1 /* 2 ** This file is in the public domain, so clarified as of 3 ** 1996-06-05 by Arthur David Olson. 4 */ 5 6 /* 7 ** Leap second handling from Bradley White. 8 ** POSIX-style TZ environment variable handling from Guy Harris. 9 */ 10 11 /*LINTLIBRARY*/ 12 13 #include "private.h" 14 #include "tzfile.h" 15 #include "fcntl.h" 16 17 #ifndef TZ_ABBR_MAX_LEN 18 #define TZ_ABBR_MAX_LEN 16 19 #endif /* !defined TZ_ABBR_MAX_LEN */ 20 21 #ifndef TZ_ABBR_CHAR_SET 22 #define TZ_ABBR_CHAR_SET \ 23 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" 24 #endif /* !defined TZ_ABBR_CHAR_SET */ 25 26 #ifndef TZ_ABBR_ERR_CHAR 27 #define TZ_ABBR_ERR_CHAR '_' 28 #endif /* !defined TZ_ABBR_ERR_CHAR */ 29 30 /* 31 ** SunOS 4.1.1 headers lack O_BINARY. 32 */ 33 34 #ifdef O_BINARY 35 #define OPEN_MODE (O_RDONLY | O_BINARY) 36 #endif /* defined O_BINARY */ 37 #ifndef O_BINARY 38 #define OPEN_MODE O_RDONLY 39 #endif /* !defined O_BINARY */ 40 41 #ifndef WILDABBR 42 /* 43 ** Someone might make incorrect use of a time zone abbreviation: 44 ** 1. They might reference tzname[0] before calling tzset (explicitly 45 ** or implicitly). 46 ** 2. They might reference tzname[1] before calling tzset (explicitly 47 ** or implicitly). 48 ** 3. They might reference tzname[1] after setting to a time zone 49 ** in which Daylight Saving Time is never observed. 50 ** 4. They might reference tzname[0] after setting to a time zone 51 ** in which Standard Time is never observed. 52 ** 5. They might reference tm.TM_ZONE after calling offtime. 53 ** What's best to do in the above cases is open to debate; 54 ** for now, we just set things up so that in any of the five cases 55 ** WILDABBR is used. Another possibility: initialize tzname[0] to the 56 ** string "tzname[0] used before set", and similarly for the other cases. 57 ** And another: initialize tzname[0] to "ERA", with an explanation in the 58 ** manual page of what this "time zone abbreviation" means (doing this so 59 ** that tzname[0] has the "normal" length of three characters). 60 */ 61 #define WILDABBR " " 62 #endif /* !defined WILDABBR */ 63 64 static const char wildabbr[] = WILDABBR; 65 66 static const char gmt[] = "GMT"; 67 68 /* 69 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. 70 ** We default to US rules as of 1999-08-17. 71 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are 72 ** implementation dependent; for historical reasons, US rules are a 73 ** common default. 74 */ 75 #ifndef TZDEFRULESTRING 76 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" 77 #endif /* !defined TZDEFDST */ 78 79 struct ttinfo { /* time type information */ 80 int_fast32_t tt_gmtoff; /* UT offset in seconds */ 81 int tt_isdst; /* used to set tm_isdst */ 82 int tt_abbrind; /* abbreviation list index */ 83 int tt_ttisstd; /* TRUE if transition is std time */ 84 int tt_ttisgmt; /* TRUE if transition is UT */ 85 }; 86 87 struct lsinfo { /* leap second information */ 88 time_t ls_trans; /* transition time */ 89 int_fast64_t ls_corr; /* correction to apply */ 90 }; 91 92 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) 93 94 #ifdef TZNAME_MAX 95 #define MY_TZNAME_MAX TZNAME_MAX 96 #endif /* defined TZNAME_MAX */ 97 #ifndef TZNAME_MAX 98 #define MY_TZNAME_MAX 255 99 #endif /* !defined TZNAME_MAX */ 100 101 struct state { 102 int leapcnt; 103 int timecnt; 104 int typecnt; 105 int charcnt; 106 int goback; 107 int goahead; 108 time_t ats[TZ_MAX_TIMES]; 109 unsigned char types[TZ_MAX_TIMES]; 110 struct ttinfo ttis[TZ_MAX_TYPES]; 111 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), 112 (2 * (MY_TZNAME_MAX + 1)))]; 113 struct lsinfo lsis[TZ_MAX_LEAPS]; 114 int defaulttype; /* for early times or if no transitions */ 115 }; 116 117 struct rule { 118 int r_type; /* type of rule--see below */ 119 int r_day; /* day number of rule */ 120 int r_week; /* week number of rule */ 121 int r_mon; /* month number of rule */ 122 int_fast32_t r_time; /* transition time of rule */ 123 }; 124 125 #define JULIAN_DAY 0 /* Jn - Julian day */ 126 #define DAY_OF_YEAR 1 /* n - day of year */ 127 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ 128 129 /* 130 ** Prototypes for static functions. 131 */ 132 133 static int_fast32_t detzcode(const char * codep); 134 static int_fast64_t detzcode64(const char * codep); 135 static int differ_by_repeat(time_t t1, time_t t0); 136 static const char * getzname(const char * strp) ATTRIBUTE_PURE; 137 static const char * getqzname(const char * strp, const int delim) 138 ATTRIBUTE_PURE; 139 static const char * getnum(const char * strp, int * nump, int min, 140 int max); 141 static const char * getsecs(const char * strp, int_fast32_t * secsp); 142 static const char * getoffset(const char * strp, int_fast32_t * offsetp); 143 static const char * getrule(const char * strp, struct rule * rulep); 144 static void gmtload(struct state * sp); 145 static struct tm * gmtsub(const time_t * timep, int_fast32_t offset, 146 struct tm * tmp); 147 static struct tm * localsub(const time_t * timep, int_fast32_t offset, 148 struct tm * tmp); 149 static int increment_overflow(int * number, int delta); 150 static int leaps_thru_end_of(int y) ATTRIBUTE_PURE; 151 static int increment_overflow32(int_fast32_t * number, int delta); 152 static int increment_overflow_time(time_t *t, int_fast32_t delta); 153 static int normalize_overflow32(int_fast32_t * tensptr, 154 int * unitsptr, int base); 155 static int normalize_overflow(int * tensptr, int * unitsptr, 156 int base); 157 static void settzname(void); 158 static time_t time1(struct tm * tmp, 159 struct tm * (*funcp)(const time_t *, 160 int_fast32_t, struct tm *), 161 int_fast32_t offset); 162 static time_t time2(struct tm *tmp, 163 struct tm * (*funcp)(const time_t *, 164 int_fast32_t, struct tm*), 165 int_fast32_t offset, int * okayp); 166 static time_t time2sub(struct tm *tmp, 167 struct tm * (*funcp)(const time_t *, 168 int_fast32_t, struct tm*), 169 int_fast32_t offset, int * okayp, int do_norm_secs); 170 static struct tm * timesub(const time_t * timep, int_fast32_t offset, 171 const struct state * sp, struct tm * tmp); 172 static int tmcomp(const struct tm * atmp, 173 const struct tm * btmp); 174 static int_fast32_t transtime(int year, const struct rule * rulep, 175 int_fast32_t offset) 176 ATTRIBUTE_PURE; 177 static int typesequiv(const struct state * sp, int a, int b); 178 static int tzload(const char * name, struct state * sp, 179 int doextend); 180 static int tzparse(const char * name, struct state * sp, 181 int lastditch); 182 183 #ifdef ALL_STATE 184 static struct state * lclptr; 185 static struct state * gmtptr; 186 #endif /* defined ALL_STATE */ 187 188 #ifndef ALL_STATE 189 static struct state lclmem; 190 static struct state gmtmem; 191 #define lclptr (&lclmem) 192 #define gmtptr (&gmtmem) 193 #endif /* State Farm */ 194 195 #ifndef TZ_STRLEN_MAX 196 #define TZ_STRLEN_MAX 255 197 #endif /* !defined TZ_STRLEN_MAX */ 198 199 static char lcl_TZname[TZ_STRLEN_MAX + 1]; 200 static int lcl_is_set; 201 static int gmt_is_set; 202 203 char * tzname[2] = { 204 (char *) wildabbr, 205 (char *) wildabbr 206 }; 207 208 /* 209 ** Section 4.12.3 of X3.159-1989 requires that 210 ** Except for the strftime function, these functions [asctime, 211 ** ctime, gmtime, localtime] return values in one of two static 212 ** objects: a broken-down time structure and an array of char. 213 ** Thanks to Paul Eggert for noting this. 214 */ 215 216 static struct tm tm; 217 218 #ifdef USG_COMPAT 219 long timezone = 0; 220 int daylight = 0; 221 #endif /* defined USG_COMPAT */ 222 223 #ifdef ALTZONE 224 long altzone = 0; 225 #endif /* defined ALTZONE */ 226 227 static int_fast32_t 228 detzcode(const char *const codep) 229 { 230 register int_fast32_t result; 231 register int i; 232 233 result = (codep[0] & 0x80) ? -1 : 0; 234 for (i = 0; i < 4; ++i) 235 result = (result << 8) | (codep[i] & 0xff); 236 return result; 237 } 238 239 static int_fast64_t 240 detzcode64(const char *const codep) 241 { 242 register int_fast64_t result; 243 register int i; 244 245 result = (codep[0] & 0x80) ? -1 : 0; 246 for (i = 0; i < 8; ++i) 247 result = (result << 8) | (codep[i] & 0xff); 248 return result; 249 } 250 251 static void 252 settzname(void) 253 { 254 register struct state * const sp = lclptr; 255 register int i; 256 257 tzname[0] = tzname[1] = (char *) wildabbr; 258 #ifdef USG_COMPAT 259 daylight = 0; 260 timezone = 0; 261 #endif /* defined USG_COMPAT */ 262 #ifdef ALTZONE 263 altzone = 0; 264 #endif /* defined ALTZONE */ 265 if (sp == NULL) { 266 tzname[0] = tzname[1] = (char *) gmt; 267 return; 268 } 269 /* 270 ** And to get the latest zone names into tzname. . . 271 */ 272 for (i = 0; i < sp->typecnt; ++i) { 273 register const struct ttinfo * const ttisp = &sp->ttis[i]; 274 275 tzname[ttisp->tt_isdst] = &sp->chars[ttisp->tt_abbrind]; 276 } 277 for (i = 0; i < sp->timecnt; ++i) { 278 register const struct ttinfo * const ttisp = 279 &sp->ttis[ 280 sp->types[i]]; 281 282 tzname[ttisp->tt_isdst] = 283 &sp->chars[ttisp->tt_abbrind]; 284 #ifdef USG_COMPAT 285 if (ttisp->tt_isdst) 286 daylight = 1; 287 if (!ttisp->tt_isdst) 288 timezone = -(ttisp->tt_gmtoff); 289 #endif /* defined USG_COMPAT */ 290 #ifdef ALTZONE 291 if (ttisp->tt_isdst) 292 altzone = -(ttisp->tt_gmtoff); 293 #endif /* defined ALTZONE */ 294 } 295 /* 296 ** Finally, scrub the abbreviations. 297 ** First, replace bogus characters. 298 */ 299 for (i = 0; i < sp->charcnt; ++i) 300 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) 301 sp->chars[i] = TZ_ABBR_ERR_CHAR; 302 /* 303 ** Second, truncate long abbreviations. 304 */ 305 for (i = 0; i < sp->typecnt; ++i) { 306 register const struct ttinfo * const ttisp = &sp->ttis[i]; 307 register char * cp = &sp->chars[ttisp->tt_abbrind]; 308 309 if (strlen(cp) > TZ_ABBR_MAX_LEN && 310 strcmp(cp, GRANDPARENTED) != 0) 311 *(cp + TZ_ABBR_MAX_LEN) = '\0'; 312 } 313 } 314 315 static int 316 differ_by_repeat(const time_t t1, const time_t t0) 317 { 318 if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) 319 return 0; 320 return t1 - t0 == SECSPERREPEAT; 321 } 322 323 static int 324 tzload(register const char *name, register struct state *const sp, 325 register const int doextend) 326 { 327 register const char * p; 328 register int i; 329 register int fid; 330 register int stored; 331 register int nread; 332 typedef union { 333 struct tzhead tzhead; 334 char buf[2 * sizeof(struct tzhead) + 335 2 * sizeof *sp + 336 4 * TZ_MAX_TIMES]; 337 } u_t; 338 #ifdef ALL_STATE 339 register u_t * const up = malloc(sizeof *up); 340 #else /* !defined ALL_STATE */ 341 u_t u; 342 register u_t * const up = &u; 343 #endif /* !defined ALL_STATE */ 344 345 sp->goback = sp->goahead = FALSE; 346 347 if (up == NULL) 348 return -1; 349 350 if (name == NULL && (name = TZDEFAULT) == NULL) 351 goto oops; 352 { 353 register int doaccess; 354 /* 355 ** Section 4.9.1 of the C standard says that 356 ** "FILENAME_MAX expands to an integral constant expression 357 ** that is the size needed for an array of char large enough 358 ** to hold the longest file name string that the implementation 359 ** guarantees can be opened." 360 */ 361 char fullname[FILENAME_MAX + 1]; 362 363 if (name[0] == ':') 364 ++name; 365 doaccess = name[0] == '/'; 366 if (!doaccess) { 367 if ((p = TZDIR) == NULL) 368 goto oops; 369 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) 370 goto oops; 371 (void) strcpy(fullname, p); 372 (void) strcat(fullname, "/"); 373 (void) strcat(fullname, name); 374 /* 375 ** Set doaccess if '.' (as in "../") shows up in name. 376 */ 377 if (strchr(name, '.') != NULL) 378 doaccess = TRUE; 379 name = fullname; 380 } 381 if (doaccess && access(name, R_OK) != 0) 382 goto oops; 383 if ((fid = open(name, OPEN_MODE)) == -1) 384 goto oops; 385 } 386 nread = read(fid, up->buf, sizeof up->buf); 387 if (close(fid) < 0 || nread <= 0) 388 goto oops; 389 for (stored = 4; stored <= 8; stored *= 2) { 390 int ttisstdcnt; 391 int ttisgmtcnt; 392 int timecnt; 393 394 ttisstdcnt = (int) detzcode(up->tzhead.tzh_ttisstdcnt); 395 ttisgmtcnt = (int) detzcode(up->tzhead.tzh_ttisgmtcnt); 396 sp->leapcnt = (int) detzcode(up->tzhead.tzh_leapcnt); 397 sp->timecnt = (int) detzcode(up->tzhead.tzh_timecnt); 398 sp->typecnt = (int) detzcode(up->tzhead.tzh_typecnt); 399 sp->charcnt = (int) detzcode(up->tzhead.tzh_charcnt); 400 p = up->tzhead.tzh_charcnt + sizeof up->tzhead.tzh_charcnt; 401 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || 402 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || 403 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || 404 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || 405 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || 406 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) 407 goto oops; 408 if (nread - (p - up->buf) < 409 sp->timecnt * stored + /* ats */ 410 sp->timecnt + /* types */ 411 sp->typecnt * 6 + /* ttinfos */ 412 sp->charcnt + /* chars */ 413 sp->leapcnt * (stored + 4) + /* lsinfos */ 414 ttisstdcnt + /* ttisstds */ 415 ttisgmtcnt) /* ttisgmts */ 416 goto oops; 417 timecnt = 0; 418 for (i = 0; i < sp->timecnt; ++i) { 419 int_fast64_t at 420 = stored == 4 ? detzcode(p) : detzcode64(p); 421 sp->types[i] = ((TYPE_SIGNED(time_t) 422 ? time_t_min <= at 423 : 0 <= at) 424 && at <= time_t_max); 425 if (sp->types[i]) { 426 if (i && !timecnt && at != time_t_min) { 427 /* 428 ** Keep the earlier record, but tweak 429 ** it so that it starts with the 430 ** minimum time_t value. 431 */ 432 sp->types[i - 1] = 1; 433 sp->ats[timecnt++] = time_t_min; 434 } 435 sp->ats[timecnt++] = at; 436 } 437 p += stored; 438 } 439 timecnt = 0; 440 for (i = 0; i < sp->timecnt; ++i) { 441 unsigned char typ = *p++; 442 if (sp->typecnt <= typ) 443 goto oops; 444 if (sp->types[i]) 445 sp->types[timecnt++] = typ; 446 } 447 sp->timecnt = timecnt; 448 for (i = 0; i < sp->typecnt; ++i) { 449 register struct ttinfo * ttisp; 450 451 ttisp = &sp->ttis[i]; 452 ttisp->tt_gmtoff = detzcode(p); 453 p += 4; 454 ttisp->tt_isdst = (unsigned char) *p++; 455 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) 456 goto oops; 457 ttisp->tt_abbrind = (unsigned char) *p++; 458 if (ttisp->tt_abbrind < 0 || 459 ttisp->tt_abbrind > sp->charcnt) 460 goto oops; 461 } 462 for (i = 0; i < sp->charcnt; ++i) 463 sp->chars[i] = *p++; 464 sp->chars[i] = '\0'; /* ensure '\0' at end */ 465 for (i = 0; i < sp->leapcnt; ++i) { 466 register struct lsinfo * lsisp; 467 468 lsisp = &sp->lsis[i]; 469 lsisp->ls_trans = (stored == 4) ? 470 detzcode(p) : detzcode64(p); 471 p += stored; 472 lsisp->ls_corr = detzcode(p); 473 p += 4; 474 } 475 for (i = 0; i < sp->typecnt; ++i) { 476 register struct ttinfo * ttisp; 477 478 ttisp = &sp->ttis[i]; 479 if (ttisstdcnt == 0) 480 ttisp->tt_ttisstd = FALSE; 481 else { 482 ttisp->tt_ttisstd = *p++; 483 if (ttisp->tt_ttisstd != TRUE && 484 ttisp->tt_ttisstd != FALSE) 485 goto oops; 486 } 487 } 488 for (i = 0; i < sp->typecnt; ++i) { 489 register struct ttinfo * ttisp; 490 491 ttisp = &sp->ttis[i]; 492 if (ttisgmtcnt == 0) 493 ttisp->tt_ttisgmt = FALSE; 494 else { 495 ttisp->tt_ttisgmt = *p++; 496 if (ttisp->tt_ttisgmt != TRUE && 497 ttisp->tt_ttisgmt != FALSE) 498 goto oops; 499 } 500 } 501 /* 502 ** If this is an old file, we're done. 503 */ 504 if (up->tzhead.tzh_version[0] == '\0') 505 break; 506 nread -= p - up->buf; 507 for (i = 0; i < nread; ++i) 508 up->buf[i] = p[i]; 509 /* 510 ** If this is a signed narrow time_t system, we're done. 511 */ 512 if (TYPE_SIGNED(time_t) && stored >= (int) sizeof(time_t)) 513 break; 514 } 515 if (doextend && nread > 2 && 516 up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && 517 sp->typecnt + 2 <= TZ_MAX_TYPES) { 518 struct state ts; 519 register int result; 520 521 up->buf[nread - 1] = '\0'; 522 result = tzparse(&up->buf[1], &ts, FALSE); 523 if (result == 0 && ts.typecnt == 2 && 524 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { 525 for (i = 0; i < 2; ++i) 526 ts.ttis[i].tt_abbrind += 527 sp->charcnt; 528 for (i = 0; i < ts.charcnt; ++i) 529 sp->chars[sp->charcnt++] = 530 ts.chars[i]; 531 i = 0; 532 while (i < ts.timecnt && 533 ts.ats[i] <= 534 sp->ats[sp->timecnt - 1]) 535 ++i; 536 while (i < ts.timecnt && 537 sp->timecnt < TZ_MAX_TIMES) { 538 sp->ats[sp->timecnt] = 539 ts.ats[i]; 540 sp->types[sp->timecnt] = 541 sp->typecnt + 542 ts.types[i]; 543 ++sp->timecnt; 544 ++i; 545 } 546 sp->ttis[sp->typecnt++] = ts.ttis[0]; 547 sp->ttis[sp->typecnt++] = ts.ttis[1]; 548 } 549 } 550 if (sp->timecnt > 1) { 551 for (i = 1; i < sp->timecnt; ++i) 552 if (typesequiv(sp, sp->types[i], sp->types[0]) && 553 differ_by_repeat(sp->ats[i], sp->ats[0])) { 554 sp->goback = TRUE; 555 break; 556 } 557 for (i = sp->timecnt - 2; i >= 0; --i) 558 if (typesequiv(sp, sp->types[sp->timecnt - 1], 559 sp->types[i]) && 560 differ_by_repeat(sp->ats[sp->timecnt - 1], 561 sp->ats[i])) { 562 sp->goahead = TRUE; 563 break; 564 } 565 } 566 /* 567 ** If type 0 is is unused in transitions, 568 ** it's the type to use for early times. 569 */ 570 for (i = 0; i < sp->typecnt; ++i) 571 if (sp->types[i] == 0) 572 break; 573 i = (i >= sp->typecnt) ? 0 : -1; 574 /* 575 ** Absent the above, 576 ** if there are transition times 577 ** and the first transition is to a daylight time 578 ** find the standard type less than and closest to 579 ** the type of the first transition. 580 */ 581 if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) { 582 i = sp->types[0]; 583 while (--i >= 0) 584 if (!sp->ttis[i].tt_isdst) 585 break; 586 } 587 /* 588 ** If no result yet, find the first standard type. 589 ** If there is none, punt to type zero. 590 */ 591 if (i < 0) { 592 i = 0; 593 while (sp->ttis[i].tt_isdst) 594 if (++i >= sp->typecnt) { 595 i = 0; 596 break; 597 } 598 } 599 sp->defaulttype = i; 600 #ifdef ALL_STATE 601 free(up); 602 #endif /* defined ALL_STATE */ 603 return 0; 604 oops: 605 #ifdef ALL_STATE 606 free(up); 607 #endif /* defined ALL_STATE */ 608 return -1; 609 } 610 611 static int 612 typesequiv(const struct state *const sp, const int a, const int b) 613 { 614 register int result; 615 616 if (sp == NULL || 617 a < 0 || a >= sp->typecnt || 618 b < 0 || b >= sp->typecnt) 619 result = FALSE; 620 else { 621 register const struct ttinfo * ap = &sp->ttis[a]; 622 register const struct ttinfo * bp = &sp->ttis[b]; 623 result = ap->tt_gmtoff == bp->tt_gmtoff && 624 ap->tt_isdst == bp->tt_isdst && 625 ap->tt_ttisstd == bp->tt_ttisstd && 626 ap->tt_ttisgmt == bp->tt_ttisgmt && 627 strcmp(&sp->chars[ap->tt_abbrind], 628 &sp->chars[bp->tt_abbrind]) == 0; 629 } 630 return result; 631 } 632 633 static const int mon_lengths[2][MONSPERYEAR] = { 634 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, 635 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } 636 }; 637 638 static const int year_lengths[2] = { 639 DAYSPERNYEAR, DAYSPERLYEAR 640 }; 641 642 /* 643 ** Given a pointer into a time zone string, scan until a character that is not 644 ** a valid character in a zone name is found. Return a pointer to that 645 ** character. 646 */ 647 648 static const char * 649 getzname(register const char *strp) 650 { 651 register char c; 652 653 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && 654 c != '+') 655 ++strp; 656 return strp; 657 } 658 659 /* 660 ** Given a pointer into an extended time zone string, scan until the ending 661 ** delimiter of the zone name is located. Return a pointer to the delimiter. 662 ** 663 ** As with getzname above, the legal character set is actually quite 664 ** restricted, with other characters producing undefined results. 665 ** We don't do any checking here; checking is done later in common-case code. 666 */ 667 668 static const char * 669 getqzname(register const char *strp, const int delim) 670 { 671 register int c; 672 673 while ((c = *strp) != '\0' && c != delim) 674 ++strp; 675 return strp; 676 } 677 678 /* 679 ** Given a pointer into a time zone string, extract a number from that string. 680 ** Check that the number is within a specified range; if it is not, return 681 ** NULL. 682 ** Otherwise, return a pointer to the first character not part of the number. 683 */ 684 685 static const char * 686 getnum(register const char *strp, int *const nump, const int min, const int max) 687 { 688 register char c; 689 register int num; 690 691 if (strp == NULL || !is_digit(c = *strp)) 692 return NULL; 693 num = 0; 694 do { 695 num = num * 10 + (c - '0'); 696 if (num > max) 697 return NULL; /* illegal value */ 698 c = *++strp; 699 } while (is_digit(c)); 700 if (num < min) 701 return NULL; /* illegal value */ 702 *nump = num; 703 return strp; 704 } 705 706 /* 707 ** Given a pointer into a time zone string, extract a number of seconds, 708 ** in hh[:mm[:ss]] form, from the string. 709 ** If any error occurs, return NULL. 710 ** Otherwise, return a pointer to the first character not part of the number 711 ** of seconds. 712 */ 713 714 static const char * 715 getsecs(register const char *strp, int_fast32_t *const secsp) 716 { 717 int num; 718 719 /* 720 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like 721 ** "M10.4.6/26", which does not conform to Posix, 722 ** but which specifies the equivalent of 723 ** ``02:00 on the first Sunday on or after 23 Oct''. 724 */ 725 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); 726 if (strp == NULL) 727 return NULL; 728 *secsp = num * (int_fast32_t) SECSPERHOUR; 729 if (*strp == ':') { 730 ++strp; 731 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); 732 if (strp == NULL) 733 return NULL; 734 *secsp += num * SECSPERMIN; 735 if (*strp == ':') { 736 ++strp; 737 /* `SECSPERMIN' allows for leap seconds. */ 738 strp = getnum(strp, &num, 0, SECSPERMIN); 739 if (strp == NULL) 740 return NULL; 741 *secsp += num; 742 } 743 } 744 return strp; 745 } 746 747 /* 748 ** Given a pointer into a time zone string, extract an offset, in 749 ** [+-]hh[:mm[:ss]] form, from the string. 750 ** If any error occurs, return NULL. 751 ** Otherwise, return a pointer to the first character not part of the time. 752 */ 753 754 static const char * 755 getoffset(register const char *strp, int_fast32_t *const offsetp) 756 { 757 register int neg = 0; 758 759 if (*strp == '-') { 760 neg = 1; 761 ++strp; 762 } else if (*strp == '+') 763 ++strp; 764 strp = getsecs(strp, offsetp); 765 if (strp == NULL) 766 return NULL; /* illegal time */ 767 if (neg) 768 *offsetp = -*offsetp; 769 return strp; 770 } 771 772 /* 773 ** Given a pointer into a time zone string, extract a rule in the form 774 ** date[/time]. See POSIX section 8 for the format of "date" and "time". 775 ** If a valid rule is not found, return NULL. 776 ** Otherwise, return a pointer to the first character not part of the rule. 777 */ 778 779 static const char * 780 getrule(const char *strp, register struct rule *const rulep) 781 { 782 if (*strp == 'J') { 783 /* 784 ** Julian day. 785 */ 786 rulep->r_type = JULIAN_DAY; 787 ++strp; 788 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); 789 } else if (*strp == 'M') { 790 /* 791 ** Month, week, day. 792 */ 793 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; 794 ++strp; 795 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); 796 if (strp == NULL) 797 return NULL; 798 if (*strp++ != '.') 799 return NULL; 800 strp = getnum(strp, &rulep->r_week, 1, 5); 801 if (strp == NULL) 802 return NULL; 803 if (*strp++ != '.') 804 return NULL; 805 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); 806 } else if (is_digit(*strp)) { 807 /* 808 ** Day of year. 809 */ 810 rulep->r_type = DAY_OF_YEAR; 811 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); 812 } else return NULL; /* invalid format */ 813 if (strp == NULL) 814 return NULL; 815 if (*strp == '/') { 816 /* 817 ** Time specified. 818 */ 819 ++strp; 820 strp = getoffset(strp, &rulep->r_time); 821 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ 822 return strp; 823 } 824 825 /* 826 ** Given a year, a rule, and the offset from UT at the time that rule takes 827 ** effect, calculate the year-relative time that rule takes effect. 828 */ 829 830 static int_fast32_t 831 transtime(const int year, register const struct rule *const rulep, 832 const int_fast32_t offset) 833 { 834 register int leapyear; 835 register int_fast32_t value; 836 register int i; 837 int d, m1, yy0, yy1, yy2, dow; 838 839 INITIALIZE(value); 840 leapyear = isleap(year); 841 switch (rulep->r_type) { 842 843 case JULIAN_DAY: 844 /* 845 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap 846 ** years. 847 ** In non-leap years, or if the day number is 59 or less, just 848 ** add SECSPERDAY times the day number-1 to the time of 849 ** January 1, midnight, to get the day. 850 */ 851 value = (rulep->r_day - 1) * SECSPERDAY; 852 if (leapyear && rulep->r_day >= 60) 853 value += SECSPERDAY; 854 break; 855 856 case DAY_OF_YEAR: 857 /* 858 ** n - day of year. 859 ** Just add SECSPERDAY times the day number to the time of 860 ** January 1, midnight, to get the day. 861 */ 862 value = rulep->r_day * SECSPERDAY; 863 break; 864 865 case MONTH_NTH_DAY_OF_WEEK: 866 /* 867 ** Mm.n.d - nth "dth day" of month m. 868 */ 869 870 /* 871 ** Use Zeller's Congruence to get day-of-week of first day of 872 ** month. 873 */ 874 m1 = (rulep->r_mon + 9) % 12 + 1; 875 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; 876 yy1 = yy0 / 100; 877 yy2 = yy0 % 100; 878 dow = ((26 * m1 - 2) / 10 + 879 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; 880 if (dow < 0) 881 dow += DAYSPERWEEK; 882 883 /* 884 ** "dow" is the day-of-week of the first day of the month. Get 885 ** the day-of-month (zero-origin) of the first "dow" day of the 886 ** month. 887 */ 888 d = rulep->r_day - dow; 889 if (d < 0) 890 d += DAYSPERWEEK; 891 for (i = 1; i < rulep->r_week; ++i) { 892 if (d + DAYSPERWEEK >= 893 mon_lengths[leapyear][rulep->r_mon - 1]) 894 break; 895 d += DAYSPERWEEK; 896 } 897 898 /* 899 ** "d" is the day-of-month (zero-origin) of the day we want. 900 */ 901 value = d * SECSPERDAY; 902 for (i = 0; i < rulep->r_mon - 1; ++i) 903 value += mon_lengths[leapyear][i] * SECSPERDAY; 904 break; 905 } 906 907 /* 908 ** "value" is the year-relative time of 00:00:00 UT on the day in 909 ** question. To get the year-relative time of the specified local 910 ** time on that day, add the transition time and the current offset 911 ** from UT. 912 */ 913 return value + rulep->r_time + offset; 914 } 915 916 /* 917 ** Given a POSIX section 8-style TZ string, fill in the rule tables as 918 ** appropriate. 919 */ 920 921 static int 922 tzparse(const char *name, register struct state *const sp, 923 const int lastditch) 924 { 925 const char * stdname; 926 const char * dstname; 927 size_t stdlen; 928 size_t dstlen; 929 int_fast32_t stdoffset; 930 int_fast32_t dstoffset; 931 register char * cp; 932 register int load_result; 933 static struct ttinfo zttinfo; 934 935 INITIALIZE(dstname); 936 stdname = name; 937 if (lastditch) { 938 stdlen = strlen(name); /* length of standard zone name */ 939 name += stdlen; 940 if (stdlen >= sizeof sp->chars) 941 stdlen = (sizeof sp->chars) - 1; 942 stdoffset = 0; 943 } else { 944 if (*name == '<') { 945 name++; 946 stdname = name; 947 name = getqzname(name, '>'); 948 if (*name != '>') 949 return (-1); 950 stdlen = name - stdname; 951 name++; 952 } else { 953 name = getzname(name); 954 stdlen = name - stdname; 955 } 956 if (*name == '\0') 957 return -1; 958 name = getoffset(name, &stdoffset); 959 if (name == NULL) 960 return -1; 961 } 962 load_result = tzload(TZDEFRULES, sp, FALSE); 963 if (load_result != 0) 964 sp->leapcnt = 0; /* so, we're off a little */ 965 if (*name != '\0') { 966 if (*name == '<') { 967 dstname = ++name; 968 name = getqzname(name, '>'); 969 if (*name != '>') 970 return -1; 971 dstlen = name - dstname; 972 name++; 973 } else { 974 dstname = name; 975 name = getzname(name); 976 dstlen = name - dstname; /* length of DST zone name */ 977 } 978 if (*name != '\0' && *name != ',' && *name != ';') { 979 name = getoffset(name, &dstoffset); 980 if (name == NULL) 981 return -1; 982 } else dstoffset = stdoffset - SECSPERHOUR; 983 if (*name == '\0' && load_result != 0) 984 name = TZDEFRULESTRING; 985 if (*name == ',' || *name == ';') { 986 struct rule start; 987 struct rule end; 988 register int year; 989 register int yearlim; 990 register int timecnt; 991 time_t janfirst; 992 993 ++name; 994 if ((name = getrule(name, &start)) == NULL) 995 return -1; 996 if (*name++ != ',') 997 return -1; 998 if ((name = getrule(name, &end)) == NULL) 999 return -1; 1000 if (*name != '\0') 1001 return -1; 1002 sp->typecnt = 2; /* standard time and DST */ 1003 /* 1004 ** Two transitions per year, from EPOCH_YEAR forward. 1005 */ 1006 sp->ttis[0] = sp->ttis[1] = zttinfo; 1007 sp->ttis[0].tt_gmtoff = -dstoffset; 1008 sp->ttis[0].tt_isdst = 1; 1009 sp->ttis[0].tt_abbrind = stdlen + 1; 1010 sp->ttis[1].tt_gmtoff = -stdoffset; 1011 sp->ttis[1].tt_isdst = 0; 1012 sp->ttis[1].tt_abbrind = 0; 1013 sp->defaulttype = 0; 1014 timecnt = 0; 1015 janfirst = 0; 1016 yearlim = EPOCH_YEAR + YEARSPERREPEAT; 1017 for (year = EPOCH_YEAR; year < yearlim; year++) { 1018 int_fast32_t 1019 starttime = transtime(year, &start, stdoffset), 1020 endtime = transtime(year, &end, dstoffset); 1021 int_fast32_t 1022 yearsecs = (year_lengths[isleap(year)] 1023 * SECSPERDAY); 1024 int reversed = endtime < starttime; 1025 if (reversed) { 1026 int_fast32_t swap = starttime; 1027 starttime = endtime; 1028 endtime = swap; 1029 } 1030 if (reversed 1031 || (starttime < endtime 1032 && (endtime - starttime 1033 < (yearsecs 1034 + (stdoffset - dstoffset))))) { 1035 if (TZ_MAX_TIMES - 2 < timecnt) 1036 break; 1037 yearlim = year + YEARSPERREPEAT + 1; 1038 sp->ats[timecnt] = janfirst; 1039 if (increment_overflow_time 1040 (&sp->ats[timecnt], starttime)) 1041 break; 1042 sp->types[timecnt++] = reversed; 1043 sp->ats[timecnt] = janfirst; 1044 if (increment_overflow_time 1045 (&sp->ats[timecnt], endtime)) 1046 break; 1047 sp->types[timecnt++] = !reversed; 1048 } 1049 if (increment_overflow_time(&janfirst, yearsecs)) 1050 break; 1051 } 1052 sp->timecnt = timecnt; 1053 if (!timecnt) 1054 sp->typecnt = 1; /* Perpetual DST. */ 1055 } else { 1056 register int_fast32_t theirstdoffset; 1057 register int_fast32_t theirdstoffset; 1058 register int_fast32_t theiroffset; 1059 register int isdst; 1060 register int i; 1061 register int j; 1062 1063 if (*name != '\0') 1064 return -1; 1065 /* 1066 ** Initial values of theirstdoffset and theirdstoffset. 1067 */ 1068 theirstdoffset = 0; 1069 for (i = 0; i < sp->timecnt; ++i) { 1070 j = sp->types[i]; 1071 if (!sp->ttis[j].tt_isdst) { 1072 theirstdoffset = 1073 -sp->ttis[j].tt_gmtoff; 1074 break; 1075 } 1076 } 1077 theirdstoffset = 0; 1078 for (i = 0; i < sp->timecnt; ++i) { 1079 j = sp->types[i]; 1080 if (sp->ttis[j].tt_isdst) { 1081 theirdstoffset = 1082 -sp->ttis[j].tt_gmtoff; 1083 break; 1084 } 1085 } 1086 /* 1087 ** Initially we're assumed to be in standard time. 1088 */ 1089 isdst = FALSE; 1090 theiroffset = theirstdoffset; 1091 /* 1092 ** Now juggle transition times and types 1093 ** tracking offsets as you do. 1094 */ 1095 for (i = 0; i < sp->timecnt; ++i) { 1096 j = sp->types[i]; 1097 sp->types[i] = sp->ttis[j].tt_isdst; 1098 if (sp->ttis[j].tt_ttisgmt) { 1099 /* No adjustment to transition time */ 1100 } else { 1101 /* 1102 ** If summer time is in effect, and the 1103 ** transition time was not specified as 1104 ** standard time, add the summer time 1105 ** offset to the transition time; 1106 ** otherwise, add the standard time 1107 ** offset to the transition time. 1108 */ 1109 /* 1110 ** Transitions from DST to DDST 1111 ** will effectively disappear since 1112 ** POSIX provides for only one DST 1113 ** offset. 1114 */ 1115 if (isdst && !sp->ttis[j].tt_ttisstd) { 1116 sp->ats[i] += dstoffset - 1117 theirdstoffset; 1118 } else { 1119 sp->ats[i] += stdoffset - 1120 theirstdoffset; 1121 } 1122 } 1123 theiroffset = -sp->ttis[j].tt_gmtoff; 1124 if (sp->ttis[j].tt_isdst) 1125 theirdstoffset = theiroffset; 1126 else theirstdoffset = theiroffset; 1127 } 1128 /* 1129 ** Finally, fill in ttis. 1130 */ 1131 sp->ttis[0] = sp->ttis[1] = zttinfo; 1132 sp->ttis[0].tt_gmtoff = -stdoffset; 1133 sp->ttis[0].tt_isdst = FALSE; 1134 sp->ttis[0].tt_abbrind = 0; 1135 sp->ttis[1].tt_gmtoff = -dstoffset; 1136 sp->ttis[1].tt_isdst = TRUE; 1137 sp->ttis[1].tt_abbrind = stdlen + 1; 1138 sp->typecnt = 2; 1139 sp->defaulttype = 0; 1140 } 1141 } else { 1142 dstlen = 0; 1143 sp->typecnt = 1; /* only standard time */ 1144 sp->timecnt = 0; 1145 sp->ttis[0] = zttinfo; 1146 sp->ttis[0].tt_gmtoff = -stdoffset; 1147 sp->ttis[0].tt_isdst = 0; 1148 sp->ttis[0].tt_abbrind = 0; 1149 sp->defaulttype = 0; 1150 } 1151 sp->charcnt = stdlen + 1; 1152 if (dstlen != 0) 1153 sp->charcnt += dstlen + 1; 1154 if ((size_t) sp->charcnt > sizeof sp->chars) 1155 return -1; 1156 cp = sp->chars; 1157 (void) strncpy(cp, stdname, stdlen); 1158 cp += stdlen; 1159 *cp++ = '\0'; 1160 if (dstlen != 0) { 1161 (void) strncpy(cp, dstname, dstlen); 1162 *(cp + dstlen) = '\0'; 1163 } 1164 return 0; 1165 } 1166 1167 static void 1168 gmtload(struct state *const sp) 1169 { 1170 if (tzload(gmt, sp, TRUE) != 0) 1171 (void) tzparse(gmt, sp, TRUE); 1172 } 1173 1174 #ifndef STD_INSPIRED 1175 /* 1176 ** A non-static declaration of tzsetwall in a system header file 1177 ** may cause a warning about this upcoming static declaration... 1178 */ 1179 static 1180 #endif /* !defined STD_INSPIRED */ 1181 void 1182 tzsetwall(void) 1183 { 1184 if (lcl_is_set < 0) 1185 return; 1186 lcl_is_set = -1; 1187 1188 #ifdef ALL_STATE 1189 if (lclptr == NULL) { 1190 lclptr = malloc(sizeof *lclptr); 1191 if (lclptr == NULL) { 1192 settzname(); /* all we can do */ 1193 return; 1194 } 1195 } 1196 #endif /* defined ALL_STATE */ 1197 if (tzload(NULL, lclptr, TRUE) != 0) 1198 gmtload(lclptr); 1199 settzname(); 1200 } 1201 1202 void 1203 tzset(void) 1204 { 1205 register const char * name; 1206 1207 name = getenv("TZ"); 1208 if (name == NULL) { 1209 tzsetwall(); 1210 return; 1211 } 1212 1213 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) 1214 return; 1215 lcl_is_set = strlen(name) < sizeof lcl_TZname; 1216 if (lcl_is_set) 1217 (void) strcpy(lcl_TZname, name); 1218 1219 #ifdef ALL_STATE 1220 if (lclptr == NULL) { 1221 lclptr = malloc(sizeof *lclptr); 1222 if (lclptr == NULL) { 1223 settzname(); /* all we can do */ 1224 return; 1225 } 1226 } 1227 #endif /* defined ALL_STATE */ 1228 if (*name == '\0') { 1229 /* 1230 ** User wants it fast rather than right. 1231 */ 1232 lclptr->leapcnt = 0; /* so, we're off a little */ 1233 lclptr->timecnt = 0; 1234 lclptr->typecnt = 0; 1235 lclptr->ttis[0].tt_isdst = 0; 1236 lclptr->ttis[0].tt_gmtoff = 0; 1237 lclptr->ttis[0].tt_abbrind = 0; 1238 (void) strcpy(lclptr->chars, gmt); 1239 } else if (tzload(name, lclptr, TRUE) != 0) 1240 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) 1241 (void) gmtload(lclptr); 1242 settzname(); 1243 } 1244 1245 /* 1246 ** The easy way to behave "as if no library function calls" localtime 1247 ** is to not call it--so we drop its guts into "localsub", which can be 1248 ** freely called. (And no, the PANS doesn't require the above behavior-- 1249 ** but it *is* desirable.) 1250 ** 1251 ** The unused offset argument is for the benefit of mktime variants. 1252 */ 1253 1254 /*ARGSUSED*/ 1255 static struct tm * 1256 localsub(const time_t *const timep, const int_fast32_t offset, 1257 struct tm *const tmp) 1258 { 1259 register struct state * sp; 1260 register const struct ttinfo * ttisp; 1261 register int i; 1262 register struct tm * result; 1263 const time_t t = *timep; 1264 1265 sp = lclptr; 1266 if (sp == NULL) 1267 return gmtsub(timep, offset, tmp); 1268 if ((sp->goback && t < sp->ats[0]) || 1269 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { 1270 time_t newt = t; 1271 register time_t seconds; 1272 register time_t years; 1273 1274 if (t < sp->ats[0]) 1275 seconds = sp->ats[0] - t; 1276 else seconds = t - sp->ats[sp->timecnt - 1]; 1277 --seconds; 1278 years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT; 1279 seconds = years * AVGSECSPERYEAR; 1280 if (t < sp->ats[0]) 1281 newt += seconds; 1282 else newt -= seconds; 1283 if (newt < sp->ats[0] || 1284 newt > sp->ats[sp->timecnt - 1]) 1285 return NULL; /* "cannot happen" */ 1286 result = localsub(&newt, offset, tmp); 1287 if (result == tmp) { 1288 register time_t newy; 1289 1290 newy = tmp->tm_year; 1291 if (t < sp->ats[0]) 1292 newy -= years; 1293 else newy += years; 1294 tmp->tm_year = newy; 1295 if (tmp->tm_year != newy) 1296 return NULL; 1297 } 1298 return result; 1299 } 1300 if (sp->timecnt == 0 || t < sp->ats[0]) { 1301 i = sp->defaulttype; 1302 } else { 1303 register int lo = 1; 1304 register int hi = sp->timecnt; 1305 1306 while (lo < hi) { 1307 register int mid = (lo + hi) >> 1; 1308 1309 if (t < sp->ats[mid]) 1310 hi = mid; 1311 else lo = mid + 1; 1312 } 1313 i = (int) sp->types[lo - 1]; 1314 } 1315 ttisp = &sp->ttis[i]; 1316 /* 1317 ** To get (wrong) behavior that's compatible with System V Release 2.0 1318 ** you'd replace the statement below with 1319 ** t += ttisp->tt_gmtoff; 1320 ** timesub(&t, 0L, sp, tmp); 1321 */ 1322 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); 1323 tmp->tm_isdst = ttisp->tt_isdst; 1324 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; 1325 #ifdef TM_ZONE 1326 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; 1327 #endif /* defined TM_ZONE */ 1328 return result; 1329 } 1330 1331 struct tm * 1332 localtime(const time_t *const timep) 1333 { 1334 tzset(); 1335 return localsub(timep, 0L, &tm); 1336 } 1337 1338 /* 1339 ** Re-entrant version of localtime. 1340 */ 1341 1342 struct tm * 1343 localtime_r(const time_t *const timep, struct tm *tmp) 1344 { 1345 return localsub(timep, 0L, tmp); 1346 } 1347 1348 /* 1349 ** gmtsub is to gmtime as localsub is to localtime. 1350 */ 1351 1352 static struct tm * 1353 gmtsub(const time_t *const timep, const int_fast32_t offset, 1354 struct tm *const tmp) 1355 { 1356 register struct tm * result; 1357 1358 if (!gmt_is_set) { 1359 gmt_is_set = TRUE; 1360 #ifdef ALL_STATE 1361 gmtptr = malloc(sizeof *gmtptr); 1362 #endif /* defined ALL_STATE */ 1363 if (gmtptr != NULL) 1364 gmtload(gmtptr); 1365 } 1366 result = timesub(timep, offset, gmtptr, tmp); 1367 #ifdef TM_ZONE 1368 /* 1369 ** Could get fancy here and deliver something such as 1370 ** "UT+xxxx" or "UT-xxxx" if offset is non-zero, 1371 ** but this is no time for a treasure hunt. 1372 */ 1373 tmp->TM_ZONE = offset ? wildabbr : gmtptr ? gmtptr->chars : gmt; 1374 #endif /* defined TM_ZONE */ 1375 return result; 1376 } 1377 1378 struct tm * 1379 gmtime(const time_t *const timep) 1380 { 1381 return gmtsub(timep, 0L, &tm); 1382 } 1383 1384 /* 1385 * Re-entrant version of gmtime. 1386 */ 1387 1388 struct tm * 1389 gmtime_r(const time_t *const timep, struct tm *tmp) 1390 { 1391 return gmtsub(timep, 0L, tmp); 1392 } 1393 1394 #ifdef STD_INSPIRED 1395 1396 struct tm * 1397 offtime(const time_t *const timep, const long offset) 1398 { 1399 return gmtsub(timep, offset, &tm); 1400 } 1401 1402 #endif /* defined STD_INSPIRED */ 1403 1404 /* 1405 ** Return the number of leap years through the end of the given year 1406 ** where, to make the math easy, the answer for year zero is defined as zero. 1407 */ 1408 1409 static int 1410 leaps_thru_end_of(register const int y) 1411 { 1412 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : 1413 -(leaps_thru_end_of(-(y + 1)) + 1); 1414 } 1415 1416 static struct tm * 1417 timesub(const time_t *const timep, const int_fast32_t offset, 1418 register const struct state *const sp, 1419 register struct tm *const tmp) 1420 { 1421 register const struct lsinfo * lp; 1422 register time_t tdays; 1423 register int idays; /* unsigned would be so 2003 */ 1424 register int_fast64_t rem; 1425 int y; 1426 register const int * ip; 1427 register int_fast64_t corr; 1428 register int hit; 1429 register int i; 1430 1431 corr = 0; 1432 hit = 0; 1433 i = (sp == NULL) ? 0 : sp->leapcnt; 1434 while (--i >= 0) { 1435 lp = &sp->lsis[i]; 1436 if (*timep >= lp->ls_trans) { 1437 if (*timep == lp->ls_trans) { 1438 hit = ((i == 0 && lp->ls_corr > 0) || 1439 lp->ls_corr > sp->lsis[i - 1].ls_corr); 1440 if (hit) 1441 while (i > 0 && 1442 sp->lsis[i].ls_trans == 1443 sp->lsis[i - 1].ls_trans + 1 && 1444 sp->lsis[i].ls_corr == 1445 sp->lsis[i - 1].ls_corr + 1) { 1446 ++hit; 1447 --i; 1448 } 1449 } 1450 corr = lp->ls_corr; 1451 break; 1452 } 1453 } 1454 y = EPOCH_YEAR; 1455 tdays = *timep / SECSPERDAY; 1456 rem = *timep - tdays * SECSPERDAY; 1457 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { 1458 int newy; 1459 register time_t tdelta; 1460 register int idelta; 1461 register int leapdays; 1462 1463 tdelta = tdays / DAYSPERLYEAR; 1464 if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta) 1465 && tdelta <= INT_MAX)) 1466 return NULL; 1467 idelta = tdelta; 1468 if (idelta == 0) 1469 idelta = (tdays < 0) ? -1 : 1; 1470 newy = y; 1471 if (increment_overflow(&newy, idelta)) 1472 return NULL; 1473 leapdays = leaps_thru_end_of(newy - 1) - 1474 leaps_thru_end_of(y - 1); 1475 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; 1476 tdays -= leapdays; 1477 y = newy; 1478 } 1479 { 1480 register int_fast32_t seconds; 1481 1482 seconds = tdays * SECSPERDAY; 1483 tdays = seconds / SECSPERDAY; 1484 rem += seconds - tdays * SECSPERDAY; 1485 } 1486 /* 1487 ** Given the range, we can now fearlessly cast... 1488 */ 1489 idays = tdays; 1490 rem += offset - corr; 1491 while (rem < 0) { 1492 rem += SECSPERDAY; 1493 --idays; 1494 } 1495 while (rem >= SECSPERDAY) { 1496 rem -= SECSPERDAY; 1497 ++idays; 1498 } 1499 while (idays < 0) { 1500 if (increment_overflow(&y, -1)) 1501 return NULL; 1502 idays += year_lengths[isleap(y)]; 1503 } 1504 while (idays >= year_lengths[isleap(y)]) { 1505 idays -= year_lengths[isleap(y)]; 1506 if (increment_overflow(&y, 1)) 1507 return NULL; 1508 } 1509 tmp->tm_year = y; 1510 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) 1511 return NULL; 1512 tmp->tm_yday = idays; 1513 /* 1514 ** The "extra" mods below avoid overflow problems. 1515 */ 1516 tmp->tm_wday = EPOCH_WDAY + 1517 ((y - EPOCH_YEAR) % DAYSPERWEEK) * 1518 (DAYSPERNYEAR % DAYSPERWEEK) + 1519 leaps_thru_end_of(y - 1) - 1520 leaps_thru_end_of(EPOCH_YEAR - 1) + 1521 idays; 1522 tmp->tm_wday %= DAYSPERWEEK; 1523 if (tmp->tm_wday < 0) 1524 tmp->tm_wday += DAYSPERWEEK; 1525 tmp->tm_hour = (int) (rem / SECSPERHOUR); 1526 rem %= SECSPERHOUR; 1527 tmp->tm_min = (int) (rem / SECSPERMIN); 1528 /* 1529 ** A positive leap second requires a special 1530 ** representation. This uses "... ??:59:60" et seq. 1531 */ 1532 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; 1533 ip = mon_lengths[isleap(y)]; 1534 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) 1535 idays -= ip[tmp->tm_mon]; 1536 tmp->tm_mday = (int) (idays + 1); 1537 tmp->tm_isdst = 0; 1538 #ifdef TM_GMTOFF 1539 tmp->TM_GMTOFF = offset; 1540 #endif /* defined TM_GMTOFF */ 1541 return tmp; 1542 } 1543 1544 char * 1545 ctime(const time_t *const timep) 1546 { 1547 /* 1548 ** Section 4.12.3.2 of X3.159-1989 requires that 1549 ** The ctime function converts the calendar time pointed to by timer 1550 ** to local time in the form of a string. It is equivalent to 1551 ** asctime(localtime(timer)) 1552 */ 1553 return asctime(localtime(timep)); 1554 } 1555 1556 char * 1557 ctime_r(const time_t *const timep, char *buf) 1558 { 1559 struct tm mytm; 1560 1561 return asctime_r(localtime_r(timep, &mytm), buf); 1562 } 1563 1564 /* 1565 ** Adapted from code provided by Robert Elz, who writes: 1566 ** The "best" way to do mktime I think is based on an idea of Bob 1567 ** Kridle's (so its said...) from a long time ago. 1568 ** It does a binary search of the time_t space. Since time_t's are 1569 ** just 32 bits, its a max of 32 iterations (even at 64 bits it 1570 ** would still be very reasonable). 1571 */ 1572 1573 #ifndef WRONG 1574 #define WRONG (-1) 1575 #endif /* !defined WRONG */ 1576 1577 /* 1578 ** Normalize logic courtesy Paul Eggert. 1579 */ 1580 1581 static int 1582 increment_overflow(int *const ip, int j) 1583 { 1584 register int const i = *ip; 1585 1586 /* 1587 ** If i >= 0 there can only be overflow if i + j > INT_MAX 1588 ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. 1589 ** If i < 0 there can only be overflow if i + j < INT_MIN 1590 ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. 1591 */ 1592 if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) 1593 return TRUE; 1594 *ip += j; 1595 return FALSE; 1596 } 1597 1598 static int 1599 increment_overflow32(int_fast32_t *const lp, int const m) 1600 { 1601 register int_fast32_t const l = *lp; 1602 1603 if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l)) 1604 return TRUE; 1605 *lp += m; 1606 return FALSE; 1607 } 1608 1609 static int 1610 increment_overflow_time(time_t *tp, int_fast32_t j) 1611 { 1612 /* 1613 ** This is like 1614 ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...', 1615 ** except that it does the right thing even if *tp + j would overflow. 1616 */ 1617 if (! (j < 0 1618 ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp) 1619 : *tp <= time_t_max - j)) 1620 return TRUE; 1621 *tp += j; 1622 return FALSE; 1623 } 1624 1625 static int 1626 normalize_overflow(int *const tensptr, int *const unitsptr, const int base) 1627 { 1628 register int tensdelta; 1629 1630 tensdelta = (*unitsptr >= 0) ? 1631 (*unitsptr / base) : 1632 (-1 - (-1 - *unitsptr) / base); 1633 *unitsptr -= tensdelta * base; 1634 return increment_overflow(tensptr, tensdelta); 1635 } 1636 1637 static int 1638 normalize_overflow32(int_fast32_t *const tensptr, int *const unitsptr, 1639 const int base) 1640 { 1641 register int tensdelta; 1642 1643 tensdelta = (*unitsptr >= 0) ? 1644 (*unitsptr / base) : 1645 (-1 - (-1 - *unitsptr) / base); 1646 *unitsptr -= tensdelta * base; 1647 return increment_overflow32(tensptr, tensdelta); 1648 } 1649 1650 static int 1651 tmcomp(register const struct tm *const atmp, 1652 register const struct tm *const btmp) 1653 { 1654 register int result; 1655 1656 if (atmp->tm_year != btmp->tm_year) 1657 return atmp->tm_year < btmp->tm_year ? -1 : 1; 1658 if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 && 1659 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && 1660 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && 1661 (result = (atmp->tm_min - btmp->tm_min)) == 0) 1662 result = atmp->tm_sec - btmp->tm_sec; 1663 return result; 1664 } 1665 1666 static time_t 1667 time2sub(struct tm *const tmp, 1668 struct tm *(*const funcp)(const time_t *, int_fast32_t, struct tm *), 1669 const int_fast32_t offset, 1670 int *const okayp, 1671 const int do_norm_secs) 1672 { 1673 register const struct state * sp; 1674 register int dir; 1675 register int i, j; 1676 register int saved_seconds; 1677 register int_fast32_t li; 1678 register time_t lo; 1679 register time_t hi; 1680 int_fast32_t y; 1681 time_t newt; 1682 time_t t; 1683 struct tm yourtm, mytm; 1684 1685 *okayp = FALSE; 1686 yourtm = *tmp; 1687 if (do_norm_secs) { 1688 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, 1689 SECSPERMIN)) 1690 return WRONG; 1691 } 1692 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) 1693 return WRONG; 1694 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) 1695 return WRONG; 1696 y = yourtm.tm_year; 1697 if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR)) 1698 return WRONG; 1699 /* 1700 ** Turn y into an actual year number for now. 1701 ** It is converted back to an offset from TM_YEAR_BASE later. 1702 */ 1703 if (increment_overflow32(&y, TM_YEAR_BASE)) 1704 return WRONG; 1705 while (yourtm.tm_mday <= 0) { 1706 if (increment_overflow32(&y, -1)) 1707 return WRONG; 1708 li = y + (1 < yourtm.tm_mon); 1709 yourtm.tm_mday += year_lengths[isleap(li)]; 1710 } 1711 while (yourtm.tm_mday > DAYSPERLYEAR) { 1712 li = y + (1 < yourtm.tm_mon); 1713 yourtm.tm_mday -= year_lengths[isleap(li)]; 1714 if (increment_overflow32(&y, 1)) 1715 return WRONG; 1716 } 1717 for ( ; ; ) { 1718 i = mon_lengths[isleap(y)][yourtm.tm_mon]; 1719 if (yourtm.tm_mday <= i) 1720 break; 1721 yourtm.tm_mday -= i; 1722 if (++yourtm.tm_mon >= MONSPERYEAR) { 1723 yourtm.tm_mon = 0; 1724 if (increment_overflow32(&y, 1)) 1725 return WRONG; 1726 } 1727 } 1728 if (increment_overflow32(&y, -TM_YEAR_BASE)) 1729 return WRONG; 1730 yourtm.tm_year = y; 1731 if (yourtm.tm_year != y) 1732 return WRONG; 1733 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) 1734 saved_seconds = 0; 1735 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { 1736 /* 1737 ** We can't set tm_sec to 0, because that might push the 1738 ** time below the minimum representable time. 1739 ** Set tm_sec to 59 instead. 1740 ** This assumes that the minimum representable time is 1741 ** not in the same minute that a leap second was deleted from, 1742 ** which is a safer assumption than using 58 would be. 1743 */ 1744 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) 1745 return WRONG; 1746 saved_seconds = yourtm.tm_sec; 1747 yourtm.tm_sec = SECSPERMIN - 1; 1748 } else { 1749 saved_seconds = yourtm.tm_sec; 1750 yourtm.tm_sec = 0; 1751 } 1752 /* 1753 ** Do a binary search (this works whatever time_t's type is). 1754 */ 1755 if (!TYPE_SIGNED(time_t)) { 1756 lo = 0; 1757 hi = lo - 1; 1758 } else { 1759 lo = 1; 1760 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) 1761 lo *= 2; 1762 hi = -(lo + 1); 1763 } 1764 for ( ; ; ) { 1765 t = lo / 2 + hi / 2; 1766 if (t < lo) 1767 t = lo; 1768 else if (t > hi) 1769 t = hi; 1770 if ((*funcp)(&t, offset, &mytm) == NULL) { 1771 /* 1772 ** Assume that t is too extreme to be represented in 1773 ** a struct tm; arrange things so that it is less 1774 ** extreme on the next pass. 1775 */ 1776 dir = (t > 0) ? 1 : -1; 1777 } else dir = tmcomp(&mytm, &yourtm); 1778 if (dir != 0) { 1779 if (t == lo) { 1780 if (t == time_t_max) 1781 return WRONG; 1782 ++t; 1783 ++lo; 1784 } else if (t == hi) { 1785 if (t == time_t_min) 1786 return WRONG; 1787 --t; 1788 --hi; 1789 } 1790 if (lo > hi) 1791 return WRONG; 1792 if (dir > 0) 1793 hi = t; 1794 else lo = t; 1795 continue; 1796 } 1797 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) 1798 break; 1799 /* 1800 ** Right time, wrong type. 1801 ** Hunt for right time, right type. 1802 ** It's okay to guess wrong since the guess 1803 ** gets checked. 1804 */ 1805 sp = (const struct state *) 1806 ((funcp == localsub) ? lclptr : gmtptr); 1807 if (sp == NULL) 1808 return WRONG; 1809 for (i = sp->typecnt - 1; i >= 0; --i) { 1810 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) 1811 continue; 1812 for (j = sp->typecnt - 1; j >= 0; --j) { 1813 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) 1814 continue; 1815 newt = t + sp->ttis[j].tt_gmtoff - 1816 sp->ttis[i].tt_gmtoff; 1817 if ((*funcp)(&newt, offset, &mytm) == NULL) 1818 continue; 1819 if (tmcomp(&mytm, &yourtm) != 0) 1820 continue; 1821 if (mytm.tm_isdst != yourtm.tm_isdst) 1822 continue; 1823 /* 1824 ** We have a match. 1825 */ 1826 t = newt; 1827 goto label; 1828 } 1829 } 1830 return WRONG; 1831 } 1832 label: 1833 newt = t + saved_seconds; 1834 if ((newt < t) != (saved_seconds < 0)) 1835 return WRONG; 1836 t = newt; 1837 if ((*funcp)(&t, offset, tmp)) 1838 *okayp = TRUE; 1839 return t; 1840 } 1841 1842 static time_t 1843 time2(struct tm * const tmp, 1844 struct tm * (*const funcp)(const time_t *, int_fast32_t, struct tm *), 1845 const int_fast32_t offset, 1846 int *const okayp) 1847 { 1848 time_t t; 1849 1850 /* 1851 ** First try without normalization of seconds 1852 ** (in case tm_sec contains a value associated with a leap second). 1853 ** If that fails, try with normalization of seconds. 1854 */ 1855 t = time2sub(tmp, funcp, offset, okayp, FALSE); 1856 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); 1857 } 1858 1859 static time_t 1860 time1(struct tm *const tmp, 1861 struct tm *(*const funcp) (const time_t *, int_fast32_t, struct tm *), 1862 const int_fast32_t offset) 1863 { 1864 register time_t t; 1865 register const struct state * sp; 1866 register int samei, otheri; 1867 register int sameind, otherind; 1868 register int i; 1869 register int nseen; 1870 int seen[TZ_MAX_TYPES]; 1871 int types[TZ_MAX_TYPES]; 1872 int okay; 1873 1874 if (tmp == NULL) { 1875 errno = EINVAL; 1876 return WRONG; 1877 } 1878 if (tmp->tm_isdst > 1) 1879 tmp->tm_isdst = 1; 1880 t = time2(tmp, funcp, offset, &okay); 1881 if (okay) 1882 return t; 1883 if (tmp->tm_isdst < 0) 1884 #ifdef PCTS 1885 /* 1886 ** POSIX Conformance Test Suite code courtesy Grant Sullivan. 1887 */ 1888 tmp->tm_isdst = 0; /* reset to std and try again */ 1889 #else 1890 return t; 1891 #endif /* !defined PCTS */ 1892 /* 1893 ** We're supposed to assume that somebody took a time of one type 1894 ** and did some math on it that yielded a "struct tm" that's bad. 1895 ** We try to divine the type they started from and adjust to the 1896 ** type they need. 1897 */ 1898 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr); 1899 if (sp == NULL) 1900 return WRONG; 1901 for (i = 0; i < sp->typecnt; ++i) 1902 seen[i] = FALSE; 1903 nseen = 0; 1904 for (i = sp->timecnt - 1; i >= 0; --i) 1905 if (!seen[sp->types[i]]) { 1906 seen[sp->types[i]] = TRUE; 1907 types[nseen++] = sp->types[i]; 1908 } 1909 for (sameind = 0; sameind < nseen; ++sameind) { 1910 samei = types[sameind]; 1911 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) 1912 continue; 1913 for (otherind = 0; otherind < nseen; ++otherind) { 1914 otheri = types[otherind]; 1915 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) 1916 continue; 1917 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - 1918 sp->ttis[samei].tt_gmtoff; 1919 tmp->tm_isdst = !tmp->tm_isdst; 1920 t = time2(tmp, funcp, offset, &okay); 1921 if (okay) 1922 return t; 1923 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - 1924 sp->ttis[samei].tt_gmtoff; 1925 tmp->tm_isdst = !tmp->tm_isdst; 1926 } 1927 } 1928 return WRONG; 1929 } 1930 1931 time_t 1932 mktime(struct tm *const tmp) 1933 { 1934 tzset(); 1935 return time1(tmp, localsub, 0L); 1936 } 1937 1938 #ifdef STD_INSPIRED 1939 1940 time_t 1941 timelocal(struct tm *const tmp) 1942 { 1943 if (tmp != NULL) 1944 tmp->tm_isdst = -1; /* in case it wasn't initialized */ 1945 return mktime(tmp); 1946 } 1947 1948 time_t 1949 timegm(struct tm *const tmp) 1950 { 1951 if (tmp != NULL) 1952 tmp->tm_isdst = 0; 1953 return time1(tmp, gmtsub, 0L); 1954 } 1955 1956 time_t 1957 timeoff(struct tm *const tmp, const long offset) 1958 { 1959 if (tmp != NULL) 1960 tmp->tm_isdst = 0; 1961 return time1(tmp, gmtsub, offset); 1962 } 1963 1964 #endif /* defined STD_INSPIRED */ 1965 1966 #ifdef CMUCS 1967 1968 /* 1969 ** The following is supplied for compatibility with 1970 ** previous versions of the CMUCS runtime library. 1971 */ 1972 1973 long 1974 gtime(struct tm *const tmp) 1975 { 1976 const time_t t = mktime(tmp); 1977 1978 if (t == WRONG) 1979 return -1; 1980 return t; 1981 } 1982 1983 #endif /* defined CMUCS */ 1984 1985 /* 1986 ** XXX--is the below the right way to conditionalize?? 1987 */ 1988 1989 #ifdef STD_INSPIRED 1990 1991 /* 1992 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 1993 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which 1994 ** is not the case if we are accounting for leap seconds. 1995 ** So, we provide the following conversion routines for use 1996 ** when exchanging timestamps with POSIX conforming systems. 1997 */ 1998 1999 static int_fast64_t 2000 leapcorr(time_t *timep) 2001 { 2002 register struct state * sp; 2003 register struct lsinfo * lp; 2004 register int i; 2005 2006 sp = lclptr; 2007 i = sp->leapcnt; 2008 while (--i >= 0) { 2009 lp = &sp->lsis[i]; 2010 if (*timep >= lp->ls_trans) 2011 return lp->ls_corr; 2012 } 2013 return 0; 2014 } 2015 2016 time_t 2017 time2posix(time_t t) 2018 { 2019 tzset(); 2020 return t - leapcorr(&t); 2021 } 2022 2023 time_t 2024 posix2time(time_t t) 2025 { 2026 time_t x; 2027 time_t y; 2028 2029 tzset(); 2030 /* 2031 ** For a positive leap second hit, the result 2032 ** is not unique. For a negative leap second 2033 ** hit, the corresponding time doesn't exist, 2034 ** so we return an adjacent second. 2035 */ 2036 x = t + leapcorr(&t); 2037 y = x - leapcorr(&x); 2038 if (y < t) { 2039 do { 2040 x++; 2041 y = x - leapcorr(&x); 2042 } while (y < t); 2043 if (t != y) 2044 return x - 1; 2045 } else if (y > t) { 2046 do { 2047 --x; 2048 y = x - leapcorr(&x); 2049 } while (y > t); 2050 if (t != y) 2051 return x + 1; 2052 } 2053 return x; 2054 } 2055 2056 #endif /* defined STD_INSPIRED */ 2057