDABBR
     42 /*
     43 ** Someone might make incorrect use of a time zone abbreviation:
     44 **	1.	They might reference tzname[0] before calling tzset (explicitly
     45 **		or implicitly).
     46 **	2.	They might reference tzname[1] before calling tzset (explicitly
     47 **		or implicitly).
     48 **	3.	They might reference tzname[1] after setting to a time zone
     49 **		in which Daylight Saving Time is never observed.
     50 **	4.	They might reference tzname[0] after setting to a time zone
     51 **		in which Standard Time is never observed.
     52 **	5.	They might reference tm.TM_ZONE after calling offtime.
     53 ** What's best to do in the above cases is open to debate;
     54 ** for now, we just set things up so that in any of the five cases
     55 ** WILDABBR is used. Another possibility: initialize tzname[0] to the
     56 ** string "tzname[0] used before set", and similarly for the other cases.
     57 ** And another: initialize tzname[0] to "ERA", with an explanation in the
     58 ** manual page of what this "time zone abbreviation" means (doing this so
     59 ** that tzname[0] has the "normal" length of three characters).
     60 */
     61 #define WILDABBR	"   "
     62 #endif /* !defined WILDABBR */
     63 
     64 static const char	wildabbr[] = WILDABBR;
     65 
     66 static const char	gmt[] = "GMT";
     67 
     68 /*
     69 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
     70 ** We default to US rules as of 1999-08-17.
     71 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are
     72 ** implementation dependent; for historical reasons, US rules are a
     73 ** common default.
     74 */
     75 #ifndef TZDEFRULESTRING
     76 #define TZDEFRULESTRING ",M4.1.0,M10.5.0"
     77 #endif /* !defined TZDEFDST */
     78 
     79 struct ttinfo {				/* time type information */
     80 	int_fast32_t	tt_gmtoff;	/* UT offset in seconds */
     81 	int		tt_isdst;	/* used to set tm_isdst */
     82 	int		tt_abbrind;	/* abbreviation list index */
     83 	int		tt_ttisstd;	/* TRUE if transition is std time */
     84 	int		tt_ttisgmt;	/* TRUE if transition is UT */
     85 };
     86 
     87 struct lsinfo {				/* leap second information */
     88 	time_t		ls_trans;	/* transition time */
     89 	int_fast64_t	ls_corr;	/* correction to apply */
     90 };
     91 
     92 #define BIGGEST(a, b)	(((a) > (b)) ? (a) : (b))
     93 
     94 #ifdef TZNAME_MAX
     95 #define MY_TZNAME_MAX	TZNAME_MAX
     96 #endif /* defined TZNAME_MAX */
     97 #ifndef TZNAME_MAX
     98 #define MY_TZNAME_MAX	255
     99 #endif /* !defined TZNAME_MAX */
    100 
    101 struct state {
    102 	int		leapcnt;
    103 	int		timecnt;
    104 	int		typecnt;
    105 	int		charcnt;
    106 	int		goback;
    107 	int		goahead;
    108 	time_t		ats[TZ_MAX_TIMES];
    109 	unsigned char	types[TZ_MAX_TIMES];
    110 	struct ttinfo	ttis[TZ_MAX_TYPES];
    111 	char		chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt),
    112 				(2 * (MY_TZNAME_MAX + 1)))];
    113 	struct lsinfo	lsis[TZ_MAX_LEAPS];
    114 	int		defaulttype; /* for early times or if no transitions */
    115 };
    116 
    117 struct rule {
    118 	int		r_type;		/* type of rule--see below */
    119 	int		r_day;		/* day number of rule */
    120 	int		r_week;		/* week number of rule */
    121 	int		r_mon;		/* month number of rule */
    122 	int_fast32_t	r_time;		/* transition time of rule */
    123 };
    124 
    125 #define JULIAN_DAY		0	/* Jn - Julian day */
    126 #define DAY_OF_YEAR		1	/* n - day of year */
    127 #define MONTH_NTH_DAY_OF_WEEK	2	/* Mm.n.d - month, week, day of week */
    128 
    129 /*
    130 ** Prototypes for static functions.
    131 */
    132 
    133 static int_fast32_t	detzcode(const char * codep);
    134 static int_fast64_t	detzcode64(const char * codep);
    135 static int		differ_by_repeat(time_t t1, time_t t0);
    136 static const char *	getzname(const char * strp) ATTRIBUTE_PURE;
    137 static const char *	getqzname(const char * strp, const int delim)
    138   ATTRIBUTE_PURE;
    139 static const char *	getnum(const char * strp, int * nump, int min,
    140 				int max);
    141 static const char *	getsecs(const char * strp, int_fast32_t * secsp);
    142 static const char *	getoffset(const char * strp, int_fast32_t * offsetp);
    143 static const char *	getrule(const char * strp, struct rule * rulep);
    144 static void		gmtload(struct state * sp);
    145 static struct tm *	gmtsub(const time_t * timep, int_fast32_t offset,
    146 				struct tm * tmp);
    147 static struct tm *	localsub(const time_t * timep, int_fast32_t offset,
    148 				struct tm * tmp);
    149 static int		increment_overflow(int * number, int delta);
    150 static int		leaps_thru_end_of(int y) ATTRIBUTE_PURE;
    151 static int		increment_overflow32(int_fast32_t * number, int delta);
    152 static int		increment_overflow_time(time_t *t, int_fast32_t delta);
    153 static int		normalize_overflow32(int_fast32_t * tensptr,
    154 				int * unitsptr, int base);
    155 static int		normalize_overflow(int * tensptr, int * unitsptr,
    156 				int base);
    157 static void		settzname(void);
    158 static time_t		time1(struct tm * tmp,
    159 				struct tm * (*funcp)(const time_t *,
    160 				int_fast32_t, struct tm *),
    161 				int_fast32_t offset);
    162 static time_t		time2(struct tm *tmp,
    163 				struct tm * (*funcp)(const time_t *,
    164 				int_fast32_t, struct tm*),
    165 				int_fast32_t offset, int * okayp);
    166 static time_t		time2sub(struct tm *tmp,
    167 				struct tm * (*funcp)(const time_t *,
    168 				int_fast32_t, struct tm*),
    169 				int_fast32_t offset, int * okayp, int do_norm_secs);
    170 static struct tm *	timesub(const time_t * timep, int_fast32_t offset,
    171 				const struct state * sp, struct tm * tmp);
    172 static int		tmcomp(const struct tm * atmp,
    173 				const struct tm * btmp);
    174 static int_fast32_t	transtime(int year, const struct rule * rulep,
    175 				  int_fast32_t offset)
    176   ATTRIBUTE_PURE;
    177 static int		typesequiv(const struct state * sp, int a, int b);
    178 static int		tzload(const char * name, struct state * sp,
    179 				int doextend);
    180 static int		tzparse(const char * name, struct state * sp,
    181 				int lastditch);
    182 
    183 #ifdef ALL_STATE
    184 static struct state *	lclptr;
    185 static struct state *	gmtptr;
    186 #endif /* defined ALL_STATE */
    187 
    188 #ifndef ALL_STATE
    189 static struct state	lclmem;
    190 static struct state	gmtmem;
    191 #define lclptr		(&lclmem)
    192 #define gmtptr		(&gmtmem)
    193 #endif /* State Farm */
    194 
    195 #ifndef TZ_STRLEN_MAX
    196 #define TZ_STRLEN_MAX 255
    197 #endif /* !defined TZ_STRLEN_MAX */
    198 
    199 static char		lcl_TZname[TZ_STRLEN_MAX + 1];
    200 static int		lcl_is_set;
    201 static int		gmt_is_set;
    202 
    203 char *			tzname[2] = {
    204 	(char *) wildabbr,
    205 	(char *) wildabbr
    206 };
    207 
    208 /*
    209 ** Section 4.12.3 of X3.159-1989 requires that
    210 **	Except for the strftime function, these functions [asctime,
    211 **	ctime, gmtime, localtime] return values in one of two static
    212 **	objects: a broken-down time structure and an array of char.
    213 ** Thanks to Paul Eggert for noting this.
    214 */
    215 
    216 static struct tm	tm;
    217 
    218 #ifdef USG_COMPAT
    219 long			timezone = 0;
    220 int			daylight = 0;
    221 #endif /* defined USG_COMPAT */
    222 
    223 #ifdef ALTZONE
    224 long			altzone = 0;
    225 #endif /* defined ALTZONE */
    226 
    227 static int_fast32_t
    228 detzcode(const char *const codep)
    229 {
    230 	register int_fast32_t	result;
    231 	register int		i;
    232 
    233 	result = (codep[0] & 0x80) ? -1 : 0;
    234 	for (i = 0; i < 4; ++i)
    235 		result = (result << 8) | (codep[i] & 0xff);
    236 	return result;
    237 }
    238 
    239 static int_fast64_t
    240 detzcode64(const char *const codep)
    241 {
    242 	register int_fast64_t result;
    243 	register int	i;
    244 
    245 	result = (codep[0] & 0x80) ? -1 : 0;
    246 	for (i = 0; i < 8; ++i)
    247 		result = (result << 8) | (codep[i] & 0xff);
    248 	return result;
    249 }
    250 
    251 static void
    252 settzname(void)
    253 {
    254 	register struct state * const	sp = lclptr;
    255 	register int			i;
    256 
    257 	tzname[0] = tzname[1] = (char *) wildabbr;
    258 #ifdef USG_COMPAT
    259 	daylight = 0;
    260 	timezone = 0;
    261 #endif /* defined USG_COMPAT */
    262 #ifdef ALTZONE
    263 	altzone = 0;
    264 #endif /* defined ALTZONE */
    265 	if (sp == NULL) {
    266 		tzname[0] = tzname[1] = (char *) gmt;
    267 		return;
    268 	}
    269 	/*
    270 	** And to get the latest zone names into tzname. . .
    271 	*/
    272 	for (i = 0; i < sp->typecnt; ++i) {
    273 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    274 
    275 		tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind];
    276 	}
    277 	for (i = 0; i < sp->timecnt; ++i) {
    278 		register const struct ttinfo * const	ttisp =
    279 							&sp->ttis[
    280 								sp->types[i]];
    281 
    282 		tzname[ttisp->tt_isdst] =
    283 			&sp->chars[ttisp->tt_abbrind];
    284 #ifdef USG_COMPAT
    285 		if (ttisp->tt_isdst)
    286 			daylight = 1;
    287 		if (!ttisp->tt_isdst)
    288 			timezone = -(ttisp->tt_gmtoff);
    289 #endif /* defined USG_COMPAT */
    290 #ifdef ALTZONE
    291 		if (ttisp->tt_isdst)
    292 			altzone = -(ttisp->tt_gmtoff);
    293 #endif /* defined ALTZONE */
    294 	}
    295 	/*
    296 	** Finally, scrub the abbreviations.
    297 	** First, replace bogus characters.
    298 	*/
    299 	for (i = 0; i < sp->charcnt; ++i)
    300 		if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL)
    301 			sp->chars[i] = TZ_ABBR_ERR_CHAR;
    302 	/*
    303 	** Second, truncate long abbreviations.
    304 	*/
    305 	for (i = 0; i < sp->typecnt; ++i) {
    306 		register const struct ttinfo * const	ttisp = &sp->ttis[i];
    307 		register char *				cp = &sp->chars[ttisp->tt_abbrind];
    308 
    309 		if (strlen(cp) > TZ_ABBR_MAX_LEN &&
    310 			strcmp(cp, GRANDPARENTED) != 0)
    311 				*(cp + TZ_ABBR_MAX_LEN) = '\0';
    312 	}
    313 }
    314 
    315 static int
    316 differ_by_repeat(const time_t t1, const time_t t0)
    317 {
    318 	if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS)
    319 		return 0;
    320 	return t1 - t0 == SECSPERREPEAT;
    321 }
    322 
    323 static int
    324 tzload(register const char *name, register struct state *const sp,
    325        register const int doextend)
    326 {
    327 	register const char *		p;
    328 	register int			i;
    329 	register int			fid;
    330 	register int			stored;
    331 	register int			nread;
    332 	typedef union {
    333 		struct tzhead	tzhead;
    334 		char		buf[2 * sizeof(struct tzhead) +
    335 					2 * sizeof *sp +
    336 					4 * TZ_MAX_TIMES];
    337 	} u_t;
    338 #ifdef ALL_STATE
    339 	register u_t * const		up = malloc(sizeof *up);
    340 #else /* !defined ALL_STATE */
    341 	u_t				u;
    342 	register u_t * const		up = &u;
    343 #endif /* !defined ALL_STATE */
    344 
    345 	sp->goback = sp->goahead = FALSE;
    346 
    347 	if (up == NULL)
    348 		return -1;
    349 
    350 	if (name == NULL && (name = TZDEFAULT) == NULL)
    351 		goto oops;
    352 	{
    353 		register int	doaccess;
    354 		/*
    355 		** Section 4.9.1 of the C standard says that
    356 		** "FILENAME_MAX expands to an integral constant expression
    357 		** that is the size needed for an array of char large enough
    358 		** to hold the longest file name string that the implementation
    359 		** guarantees can be opened."
    360 		*/
    361 		char		fullname[FILENAME_MAX + 1];
    362 
    363 		if (name[0] == ':')
    364 			++name;
    365 		doaccess = name[0] == '/';
    366 		if (!doaccess) {
    367 			if ((p = TZDIR) == NULL)
    368 				goto oops;
    369 			if ((strlen(p) + strlen(name) + 1) >= sizeof fullname)
    370 				goto oops;
    371 			(void) strcpy(fullname, p);
    372 			(void) strcat(fullname, "/");
    373 			(void) strcat(fullname, name);
    374 			/*
    375 			** Set doaccess if '.' (as in "../") shows up in name.
    376 			*/
    377 			if (strchr(name, '.') != NULL)
    378 				doaccess = TRUE;
    379 			name = fullname;
    380 		}
    381 		if (doaccess && access(name, R_OK) != 0)
    382 			goto oops;
    383 		if ((fid = open(name, OPEN_MODE)) == -1)
    384 			goto oops;
    385 	}
    386 	nread = read(fid, up->buf, sizeof up->buf);
    387 	if (close(fid) < 0 || nread <= 0)
    388 		goto oops;
    389 	for (stored = 4; stored <= 8; stored *= 2) {
    390 		int		ttisstdcnt;
    391 		int		ttisgmtcnt;
    392 		int		timecnt;
    393 
    394 		ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt);
    395 		ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt);
    396 		sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt);
    397 		sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt);
    398 		sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt);
    399 		sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt);
    400 		p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt;
    401 		if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS ||
    402 			sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES ||
    403 			sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES ||
    404 			sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS ||
    405 			(ttisstdcnt != sp->typecnt && ttisstdcnt != 0) ||
    406 			(ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0))
    407 				goto oops;
    408 		if (nread - (p - up->buf) <
    409 			sp->timecnt * stored +		/* ats */
    410 			sp->timecnt +			/* types */
    411 			sp->typecnt * 6 +		/* ttinfos */
    412 			sp->charcnt +			/* chars */
    413 			sp->leapcnt * (stored + 4) +	/* lsinfos */
    414 			ttisstdcnt +			/* ttisstds */
    415 			ttisgmtcnt)			/* ttisgmts */
    416 				goto oops;
    417 		timecnt = 0;
    418 		for (i = 0; i < sp->timecnt; ++i) {
    419 			int_fast64_t at
    420 			  = stored == 4 ? detzcode(p) : detzcode64(p);
    421 			sp->types[i] = ((TYPE_SIGNED(time_t)
    422 					 ? time_t_min <= at
    423 					 : 0 <= at)
    424 					&& at <= time_t_max);
    425 			if (sp->types[i]) {
    426 				if (i && !timecnt && at != time_t_min) {
    427 					/*
    428 					** Keep the earlier record, but tweak
    429 					** it so that it starts with the
    430 					** minimum time_t value.
    431 					*/
    432 					sp->types[i - 1] = 1;
    433 					sp->ats[timecnt++] = time_t_min;
    434 				}
    435 				sp->ats[timecnt++] = at;
    436 			}
    437 			p += stored;
    438 		}
    439 		timecnt = 0;
    440 		for (i = 0; i < sp->timecnt; ++i) {
    441 			unsigned char typ = *p++;
    442 			if (sp->typecnt <= typ)
    443 				goto oops;
    444 			if (sp->types[i])
    445 				sp->types[timecnt++] = typ;
    446 		}
    447 		sp->timecnt = timecnt;
    448 		for (i = 0; i < sp->typecnt; ++i) {
    449 			register struct ttinfo *	ttisp;
    450 
    451 			ttisp = &sp->ttis[i];
    452 			ttisp->tt_gmtoff = detzcode(p);
    453 			p += 4;
    454 			ttisp->tt_isdst = (unsigned char) *p++;
    455 			if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1)
    456 				goto oops;
    457 			ttisp->tt_abbrind = (unsigned char) *p++;
    458 			if (ttisp->tt_abbrind < 0 ||
    459 				ttisp->tt_abbrind > sp->charcnt)
    460 					goto oops;
    461 		}
    462 		for (i = 0; i < sp->charcnt; ++i)
    463 			sp->chars[i] = *p++;
    464 		sp->chars[i] = '\0';	/* ensure '\0' at end */
    465 		for (i = 0; i < sp->leapcnt; ++i) {
    466 			register struct lsinfo *	lsisp;
    467 
    468 			lsisp = &sp->lsis[i];
    469 			lsisp->ls_trans = (stored == 4) ?
    470 				detzcode(p) : detzcode64(p);
    471 			p += stored;
    472 			lsisp->ls_corr = detzcode(p);
    473 			p += 4;
    474 		}
    475 		for (i = 0; i < sp->typecnt; ++i) {
    476 			register struct ttinfo *	ttisp;
    477 
    478 			ttisp = &sp->ttis[i];
    479 			if (ttisstdcnt == 0)
    480 				ttisp->tt_ttisstd = FALSE;
    481 			else {
    482 				ttisp->tt_ttisstd = *p++;
    483 				if (ttisp->tt_ttisstd != TRUE &&
    484 					ttisp->tt_ttisstd != FALSE)
    485 						goto oops;
    486 			}
    487 		}
    488 		for (i = 0; i < sp->typecnt; ++i) {
    489 			register struct ttinfo *	ttisp;
    490 
    491 			ttisp = &sp->ttis[i];
    492 			if (ttisgmtcnt == 0)
    493 				ttisp->tt_ttisgmt = FALSE;
    494 			else {
    495 				ttisp->tt_ttisgmt = *p++;
    496 				if (ttisp->tt_ttisgmt != TRUE &&
    497 					ttisp->tt_ttisgmt != FALSE)
    498 						goto oops;
    499 			}
    500 		}
    501 		/*
    502 		** If this is an old file, we're done.
    503 		*/
    504 		if (up->tzhead.tzh_version[0] == '\0')
    505 			break;
    506 		nread -= p - up->buf;
    507 		for (i = 0; i < nread; ++i)
    508 			up->buf[i] = p[i];
    509 		/*
    510 		** If this is a signed narrow time_t system, we're done.
    511 		*/
    512 		if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t))
    513 			break;
    514 	}
    515 	if (doextend && nread > 2 &&
    516 		up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
    517 		sp->typecnt + 2 <= TZ_MAX_TYPES) {
    518 			struct state	ts;
    519 			register int	result;
    520 
    521 			up->buf[nread - 1] = '\0';
    522 			result = tzparse(&up->buf[1], &ts, FALSE);
    523 			if (result == 0 && ts.typecnt == 2 &&
    524 				sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) {
    525 					for (i = 0; i < 2; ++i)
    526 						ts.ttis[i].tt_abbrind +=
    527 							sp->charcnt;
    528 					for (i = 0; i < ts.charcnt; ++i)
    529 						sp->chars[sp->charcnt++] =
    530 							ts.chars[i];
    531 					i = 0;
    532 					while (i < ts.timecnt &&
    533 						ts.ats[i] <=
    534 						sp->ats[sp->timecnt - 1])
    535 							++i;
    536 					while (i < ts.timecnt &&
    537 					    sp->timecnt < TZ_MAX_TIMES) {
    538 						sp->ats[sp->timecnt] =
    539 							ts.ats[i];
    540 						sp->types[sp->timecnt] =
    541 							sp->typecnt +
    542 							ts.types[i];
    543 						++sp->timecnt;
    544 						++i;
    545 					}
    546 					sp->ttis[sp->typecnt++] = ts.ttis[0];
    547 					sp->ttis[sp->typecnt++] = ts.ttis[1];
    548 			}
    549 	}
    550 	if (sp->timecnt > 1) {
    551 		for (i = 1; i < sp->timecnt; ++i)
    552 			if (typesequiv(sp, sp->types[i], sp->types[0]) &&
    553 				differ_by_repeat(sp->ats[i], sp->ats[0])) {
    554 					sp->goback = TRUE;
    555 					break;
    556 				}
    557 		for (i = sp->timecnt - 2; i >= 0; --i)
    558 			if (typesequiv(sp, sp->types[sp->timecnt - 1],
    559 				sp->types[i]) &&
    560 				differ_by_repeat(sp->ats[sp->timecnt - 1],
    561 				sp->ats[i])) {
    562 					sp->goahead = TRUE;
    563 					break;
    564 		}
    565 	}
    566 	/*
    567 	** If type 0 is is unused in transitions,
    568 	** it's the type to use for early times.
    569 	*/
    570 	for (i = 0; i < sp->typecnt; ++i)
    571 		if (sp->types[i] == 0)
    572 			break;
    573 	i = (i >= sp->typecnt) ? 0 : -1;
    574 	/*
    575 	** Absent the above,
    576 	** if there are transition times
    577 	** and the first transition is to a daylight time
    578 	** find the standard type less than and closest to
    579 	** the type of the first transition.
    580 	*/
    581 	if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) {
    582 		i = sp->types[0];
    583 		while (--i >= 0)
    584 			if (!sp->ttis[i].tt_isdst)
    585 				break;
    586 	}
    587 	/*
    588 	** If no result yet, find the first standard type.
    589 	** If there is none, punt to type zero.
    590 	*/
    591 	if (i < 0) {
    592 		i = 0;
    593 		while (sp->ttis[i].tt_isdst)
    594 			if (++i >= sp->typecnt) {
    595 				i = 0;
    596 				break;
    597 			}
    598 	}
    599 	sp->defaulttype = i;
    600 #ifdef ALL_STATE
    601 	free(up);
    602 #endif /* defined ALL_STATE */
    603 	return 0;
    604 oops:
    605 #ifdef ALL_STATE
    606 	free(up);
    607 #endif /* defined ALL_STATE */
    608 	return -1;
    609 }
    610 
    611 static int
    612 typesequiv(const struct state *const sp, const int a, const int b)
    613 {
    614 	register int	result;
    615 
    616 	if (sp == NULL ||
    617 		a < 0 || a >= sp->typecnt ||
    618 		b < 0 || b >= sp->typecnt)
    619 			result = FALSE;
    620 	else {
    621 		register const struct ttinfo *	ap = &sp->ttis[a];
    622 		register const struct ttinfo *	bp = &sp->ttis[b];
    623 		result = ap->tt_gmtoff == bp->tt_gmtoff &&
    624 			ap->tt_isdst == bp->tt_isdst &&
    625 			ap->tt_ttisstd == bp->tt_ttisstd &&
    626 			ap->tt_ttisgmt == bp->tt_ttisgmt &&
    627 			strcmp(&sp->chars[ap->tt_abbrind],
    628 			&sp->chars[bp->tt_abbrind]) == 0;
    629 	}
    630 	return result;
    631 }
    632 
    633 static const int	mon_lengths[2][MONSPERYEAR] = {
    634 	{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
    635 	{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
    636 };
    637 
    638 static const int	year_lengths[2] = {
    639 	DAYSPERNYEAR, DAYSPERLYEAR
    640 };
    641 
    642 /*
    643 ** Given a pointer into a time zone string, scan until a character that is not
    644 ** a valid character in a zone name is found. Return a pointer to that
    645 ** character.
    646 */
    647 
    648 static const char *
    649 getzname(register const char *strp)
    650 {
    651 	register char	c;
    652 
    653 	while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
    654 		c != '+')
    655 			++strp;
    656 	return strp;
    657 }
    658 
    659 /*
    660 ** Given a pointer into an extended time zone string, scan until the ending
    661 ** delimiter of the zone name is located. Return a pointer to the delimiter.
    662 **
    663 ** As with getzname above, the legal character set is actually quite
    664 ** restricted, with other characters producing undefined results.
    665 ** We don't do any checking here; checking is done later in common-case code.
    666 */
    667 
    668 static const char *
    669 getqzname(register const char *strp, const int delim)
    670 {
    671 	register int	c;
    672 
    673 	while ((c = *strp) != '\0' && c != delim)
    674 		++strp;
    675 	return strp;
    676 }
    677 
    678 /*
    679 ** Given a pointer into a time zone string, extract a number from that string.
    680 ** Check that the number is within a specified range; if it is not, return
    681 ** NULL.
    682 ** Otherwise, return a pointer to the first character not part of the number.
    683 */
    684 
    685 static const char *
    686 getnum(register const char *strp, int *const nump, const int min, const int max)
    687 {
    688 	register char	c;
    689 	register int	num;
    690 
    691 	if (strp == NULL || !is_digit(c = *strp))
    692 		return NULL;
    693 	num = 0;
    694 	do {
    695 		num = num * 10 + (c - '0');
    696 		if (num > max)
    697 			return NULL;	/* illegal value */
    698 		c = *++strp;
    699 	} while (is_digit(c));
    700 	if (num < min)
    701 		return NULL;		/* illegal value */
    702 	*nump = num;
    703 	return strp;
    704 }
    705 
    706 /*
    707 ** Given a pointer into a time zone string, extract a number of seconds,
    708 ** in hh[:mm[:ss]] form, from the string.
    709 ** If any error occurs, return NULL.
    710 ** Otherwise, return a pointer to the first character not part of the number
    711 ** of seconds.
    712 */
    713 
    714 static const char *
    715 getsecs(register const char *strp, int_fast32_t *const secsp)
    716 {
    717 	int	num;
    718 
    719 	/*
    720 	** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
    721 	** "M10.4.6/26", which does not conform to Posix,
    722 	** but which specifies the equivalent of
    723 	** ``02:00 on the first Sunday on or after 23 Oct''.
    724 	*/
    725 	strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
    726 	if (strp == NULL)
    727 		return NULL;
    728 	*secsp = num * (int_fast32_t) SECSPERHOUR;
    729 	if (*strp == ':') {
    730 		++strp;
    731 		strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
    732 		if (strp == NULL)
    733 			return NULL;
    734 		*secsp += num * SECSPERMIN;
    735 		if (*strp == ':') {
    736 			++strp;
    737 			/* `SECSPERMIN' allows for leap seconds. */
    738 			strp = getnum(strp, &num, 0, SECSPERMIN);
    739 			if (strp == NULL)
    740 				return NULL;
    741 			*secsp += num;
    742 		}
    743 	}
    744 	return strp;
    745 }
    746 
    747 /*
    748 ** Given a pointer into a time zone string, extract an offset, in
    749 ** [+-]hh[:mm[:ss]] form, from the string.
    750 ** If any error occurs, return NULL.
    751 ** Otherwise, return a pointer to the first character not part of the time.
    752 */
    753 
    754 static const char *
    755 getoffset(register const char *strp, int_fast32_t *const offsetp)
    756 {
    757 	register int	neg = 0;
    758 
    759 	if (*strp == '-') {
    760 		neg = 1;
    761 		++strp;
    762 	} else if (*strp == '+')
    763 		++strp;
    764 	strp = getsecs(strp, offsetp);
    765 	if (strp == NULL)
    766 		return NULL;		/* illegal time */
    767 	if (neg)
    768 		*offsetp = -*offsetp;
    769 	return strp;
    770 }
    771 
    772 /*
    773 ** Given a pointer into a time zone string, extract a rule in the form
    774 ** date[/time]. See POSIX section 8 for the format of "date" and "time".
    775 ** If a valid rule is not found, return NULL.
    776 ** Otherwise, return a pointer to the first character not part of the rule.
    777 */
    778 
    779 static const char *
    780 getrule(const char *strp, register struct rule *const rulep)
    781 {
    782 	if (*strp == 'J') {
    783 		/*
    784 		** Julian day.
    785 		*/
    786 		rulep->r_type = JULIAN_DAY;
    787 		++strp;
    788 		strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
    789 	} else if (*strp == 'M') {
    790 		/*
    791 		** Month, week, day.
    792 		*/
    793 		rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
    794 		++strp;
    795 		strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
    796 		if (strp == NULL)
    797 			return NULL;
    798 		if (*strp++ != '.')
    799 			return NULL;
    800 		strp = getnum(strp, &rulep->r_week, 1, 5);
    801 		if (strp == NULL)
    802 			return NULL;
    803 		if (*strp++ != '.')
    804 			return NULL;
    805 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
    806 	} else if (is_digit(*strp)) {
    807 		/*
    808 		** Day of year.
    809 		*/
    810 		rulep->r_type = DAY_OF_YEAR;
    811 		strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
    812 	} else	return NULL;		/* invalid format */
    813 	if (strp == NULL)
    814 		return NULL;
    815 	if (*strp == '/') {
    816 		/*
    817 		** Time specified.
    818 		*/
    819 		++strp;
    820 		strp = getoffset(strp, &rulep->r_time);
    821 	} else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */
    822 	return strp;
    823 }
    824 
    825 /*
    826 ** Given a year, a rule, and the offset from UT at the time that rule takes
    827 ** effect, calculate the year-relative time that rule takes effect.
    828 */
    829 
    830 static int_fast32_t
    831 transtime(const int year, register const struct rule *const rulep,
    832 	  const int_fast32_t offset)
    833 {
    834 	register int	leapyear;
    835 	register int_fast32_t value;
    836 	register int	i;
    837 	int		d, m1, yy0, yy1, yy2, dow;
    838 
    839 	INITIALIZE(value);
    840 	leapyear = isleap(year);
    841 	switch (rulep->r_type) {
    842 
    843 	case JULIAN_DAY:
    844 		/*
    845 		** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
    846 		** years.
    847 		** In non-leap years, or if the day number is 59 or less, just
    848 		** add SECSPERDAY times the day number-1 to the time of
    849 		** January 1, midnight, to get the day.
    850 		*/
    851 		value = (rulep->r_day - 1) * SECSPERDAY;
    852 		if (leapyear && rulep->r_day >= 60)
    853 			value += SECSPERDAY;
    854 		break;
    855 
    856 	case DAY_OF_YEAR:
    857 		/*
    858 		** n - day of year.
    859 		** Just add SECSPERDAY times the day number to the time of
    860 		** January 1, midnight, to get the day.
    861 		*/
    862 		value = rulep->r_day * SECSPERDAY;
    863 		break;
    864 
    865 	case MONTH_NTH_DAY_OF_WEEK:
    866 		/*
    867 		** Mm.n.d - nth "dth day" of month m.
    868 		*/
    869 
    870 		/*
    871 		** Use Zeller's Congruence to get day-of-week of first day of
    872 		** month.
    873 		*/
    874 		m1 = (rulep->r_mon + 9) % 12 + 1;
    875 		yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
    876 		yy1 = yy0 / 100;
    877 		yy2 = yy0 % 100;
    878 		dow = ((26 * m1 - 2) / 10 +
    879 			1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
    880 		if (dow < 0)
    881 			dow += DAYSPERWEEK;
    882 
    883 		/*
    884 		** "dow" is the day-of-week of the first day of the month. Get
    885 		** the day-of-month (zero-origin) of the first "dow" day of the
    886 		** month.
    887 		*/
    888 		d = rulep->r_day - dow;
    889 		if (d < 0)
    890 			d += DAYSPERWEEK;
    891 		for (i = 1; i < rulep->r_week; ++i) {
    892 			if (d + DAYSPERWEEK >=
    893 				mon_lengths[leapyear][rulep->r_mon - 1])
    894 					break;
    895 			d += DAYSPERWEEK;
    896 		}
    897 
    898 		/*
    899 		** "d" is the day-of-month (zero-origin) of the day we want.
    900 		*/
    901 		value = d * SECSPERDAY;
    902 		for (i = 0; i < rulep->r_mon - 1; ++i)
    903 			value += mon_lengths[leapyear][i] * SECSPERDAY;
    904 		break;
    905 	}
    906 
    907 	/*
    908 	** "value" is the year-relative time of 00:00:00 UT on the day in
    909 	** question. To get the year-relative time of the specified local
    910 	** time on that day, add the transition time and the current offset
    911 	** from UT.
    912 	*/
    913 	return value + rulep->r_time + offset;
    914 }
    915 
    916 /*
    917 ** Given a POSIX section 8-style TZ string, fill in the rule tables as
    918 ** appropriate.
    919 */
    920 
    921 static int
    922 tzparse(const char *name, register struct state *const sp,
    923 	const int lastditch)
    924 {
    925 	const char *			stdname;
    926 	const char *			dstname;
    927 	size_t				stdlen;
    928 	size_t				dstlen;
    929 	int_fast32_t			stdoffset;
    930 	int_fast32_t			dstoffset;
    931 	register char *			cp;
    932 	register int			load_result;
    933 	static struct ttinfo		zttinfo;
    934 
    935 	INITIALIZE(dstname);
    936 	stdname = name;
    937 	if (lastditch) {
    938 		stdlen = strlen(name);	/* length of standard zone name */
    939 		name += stdlen;
    940 		if (stdlen >= sizeof sp->chars)
    941 			stdlen = (sizeof sp->chars) - 1;
    942 		stdoffset = 0;
    943 	} else {
    944 		if (*name == '<') {
    945 			name++;
    946 			stdname = name;
    947 			name = getqzname(name, '>');
    948 			if (*name != '>')
    949 				return (-1);
    950 			stdlen = name - stdname;
    951 			name++;
    952 		} else {
    953 			name = getzname(name);
    954 			stdlen = name - stdname;
    955 		}
    956 		if (*name == '\0')
    957 			return -1;
    958 		name = getoffset(name, &stdoffset);
    959 		if (name == NULL)
    960 			return -1;
    961 	}
    962 	load_result = tzload(TZDEFRULES, sp, FALSE);
    963 	if (load_result != 0)
    964 		sp->leapcnt = 0;		/* so, we're off a little */
    965 	if (*name != '\0') {
    966 		if (*name == '<') {
    967 			dstname = ++name;
    968 			name = getqzname(name, '>');
    969 			if (*name != '>')
    970 				return -1;
    971 			dstlen = name - dstname;
    972 			name++;
    973 		} else {
    974 			dstname = name;
    975 			name = getzname(name);
    976 			dstlen = name - dstname; /* length of DST zone name */
    977 		}
    978 		if (*name != '\0' && *name != ',' && *name != ';') {
    979 			name = getoffset(name, &dstoffset);
    980 			if (name == NULL)
    981 				return -1;
    982 		} else	dstoffset = stdoffset - SECSPERHOUR;
    983 		if (*name == '\0' && load_result != 0)
    984 			name = TZDEFRULESTRING;
    985 		if (*name == ',' || *name == ';') {
    986 			struct rule	start;
    987 			struct rule	end;
    988 			register int	year;
    989 			register int	yearlim;
    990 			register int	timecnt;
    991 			time_t		janfirst;
    992 
    993 			++name;
    994 			if ((name = getrule(name, &start)) == NULL)
    995 				return -1;
    996 			if (*name++ != ',')
    997 				return -1;
    998 			if ((name = getrule(name, &end)) == NULL)
    999 				return -1;
   1000 			if (*name != '\0')
   1001 				return -1;
   1002 			sp->typecnt = 2;	/* standard time and DST */
   1003 			/*
   1004 			** Two transitions per year, from EPOCH_YEAR forward.
   1005 			*/
   1006 			sp->ttis[0] = sp->ttis[1] = zttinfo;
   1007 			sp->ttis[0].tt_gmtoff = -dstoffset;
   1008 			sp->ttis[0].tt_isdst = 1;
   1009 			sp->ttis[0].tt_abbrind = stdlen + 1;
   1010 			sp->ttis[1].tt_gmtoff = -stdoffset;
   1011 			sp->ttis[1].tt_isdst = 0;
   1012 			sp->ttis[1].tt_abbrind = 0;
   1013 			sp->defaulttype = 0;
   1014 			timecnt = 0;
   1015 			janfirst = 0;
   1016 			yearlim = EPOCH_YEAR + YEARSPERREPEAT;
   1017 			for (year = EPOCH_YEAR; year < yearlim; year++) {
   1018 				int_fast32_t
   1019 				  starttime = transtime(year, &start, stdoffset),
   1020 				  endtime = transtime(year, &end, dstoffset);
   1021 				int_fast32_t
   1022 				  yearsecs = (year_lengths[isleap(year)]
   1023 					      * SECSPERDAY);
   1024 				int reversed = endtime < starttime;
   1025 				if (reversed) {
   1026 					int_fast32_t swap = starttime;
   1027 					starttime = endtime;
   1028 					endtime = swap;
   1029 				}
   1030 				if (reversed
   1031 				    || (starttime < endtime
   1032 					&& (endtime - starttime
   1033 					    < (yearsecs
   1034 					       + (stdoffset - dstoffset))))) {
   1035 					if (TZ_MAX_TIMES - 2 < timecnt)
   1036 						break;
   1037 					yearlim = year + YEARSPERREPEAT + 1;
   1038 					sp->ats[timecnt] = janfirst;
   1039 					if (increment_overflow_time
   1040 					    (&sp->ats[timecnt], starttime))
   1041 						break;
   1042 					sp->types[timecnt++] = reversed;
   1043 					sp->ats[timecnt] = janfirst;
   1044 					if (increment_overflow_time
   1045 					    (&sp->ats[timecnt], endtime))
   1046 						break;
   1047 					sp->types[timecnt++] = !reversed;
   1048 				}
   1049 				if (increment_overflow_time(&janfirst, yearsecs))
   1050 					break;
   1051 			}
   1052 			sp->timecnt = timecnt;
   1053 			if (!timecnt)
   1054 				sp->typecnt = 1;	/* Perpetual DST.  */
   1055 		} else {
   1056 			register int_fast32_t	theirstdoffset;
   1057 			register int_fast32_t	theirdstoffset;
   1058 			register int_fast32_t	theiroffset;
   1059 			register int		isdst;
   1060 			register int		i;
   1061 			register int		j;
   1062 
   1063 			if (*name != '\0')
   1064 				return -1;
   1065 			/*
   1066 			** Initial values of theirstdoffset and theirdstoffset.
   1067 			*/
   1068 			theirstdoffset = 0;
   1069 			for (i = 0; i < sp->timecnt; ++i) {
   1070 				j = sp->types[i];
   1071 				if (!sp->ttis[j].tt_isdst) {
   1072 					theirstdoffset =
   1073 						-sp->ttis[j].tt_gmtoff;
   1074 					break;
   1075 				}
   1076 			}
   1077 			theirdstoffset = 0;
   1078 			for (i = 0; i < sp->timecnt; ++i) {
   1079 				j = sp->types[i];
   1080 				if (sp->ttis[j].tt_isdst) {
   1081 					theirdstoffset =
   1082 						-sp->ttis[j].tt_gmtoff;
   1083 					break;
   1084 				}
   1085 			}
   1086 			/*
   1087 			** Initially we're assumed to be in standard time.
   1088 			*/
   1089 			isdst = FALSE;
   1090 			theiroffset = theirstdoffset;
   1091 			/*
   1092 			** Now juggle transition times and types
   1093 			** tracking offsets as you do.
   1094 			*/
   1095 			for (i = 0; i < sp->timecnt; ++i) {
   1096 				j = sp->types[i];
   1097 				sp->types[i] = sp->ttis[j].tt_isdst;
   1098 				if (sp->ttis[j].tt_ttisgmt) {
   1099 					/* No adjustment to transition time */
   1100 				} else {
   1101 					/*
   1102 					** If summer time is in effect, and the
   1103 					** transition time was not specified as
   1104 					** standard time, add the summer time
   1105 					** offset to the transition time;
   1106 					** otherwise, add the standard time
   1107 					** offset to the transition time.
   1108 					*/
   1109 					/*
   1110 					** Transitions from DST to DDST
   1111 					** will effectively disappear since
   1112 					** POSIX provides for only one DST
   1113 					** offset.
   1114 					*/
   1115 					if (isdst && !sp->ttis[j].tt_ttisstd) {
   1116 						sp->ats[i] += dstoffset -
   1117 							theirdstoffset;
   1118 					} else {
   1119 						sp->ats[i] += stdoffset -
   1120 							theirstdoffset;
   1121 					}
   1122 				}
   1123 				theiroffset = -sp->ttis[j].tt_gmtoff;
   1124 				if (sp->ttis[j].tt_isdst)
   1125 					theirdstoffset = theiroffset;
   1126 				else	theirstdoffset = theiroffset;
   1127 			}
   1128 			/*
   1129 			** Finally, fill in ttis.
   1130 			*/
   1131 			sp->ttis[0] = sp->ttis[1] = zttinfo;
   1132 			sp->ttis[0].tt_gmtoff = -stdoffset;
   1133 			sp->ttis[0].tt_isdst = FALSE;
   1134 			sp->ttis[0].tt_abbrind = 0;
   1135 			sp->ttis[1].tt_gmtoff = -dstoffset;
   1136 			sp->ttis[1].tt_isdst = TRUE;
   1137 			sp->ttis[1].tt_abbrind = stdlen + 1;
   1138 			sp->typecnt = 2;
   1139 			sp->defaulttype = 0;
   1140 		}
   1141 	} else {
   1142 		dstlen = 0;
   1143 		sp->typecnt = 1;		/* only standard time */
   1144 		sp->timecnt = 0;
   1145 		sp->ttis[0] = zttinfo;
   1146 		sp->ttis[0].tt_gmtoff = -stdoffset;
   1147 		sp->ttis[0].tt_isdst = 0;
   1148 		sp->ttis[0].tt_abbrind = 0;
   1149 		sp->defaulttype = 0;
   1150 	}
   1151 	sp->charcnt = stdlen + 1;
   1152 	if (dstlen != 0)
   1153 		sp->charcnt += dstlen + 1;
   1154 	if ((size_t) sp->charcnt > sizeof sp->chars)
   1155 		return -1;
   1156 	cp = sp->chars;
   1157 	(void) strncpy(cp, stdname, stdlen);
   1158 	cp += stdlen;
   1159 	*cp++ = '\0';
   1160 	if (dstlen != 0) {
   1161 		(void) strncpy(cp, dstname, dstlen);
   1162 		*(cp + dstlen) = '\0';
   1163 	}
   1164 	return 0;
   1165 }
   1166 
   1167 static void
   1168 gmtload(struct state *const sp)
   1169 {
   1170 	if (tzload(gmt, sp, TRUE) != 0)
   1171 		(void) tzparse(gmt, sp, TRUE);
   1172 }
   1173 
   1174 #ifndef STD_INSPIRED
   1175 /*
   1176 ** A non-static declaration of tzsetwall in a system header file
   1177 ** may cause a warning about this upcoming static declaration...
   1178 */
   1179 static
   1180 #endif /* !defined STD_INSPIRED */
   1181 void
   1182 tzsetwall(void)
   1183 {
   1184 	if (lcl_is_set < 0)
   1185 		return;
   1186 	lcl_is_set = -1;
   1187 
   1188 #ifdef ALL_STATE
   1189 	if (lclptr == NULL) {
   1190 		lclptr = malloc(sizeof *lclptr);
   1191 		if (lclptr == NULL) {
   1192 			settzname();	/* all we can do */
   1193 			return;
   1194 		}
   1195 	}
   1196 #endif /* defined ALL_STATE */
   1197 	if (tzload(NULL, lclptr, TRUE) != 0)
   1198 		gmtload(lclptr);
   1199 	settzname();
   1200 }
   1201 
   1202 void
   1203 tzset(void)
   1204 {
   1205 	register const char *	name;
   1206 
   1207 	name = getenv("TZ");
   1208 	if (name == NULL) {
   1209 		tzsetwall();
   1210 		return;
   1211 	}
   1212 
   1213 	if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0)
   1214 		return;
   1215 	lcl_is_set = strlen(name) < sizeof lcl_TZname;
   1216 	if (lcl_is_set)
   1217 		(void) strcpy(lcl_TZname, name);
   1218 
   1219 #ifdef ALL_STATE
   1220 	if (lclptr == NULL) {
   1221 		lclptr = malloc(sizeof *lclptr);
   1222 		if (lclptr == NULL) {
   1223 			settzname();	/* all we can do */
   1224 			return;
   1225 		}
   1226 	}
   1227 #endif /* defined ALL_STATE */
   1228 	if (*name == '\0') {
   1229 		/*
   1230 		** User wants it fast rather than right.
   1231 		*/
   1232 		lclptr->leapcnt = 0;		/* so, we're off a little */
   1233 		lclptr->timecnt = 0;
   1234 		lclptr->typecnt = 0;
   1235 		lclptr->ttis[0].tt_isdst = 0;
   1236 		lclptr->ttis[0].tt_gmtoff = 0;
   1237 		lclptr->ttis[0].tt_abbrind = 0;
   1238 		(void) strcpy(lclptr->chars, gmt);
   1239 	} else if (tzload(name, lclptr, TRUE) != 0)
   1240 		if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0)
   1241 			(void) gmtload(lclptr);
   1242 	settzname();
   1243 }
   1244 
   1245 /*
   1246 ** The easy way to behave "as if no library function calls" localtime
   1247 ** is to not call it--so we drop its guts into "localsub", which can be
   1248 ** freely called. (And no, the PANS doesn't require the above behavior--
   1249 ** but it *is* desirable.)
   1250 **
   1251 ** The unused offset argument is for the benefit of mktime variants.
   1252 */
   1253 
   1254 /*ARGSUSED*/
   1255 static struct tm *
   1256 localsub(const time_t *const timep, const int_fast32_t offset,
   1257 	 struct tm *const tmp)
   1258 {
   1259 	register struct state *		sp;
   1260 	register const struct ttinfo *	ttisp;
   1261 	register int			i;
   1262 	register struct tm *		result;
   1263 	const time_t			t = *timep;
   1264 
   1265 	sp = lclptr;
   1266 	if (sp == NULL)
   1267 		return gmtsub(timep, offset, tmp);
   1268 	if ((sp->goback && t < sp->ats[0]) ||
   1269 		(sp->goahead && t > sp->ats[sp->timecnt - 1])) {
   1270 			time_t			newt = t;
   1271 			register time_t		seconds;
   1272 			register time_t		years;
   1273 
   1274 			if (t < sp->ats[0])
   1275 				seconds = sp->ats[0] - t;
   1276 			else	seconds = t - sp->ats[sp->timecnt - 1];
   1277 			--seconds;
   1278 			years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
   1279 			seconds = years * AVGSECSPERYEAR;
   1280 			if (t < sp->ats[0])
   1281 				newt += seconds;
   1282 			else	newt -= seconds;
   1283 			if (newt < sp->ats[0] ||
   1284 				newt > sp->ats[sp->timecnt - 1])
   1285 					return NULL;	/* "cannot happen" */
   1286 			result = localsub(&newt, offset, tmp);
   1287 			if (result == tmp) {
   1288 				register time_t	newy;
   1289 
   1290 				newy = tmp->tm_year;
   1291 				if (t < sp->ats[0])
   1292 					newy -= years;
   1293 				else	newy += years;
   1294 				tmp->tm_year = newy;
   1295 				if (tmp->tm_year != newy)
   1296 					return NULL;
   1297 			}
   1298 			return result;
   1299 	}
   1300 	if (sp->timecnt == 0 || t < sp->ats[0]) {
   1301 		i = sp->defaulttype;
   1302 	} else {
   1303 		register int	lo = 1;
   1304 		register int	hi = sp->timecnt;
   1305 
   1306 		while (lo < hi) {
   1307 			register int	mid = (lo + hi) >> 1;
   1308 
   1309 			if (t < sp->ats[mid])
   1310 				hi = mid;
   1311 			else	lo = mid + 1;
   1312 		}
   1313 		i = (int) sp->types[lo - 1];
   1314 	}
   1315 	ttisp = &sp->ttis[i];
   1316 	/*
   1317 	** To get (wrong) behavior that's compatible with System V Release 2.0
   1318 	** you'd replace the statement below with
   1319 	**	t += ttisp->tt_gmtoff;
   1320 	**	timesub(&t, 0L, sp, tmp);
   1321 	*/
   1322 	result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
   1323 	tmp->tm_isdst = ttisp->tt_isdst;
   1324 	tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind];
   1325 #ifdef TM_ZONE
   1326 	tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind];
   1327 #endif /* defined TM_ZONE */
   1328 	return result;
   1329 }
   1330 
   1331 struct tm *
   1332 localtime(const time_t *const timep)
   1333 {
   1334 	tzset();
   1335 	return localsub(timep, 0L, &tm);
   1336 }
   1337 
   1338 /*
   1339 ** Re-entrant version of localtime.
   1340 */
   1341 
   1342 struct tm *
   1343 localtime_r(const time_t *const timep, struct tm *tmp)
   1344 {
   1345 	return localsub(timep, 0L, tmp);
   1346 }
   1347 
   1348 /*
   1349 ** gmtsub is to gmtime as localsub is to localtime.
   1350 */
   1351 
   1352 static struct tm *
   1353 gmtsub(const time_t *const timep, const int_fast32_t offset,
   1354        struct tm *const tmp)
   1355 {
   1356 	register struct tm *	result;
   1357 
   1358 	if (!gmt_is_set) {
   1359 		gmt_is_set = TRUE;
   1360 #ifdef ALL_STATE
   1361 		gmtptr = malloc(sizeof *gmtptr);
   1362 #endif /* defined ALL_STATE */
   1363 		if (gmtptr != NULL)
   1364 			gmtload(gmtptr);
   1365 	}
   1366 	result = timesub(timep, offset, gmtptr, tmp);
   1367 #ifdef TM_ZONE
   1368 	/*
   1369 	** Could get fancy here and deliver something such as
   1370 	** "UT+xxxx" or "UT-xxxx" if offset is non-zero,
   1371 	** but this is no time for a treasure hunt.
   1372 	*/
   1373 	tmp->TM_ZONE = offset ? wildabbr : gmtptr ? gmtptr->chars : gmt;
   1374 #endif /* defined TM_ZONE */
   1375 	return result;
   1376 }
   1377 
   1378 struct tm *
   1379 gmtime(const time_t *const timep)
   1380 {
   1381 	return gmtsub(timep, 0L, &tm);
   1382 }
   1383 
   1384 /*
   1385 * Re-entrant version of gmtime.
   1386 */
   1387 
   1388 struct tm *
   1389 gmtime_r(const time_t *const timep, struct tm *tmp)
   1390 {
   1391 	return gmtsub(timep, 0L, tmp);
   1392 }
   1393 
   1394 #ifdef STD_INSPIRED
   1395 
   1396 struct tm *
   1397 offtime(const time_t *const timep, const long offset)
   1398 {
   1399 	return gmtsub(timep, offset, &tm);
   1400 }
   1401 
   1402 #endif /* defined STD_INSPIRED */
   1403 
   1404 /*
   1405 ** Return the number of leap years through the end of the given year
   1406 ** where, to make the math easy, the answer for year zero is defined as zero.
   1407 */
   1408 
   1409 static int
   1410 leaps_thru_end_of(register const int y)
   1411 {
   1412 	return (y >= 0) ? (y / 4 - y / 100 + y / 400) :
   1413 		-(leaps_thru_end_of(-(y + 1)) + 1);
   1414 }
   1415 
   1416 static struct tm *
   1417 timesub(const time_t *const timep, const int_fast32_t offset,
   1418 	register const struct state *const sp,
   1419 	register struct tm *const tmp)
   1420 {
   1421 	register const struct lsinfo *	lp;
   1422 	register time_t			tdays;
   1423 	register int			idays;	/* unsigned would be so 2003 */
   1424 	register int_fast64_t		rem;
   1425 	int				y;
   1426 	register const int *		ip;
   1427 	register int_fast64_t		corr;
   1428 	register int			hit;
   1429 	register int			i;
   1430 
   1431 	corr = 0;
   1432 	hit = 0;
   1433 	i = (sp == NULL) ? 0 : sp->leapcnt;
   1434 	while (--i >= 0) {
   1435 		lp = &sp->lsis[i];
   1436 		if (*timep >= lp->ls_trans) {
   1437 			if (*timep == lp->ls_trans) {
   1438 				hit = ((i == 0 && lp->ls_corr > 0) ||
   1439 					lp->ls_corr > sp->lsis[i - 1].ls_corr);
   1440 				if (hit)
   1441 					while (i > 0 &&
   1442 						sp->lsis[i].ls_trans ==
   1443 						sp->lsis[i - 1].ls_trans + 1 &&
   1444 						sp->lsis[i].ls_corr ==
   1445 						sp->lsis[i - 1].ls_corr + 1) {
   1446 							++hit;
   1447 							--i;
   1448 					}
   1449 			}
   1450 			corr = lp->ls_corr;
   1451 			break;
   1452 		}
   1453 	}
   1454 	y = EPOCH_YEAR;
   1455 	tdays = *timep / SECSPERDAY;
   1456 	rem = *timep - tdays * SECSPERDAY;
   1457 	while (tdays < 0 || tdays >= year_lengths[isleap(y)]) {
   1458 		int		newy;
   1459 		register time_t	tdelta;
   1460 		register int	idelta;
   1461 		register int	leapdays;
   1462 
   1463 		tdelta = tdays / DAYSPERLYEAR;
   1464 		if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta)
   1465 		       && tdelta <= INT_MAX))
   1466 			return NULL;
   1467 		idelta = tdelta;
   1468 		if (idelta == 0)
   1469 			idelta = (tdays < 0) ? -1 : 1;
   1470 		newy = y;
   1471 		if (increment_overflow(&newy, idelta))
   1472 			return NULL;
   1473 		leapdays = leaps_thru_end_of(newy - 1) -
   1474 			leaps_thru_end_of(y - 1);
   1475 		tdays -= ((time_t) newy - y) * DAYSPERNYEAR;
   1476 		tdays -= leapdays;
   1477 		y = newy;
   1478 	}
   1479 	{
   1480 		register int_fast32_t	seconds;
   1481 
   1482 		seconds = tdays * SECSPERDAY;
   1483 		tdays = seconds / SECSPERDAY;
   1484 		rem += seconds - tdays * SECSPERDAY;
   1485 	}
   1486 	/*
   1487 	** Given the range, we can now fearlessly cast...
   1488 	*/
   1489 	idays = tdays;
   1490 	rem += offset - corr;
   1491 	while (rem < 0) {
   1492 		rem += SECSPERDAY;
   1493 		--idays;
   1494 	}
   1495 	while (rem >= SECSPERDAY) {
   1496 		rem -= SECSPERDAY;
   1497 		++idays;
   1498 	}
   1499 	while (idays < 0) {
   1500 		if (increment_overflow(&y, -1))
   1501 			return NULL;
   1502 		idays += year_lengths[isleap(y)];
   1503 	}
   1504 	while (idays >= year_lengths[isleap(y)]) {
   1505 		idays -= year_lengths[isleap(y)];
   1506 		if (increment_overflow(&y, 1))
   1507 			return NULL;
   1508 	}
   1509 	tmp->tm_year = y;
   1510 	if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
   1511 		return NULL;
   1512 	tmp->tm_yday = idays;
   1513 	/*
   1514 	** The "extra" mods below avoid overflow problems.
   1515 	*/
   1516 	tmp->tm_wday = EPOCH_WDAY +
   1517 		((y - EPOCH_YEAR) % DAYSPERWEEK) *
   1518 		(DAYSPERNYEAR % DAYSPERWEEK) +
   1519 		leaps_thru_end_of(y - 1) -
   1520 		leaps_thru_end_of(EPOCH_YEAR - 1) +
   1521 		idays;
   1522 	tmp->tm_wday %= DAYSPERWEEK;
   1523 	if (tmp->tm_wday < 0)
   1524 		tmp->tm_wday += DAYSPERWEEK;
   1525 	tmp->tm_hour = (int) (rem / SECSPERHOUR);
   1526 	rem %= SECSPERHOUR;
   1527 	tmp->tm_min = (int) (rem / SECSPERMIN);
   1528 	/*
   1529 	** A positive leap second requires a special
   1530 	** representation. This uses "... ??:59:60" et seq.
   1531 	*/
   1532 	tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
   1533 	ip = mon_lengths[isleap(y)];
   1534 	for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
   1535 		idays -= ip[tmp->tm_mon];
   1536 	tmp->tm_mday = (int) (idays + 1);
   1537 	tmp->tm_isdst = 0;
   1538 #ifdef TM_GMTOFF
   1539 	tmp->TM_GMTOFF = offset;
   1540 #endif /* defined TM_GMTOFF */
   1541 	return tmp;
   1542 }
   1543 
   1544 char *
   1545 ctime(const time_t *const timep)
   1546 {
   1547 /*
   1548 ** Section 4.12.3.2 of X3.159-1989 requires that
   1549 **	The ctime function converts the calendar time pointed to by timer
   1550 **	to local time in the form of a string. It is equivalent to
   1551 **		asctime(localtime(timer))
   1552 */
   1553 	return asctime(localtime(timep));
   1554 }
   1555 
   1556 char *
   1557 ctime_r(const time_t *const timep, char *buf)
   1558 {
   1559 	struct tm	mytm;
   1560 
   1561 	return asctime_r(localtime_r(timep, &mytm), buf);
   1562 }
   1563 
   1564 /*
   1565 ** Adapted from code provided by Robert Elz, who writes:
   1566 **	The "best" way to do mktime I think is based on an idea of Bob
   1567 **	Kridle's (so its said...) from a long time ago.
   1568 **	It does a binary search of the time_t space. Since time_t's are
   1569 **	just 32 bits, its a max of 32 iterations (even at 64 bits it
   1570 **	would still be very reasonable).
   1571 */
   1572 
   1573 #ifndef WRONG
   1574 #define WRONG	(-1)
   1575 #endif /* !defined WRONG */
   1576 
   1577 /*
   1578 ** Normalize logic courtesy Paul Eggert.
   1579 */
   1580 
   1581 static int
   1582 increment_overflow(int *const ip, int j)
   1583 {
   1584 	register int const	i = *ip;
   1585 
   1586 	/*
   1587 	** If i >= 0 there can only be overflow if i + j > INT_MAX
   1588 	** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
   1589 	** If i < 0 there can only be overflow if i + j < INT_MIN
   1590 	** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
   1591 	*/
   1592 	if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
   1593 		return TRUE;
   1594 	*ip += j;
   1595 	return FALSE;
   1596 }
   1597 
   1598 static int
   1599 increment_overflow32(int_fast32_t *const lp, int const m)
   1600 {
   1601 	register int_fast32_t const	l = *lp;
   1602 
   1603 	if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l))
   1604 		return TRUE;
   1605 	*lp += m;
   1606 	return FALSE;
   1607 }
   1608 
   1609 static int
   1610 increment_overflow_time(time_t *tp, int_fast32_t j)
   1611 {
   1612 	/*
   1613 	** This is like
   1614 	** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...',
   1615 	** except that it does the right thing even if *tp + j would overflow.
   1616 	*/
   1617 	if (! (j < 0
   1618 	       ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp)
   1619 	       : *tp <= time_t_max - j))
   1620 		return TRUE;
   1621 	*tp += j;
   1622 	return FALSE;
   1623 }
   1624 
   1625 static int
   1626 normalize_overflow(int *const tensptr, int *const unitsptr, const int base)
   1627 {
   1628 	register int	tensdelta;
   1629 
   1630 	tensdelta = (*unitsptr >= 0) ?
   1631 		(*unitsptr / base) :
   1632 		(-1 - (-1 - *unitsptr) / base);
   1633 	*unitsptr -= tensdelta * base;
   1634 	return increment_overflow(tensptr, tensdelta);
   1635 }
   1636 
   1637 static int
   1638 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr,
   1639 		     const int base)
   1640 {
   1641 	register int	tensdelta;
   1642 
   1643 	tensdelta = (*unitsptr >= 0) ?
   1644 		(*unitsptr / base) :
   1645 		(-1 - (-1 - *unitsptr) / base);
   1646 	*unitsptr -= tensdelta * base;
   1647 	return increment_overflow32(tensptr, tensdelta);
   1648 }
   1649 
   1650 static int
   1651 tmcomp(register const struct tm *const atmp,
   1652        register const struct tm *const btmp)
   1653 {
   1654 	register int	result;
   1655 
   1656 	if (atmp->tm_year != btmp->tm_year)
   1657 		return atmp->tm_year < btmp->tm_year ? -1 : 1;
   1658 	if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 &&
   1659 		(result = (atmp->tm_mday - btmp->tm_mday)) == 0 &&
   1660 		(result = (atmp->tm_hour - btmp->tm_hour)) == 0 &&
   1661 		(result = (atmp->tm_min - btmp->tm_min)) == 0)
   1662 			result = atmp->tm_sec - btmp->tm_sec;
   1663 	return result;
   1664 }
   1665 
   1666 static time_t
   1667 time2sub(struct tm *const tmp,
   1668 	 struct tm *(*const funcp)(const time_t *, int_fast32_t, struct tm *),
   1669 	 const int_fast32_t offset,
   1670 	 int *const okayp,
   1671 	 const int do_norm_secs)
   1672 {
   1673 	register const struct state *	sp;
   1674 	register int			dir;
   1675 	register int			i, j;
   1676 	register int			saved_seconds;
   1677 	register int_fast32_t			li;
   1678 	register time_t			lo;
   1679 	register time_t			hi;
   1680 	int_fast32_t				y;
   1681 	time_t				newt;
   1682 	time_t				t;
   1683 	struct tm			yourtm, mytm;
   1684 
   1685 	*okayp = FALSE;
   1686 	yourtm = *tmp;
   1687 	if (do_norm_secs) {
   1688 		if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec,
   1689 			SECSPERMIN))
   1690 				return WRONG;
   1691 	}
   1692 	if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR))
   1693 		return WRONG;
   1694 	if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY))
   1695 		return WRONG;
   1696 	y = yourtm.tm_year;
   1697 	if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR))
   1698 		return WRONG;
   1699 	/*
   1700 	** Turn y into an actual year number for now.
   1701 	** It is converted back to an offset from TM_YEAR_BASE later.
   1702 	*/
   1703 	if (increment_overflow32(&y, TM_YEAR_BASE))
   1704 		return WRONG;
   1705 	while (yourtm.tm_mday <= 0) {
   1706 		if (increment_overflow32(&y, -1))
   1707 			return WRONG;
   1708 		li = y + (1 < yourtm.tm_mon);
   1709 		yourtm.tm_mday += year_lengths[isleap(li)];
   1710 	}
   1711 	while (yourtm.tm_mday > DAYSPERLYEAR) {
   1712 		li = y + (1 < yourtm.tm_mon);
   1713 		yourtm.tm_mday -= year_lengths[isleap(li)];
   1714 		if (increment_overflow32(&y, 1))
   1715 			return WRONG;
   1716 	}
   1717 	for ( ; ; ) {
   1718 		i = mon_lengths[isleap(y)][yourtm.tm_mon];
   1719 		if (yourtm.tm_mday <= i)
   1720 			break;
   1721 		yourtm.tm_mday -= i;
   1722 		if (++yourtm.tm_mon >= MONSPERYEAR) {
   1723 			yourtm.tm_mon = 0;
   1724 			if (increment_overflow32(&y, 1))
   1725 				return WRONG;
   1726 		}
   1727 	}
   1728 	if (increment_overflow32(&y, -TM_YEAR_BASE))
   1729 		return WRONG;
   1730 	yourtm.tm_year = y;
   1731 	if (yourtm.tm_year != y)
   1732 		return WRONG;
   1733 	if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN)
   1734 		saved_seconds = 0;
   1735 	else if (y + TM_YEAR_BASE < EPOCH_YEAR) {
   1736 		/*
   1737 		** We can't set tm_sec to 0, because that might push the
   1738 		** time below the minimum representable time.
   1739 		** Set tm_sec to 59 instead.
   1740 		** This assumes that the minimum representable time is
   1741 		** not in the same minute that a leap second was deleted from,
   1742 		** which is a safer assumption than using 58 would be.
   1743 		*/
   1744 		if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN))
   1745 			return WRONG;
   1746 		saved_seconds = yourtm.tm_sec;
   1747 		yourtm.tm_sec = SECSPERMIN - 1;
   1748 	} else {
   1749 		saved_seconds = yourtm.tm_sec;
   1750 		yourtm.tm_sec = 0;
   1751 	}
   1752 	/*
   1753 	** Do a binary search (this works whatever time_t's type is).
   1754 	*/
   1755 	if (!TYPE_SIGNED(time_t)) {
   1756 		lo = 0;
   1757 		hi = lo - 1;
   1758 	} else {
   1759 		lo = 1;
   1760 		for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i)
   1761 			lo *= 2;
   1762 		hi = -(lo + 1);
   1763 	}
   1764 	for ( ; ; ) {
   1765 		t = lo / 2 + hi / 2;
   1766 		if (t < lo)
   1767 			t = lo;
   1768 		else if (t > hi)
   1769 			t = hi;
   1770 		if ((*funcp)(&t, offset, &mytm) == NULL) {
   1771 			/*
   1772 			** Assume that t is too extreme to be represented in
   1773 			** a struct tm; arrange things so that it is less
   1774 			** extreme on the next pass.
   1775 			*/
   1776 			dir = (t > 0) ? 1 : -1;
   1777 		} else	dir = tmcomp(&mytm, &yourtm);
   1778 		if (dir != 0) {
   1779 			if (t == lo) {
   1780 				if (t == time_t_max)
   1781 					return WRONG;
   1782 				++t;
   1783 				++lo;
   1784 			} else if (t == hi) {
   1785 				if (t == time_t_min)
   1786 					return WRONG;
   1787 				--t;
   1788 				--hi;
   1789 			}
   1790 			if (lo > hi)
   1791 				return WRONG;
   1792 			if (dir > 0)
   1793 				hi = t;
   1794 			else	lo = t;
   1795 			continue;
   1796 		}
   1797 		if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst)
   1798 			break;
   1799 		/*
   1800 		** Right time, wrong type.
   1801 		** Hunt for right time, right type.
   1802 		** It's okay to guess wrong since the guess
   1803 		** gets checked.
   1804 		*/
   1805 		sp = (const struct state *)
   1806 			((funcp == localsub) ? lclptr : gmtptr);
   1807 		if (sp == NULL)
   1808 			return WRONG;
   1809 		for (i = sp->typecnt - 1; i >= 0; --i) {
   1810 			if (sp->ttis[i].tt_isdst != yourtm.tm_isdst)
   1811 				continue;
   1812 			for (j = sp->typecnt - 1; j >= 0; --j) {
   1813 				if (sp->ttis[j].tt_isdst == yourtm.tm_isdst)
   1814 					continue;
   1815 				newt = t + sp->ttis[j].tt_gmtoff -
   1816 					sp->ttis[i].tt_gmtoff;
   1817 				if ((*funcp)(&newt, offset, &mytm) == NULL)
   1818 					continue;
   1819 				if (tmcomp(&mytm, &yourtm) != 0)
   1820 					continue;
   1821 				if (mytm.tm_isdst != yourtm.tm_isdst)
   1822 					continue;
   1823 				/*
   1824 				** We have a match.
   1825 				*/
   1826 				t = newt;
   1827 				goto label;
   1828 			}
   1829 		}
   1830 		return WRONG;
   1831 	}
   1832 label:
   1833 	newt = t + saved_seconds;
   1834 	if ((newt < t) != (saved_seconds < 0))
   1835 		return WRONG;
   1836 	t = newt;
   1837 	if ((*funcp)(&t, offset, tmp))
   1838 		*okayp = TRUE;
   1839 	return t;
   1840 }
   1841 
   1842 static time_t
   1843 time2(struct tm * const	tmp,
   1844       struct tm * (*const funcp)(const time_t *, int_fast32_t, struct tm *),
   1845       const int_fast32_t offset,
   1846       int *const okayp)
   1847 {
   1848 	time_t	t;
   1849 
   1850 	/*
   1851 	** First try without normalization of seconds
   1852 	** (in case tm_sec contains a value associated with a leap second).
   1853 	** If that fails, try with normalization of seconds.
   1854 	*/
   1855 	t = time2sub(tmp, funcp, offset, okayp, FALSE);
   1856 	return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE);
   1857 }
   1858 
   1859 static time_t
   1860 time1(struct tm *const tmp,
   1861       struct tm *(*const funcp) (const time_t *, int_fast32_t, struct tm *),
   1862       const int_fast32_t offset)
   1863 {
   1864 	register time_t			t;
   1865 	register const struct state *	sp;
   1866 	register int			samei, otheri;
   1867 	register int			sameind, otherind;
   1868 	register int			i;
   1869 	register int			nseen;
   1870 	int				seen[TZ_MAX_TYPES];
   1871 	int				types[TZ_MAX_TYPES];
   1872 	int				okay;
   1873 
   1874 	if (tmp == NULL) {
   1875 		errno = EINVAL;
   1876 		return WRONG;
   1877 	}
   1878 	if (tmp->tm_isdst > 1)
   1879 		tmp->tm_isdst = 1;
   1880 	t = time2(tmp, funcp, offset, &okay);
   1881 	if (okay)
   1882 		return t;
   1883 	if (tmp->tm_isdst < 0)
   1884 #ifdef PCTS
   1885 		/*
   1886 		** POSIX Conformance Test Suite code courtesy Grant Sullivan.
   1887 		*/
   1888 		tmp->tm_isdst = 0;	/* reset to std and try again */
   1889 #else
   1890 		return t;
   1891 #endif /* !defined PCTS */
   1892 	/*
   1893 	** We're supposed to assume that somebody took a time of one type
   1894 	** and did some math on it that yielded a "struct tm" that's bad.
   1895 	** We try to divine the type they started from and adjust to the
   1896 	** type they need.
   1897 	*/
   1898 	sp = (const struct state *) ((funcp == localsub) ?  lclptr : gmtptr);
   1899 	if (sp == NULL)
   1900 		return WRONG;
   1901 	for (i = 0; i < sp->typecnt; ++i)
   1902 		seen[i] = FALSE;
   1903 	nseen = 0;
   1904 	for (i = sp->timecnt - 1; i >= 0; --i)
   1905 		if (!seen[sp->types[i]]) {
   1906 			seen[sp->types[i]] = TRUE;
   1907 			types[nseen++] = sp->types[i];
   1908 		}
   1909 	for (sameind = 0; sameind < nseen; ++sameind) {
   1910 		samei = types[sameind];
   1911 		if (sp->ttis[samei].tt_isdst != tmp->tm_isdst)
   1912 			continue;
   1913 		for (otherind = 0; otherind < nseen; ++otherind) {
   1914 			otheri = types[otherind];
   1915 			if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst)
   1916 				continue;
   1917 			tmp->tm_sec += sp->ttis[otheri].tt_gmtoff -
   1918 					sp->ttis[samei].tt_gmtoff;
   1919 			tmp->tm_isdst = !tmp->tm_isdst;
   1920 			t = time2(tmp, funcp, offset, &okay);
   1921 			if (okay)
   1922 				return t;
   1923 			tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff -
   1924 					sp->ttis[samei].tt_gmtoff;
   1925 			tmp->tm_isdst = !tmp->tm_isdst;
   1926 		}
   1927 	}
   1928 	return WRONG;
   1929 }
   1930 
   1931 time_t
   1932 mktime(struct tm *const tmp)
   1933 {
   1934 	tzset();
   1935 	return time1(tmp, localsub, 0L);
   1936 }
   1937 
   1938 #ifdef STD_INSPIRED
   1939 
   1940 time_t
   1941 timelocal(struct tm *const tmp)
   1942 {
   1943 	if (tmp != NULL)
   1944 		tmp->tm_isdst = -1;	/* in case it wasn't initialized */
   1945 	return mktime(tmp);
   1946 }
   1947 
   1948 time_t
   1949 timegm(struct tm *const tmp)
   1950 {
   1951 	if (tmp != NULL)
   1952 		tmp->tm_isdst = 0;
   1953 	return time1(tmp, gmtsub, 0L);
   1954 }
   1955 
   1956 time_t
   1957 timeoff(struct tm *const tmp, const long offset)
   1958 {
   1959 	if (tmp != NULL)
   1960 		tmp->tm_isdst = 0;
   1961 	return time1(tmp, gmtsub, offset);
   1962 }
   1963 
   1964 #endif /* defined STD_INSPIRED */
   1965 
   1966 #ifdef CMUCS
   1967 
   1968 /*
   1969 ** The following is supplied for compatibility with
   1970 ** previous versions of the CMUCS runtime library.
   1971 */
   1972 
   1973 long
   1974 gtime(struct tm *const tmp)
   1975 {
   1976 	const time_t	t = mktime(tmp);
   1977 
   1978 	if (t == WRONG)
   1979 		return -1;
   1980 	return t;
   1981 }
   1982 
   1983 #endif /* defined CMUCS */
   1984 
   1985 /*
   1986 ** XXX--is the below the right way to conditionalize??
   1987 */
   1988 
   1989 #ifdef STD_INSPIRED
   1990 
   1991 /*
   1992 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599
   1993 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which
   1994 ** is not the case if we are accounting for leap seconds.
   1995 ** So, we provide the following conversion routines for use
   1996 ** when exchanging timestamps with POSIX conforming systems.
   1997 */
   1998 
   1999 static int_fast64_t
   2000 leapcorr(time_t *timep)
   2001 {
   2002 	register struct state *		sp;
   2003 	register struct lsinfo *	lp;
   2004 	register int			i;
   2005 
   2006 	sp = lclptr;
   2007 	i = sp->leapcnt;
   2008 	while (--i >= 0) {
   2009 		lp = &sp->lsis[i];
   2010 		if (*timep >= lp->ls_trans)
   2011 			return lp->ls_corr;
   2012 	}
   2013 	return 0;
   2014 }
   2015 
   2016 time_t
   2017 time2posix(time_t t)
   2018 {
   2019 	tzset();
   2020 	return t - leapcorr(&t);
   2021 }
   2022 
   2023 time_t
   2024 posix2time(time_t t)
   2025 {
   2026 	time_t	x;
   2027 	time_t	y;
   2028 
   2029 	tzset();
   2030 	/*
   2031 	** For a positive leap second hit, the result
   2032 	** is not unique. For a negative leap second
   2033 	** hit, the corresponding time doesn't exist,
   2034 	** so we return an adjacent second.
   2035 	*/
   2036 	x = t + leapcorr(&t);
   2037 	y = x - leapcorr(&x);
   2038 	if (y < t) {
   2039 		do {
   2040 			x++;
   2041 			y = x - leapcorr(&x);
   2042 		} while (y < t);
   2043 		if (t != y)
   2044 			return x - 1;
   2045 	} else if (y > t) {
   2046 		do {
   2047 			--x;
   2048 			y = x - leapcorr(&x);
   2049 		} while (y > t);
   2050 		if (t != y)
   2051 			return x + 1;
   2052 	}
   2053 	return x;
   2054 }
   2055 
   2056 #endif /* defined STD_INSPIRED */
   2057