Home | History | Annotate | Download | only in coll
      1 //  2016 and later: Unicode, Inc. and others.
      2 // License & terms of use: http://www.unicode.org/copyright.html#License
      3 /*
      4 *******************************************************************************
      5 * Copyright (C) 2013-2015, International Business Machines
      6 * Corporation and others.  All Rights Reserved.
      7 *******************************************************************************
      8 * CollationBuilder.java, ported from collationbuilder.h/.cpp
      9 *
     10 * C++ version created on: 2013may06
     11 * created by: Markus W. Scherer
     12 */
     13 
     14 package com.ibm.icu.impl.coll;
     15 
     16 import java.text.ParseException;
     17 
     18 import com.ibm.icu.impl.Norm2AllModes;
     19 import com.ibm.icu.impl.Normalizer2Impl;
     20 import com.ibm.icu.impl.Normalizer2Impl.Hangul;
     21 import com.ibm.icu.lang.UScript;
     22 import com.ibm.icu.text.CanonicalIterator;
     23 import com.ibm.icu.text.Collator;
     24 import com.ibm.icu.text.Normalizer2;
     25 import com.ibm.icu.text.UnicodeSet;
     26 import com.ibm.icu.text.UnicodeSetIterator;
     27 import com.ibm.icu.util.ULocale;
     28 
     29 public final class CollationBuilder extends CollationRuleParser.Sink {
     30     private static final boolean DEBUG = false;
     31     private static final class BundleImporter implements CollationRuleParser.Importer {
     32         BundleImporter() {}
     33         @Override
     34         public String getRules(String localeID, String collationType) {
     35             return CollationLoader.loadRules(new ULocale(localeID), collationType);
     36         }
     37     }
     38 
     39     public CollationBuilder(CollationTailoring b) {
     40         nfd = Normalizer2.getNFDInstance();
     41         fcd = Norm2AllModes.getFCDNormalizer2();
     42         nfcImpl = Norm2AllModes.getNFCInstance().impl;
     43         base = b;
     44         baseData = b.data;
     45         rootElements = new CollationRootElements(b.data.rootElements);
     46         variableTop = 0;
     47         dataBuilder = new CollationDataBuilder();
     48         fastLatinEnabled = true;
     49         cesLength = 0;
     50         rootPrimaryIndexes = new UVector32();
     51         nodes = new UVector64();
     52         nfcImpl.ensureCanonIterData();
     53         dataBuilder.initForTailoring(baseData);
     54     }
     55 
     56     public CollationTailoring parseAndBuild(String ruleString) throws ParseException {
     57         if(baseData.rootElements == null) {
     58             // C++ U_MISSING_RESOURCE_ERROR
     59             throw new UnsupportedOperationException(
     60                     "missing root elements data, tailoring not supported");
     61         }
     62         CollationTailoring tailoring = new CollationTailoring(base.settings);
     63         CollationRuleParser parser = new CollationRuleParser(baseData);
     64         // Note: This always bases &[last variable] and &[first regular]
     65         // on the root collator's maxVariable/variableTop.
     66         // If we wanted this to change after [maxVariable x], then we would keep
     67         // the tailoring.settings pointer here and read its variableTop when we need it.
     68         // See http://unicode.org/cldr/trac/ticket/6070
     69         variableTop = base.settings.readOnly().variableTop;
     70         parser.setSink(this);
     71         // In Java, there is only one Importer implementation.
     72         // In C++, the importer is a parameter for this method.
     73         parser.setImporter(new BundleImporter());
     74         CollationSettings ownedSettings = tailoring.settings.copyOnWrite();
     75         parser.parse(ruleString, ownedSettings);
     76         if(dataBuilder.hasMappings()) {
     77             makeTailoredCEs();
     78             closeOverComposites();
     79             finalizeCEs();
     80             // Copy all of ASCII, and Latin-1 letters, into each tailoring.
     81             optimizeSet.add(0, 0x7f);
     82             optimizeSet.add(0xc0, 0xff);
     83             // Hangul is decomposed on the fly during collation,
     84             // and the tailoring data is always built with HANGUL_TAG specials.
     85             optimizeSet.remove(Hangul.HANGUL_BASE, Hangul.HANGUL_END);
     86             dataBuilder.optimize(optimizeSet);
     87             tailoring.ensureOwnedData();
     88             if(fastLatinEnabled) { dataBuilder.enableFastLatin(); }
     89             dataBuilder.build(tailoring.ownedData);
     90             // C++ tailoring.builder = dataBuilder;
     91             dataBuilder = null;
     92         } else {
     93             tailoring.data = baseData;
     94         }
     95         ownedSettings.fastLatinOptions = CollationFastLatin.getOptions(
     96                 tailoring.data, ownedSettings,
     97                 ownedSettings.fastLatinPrimaries);
     98         tailoring.setRules(ruleString);
     99         // In Java, we do not have a rules version.
    100         // In C++, the genrb build tool reads and supplies one,
    101         // and the rulesVersion is a parameter for this method.
    102         tailoring.setVersion(base.version, 0 /* rulesVersion */);
    103         return tailoring;
    104     }
    105 
    106     /** Implements CollationRuleParser.Sink. */
    107     @Override
    108     void addReset(int strength, CharSequence str) {
    109         assert(str.length() != 0);
    110         if(str.charAt(0) == CollationRuleParser.POS_LEAD) {
    111             ces[0] = getSpecialResetPosition(str);
    112             cesLength = 1;
    113             assert((ces[0] & Collation.CASE_AND_QUATERNARY_MASK) == 0);
    114         } else {
    115             // normal reset to a character or string
    116             String nfdString = nfd.normalize(str);
    117             cesLength = dataBuilder.getCEs(nfdString, ces, 0);
    118             if(cesLength > Collation.MAX_EXPANSION_LENGTH) {
    119                 throw new IllegalArgumentException(
    120                         "reset position maps to too many collation elements (more than 31)");
    121             }
    122         }
    123         if(strength == Collator.IDENTICAL) { return; }  // simple reset-at-position
    124 
    125         // &[before strength]position
    126         assert(Collator.PRIMARY <= strength && strength <= Collator.TERTIARY);
    127         int index = findOrInsertNodeForCEs(strength);
    128 
    129         long node = nodes.elementAti(index);
    130         // If the index is for a "weaker" node,
    131         // then skip backwards over this and further "weaker" nodes.
    132         while(strengthFromNode(node) > strength) {
    133             index = previousIndexFromNode(node);
    134             node = nodes.elementAti(index);
    135         }
    136 
    137         // Find or insert a node whose index we will put into a temporary CE.
    138         if(strengthFromNode(node) == strength && isTailoredNode(node)) {
    139             // Reset to just before this same-strength tailored node.
    140             index = previousIndexFromNode(node);
    141         } else if(strength == Collator.PRIMARY) {
    142             // root primary node (has no previous index)
    143             long p = weight32FromNode(node);
    144             if(p == 0) {
    145                 throw new UnsupportedOperationException(
    146                         "reset primary-before ignorable not possible");
    147             }
    148             if(p <= rootElements.getFirstPrimary()) {
    149                 // There is no primary gap between ignorables and the space-first-primary.
    150                 throw new UnsupportedOperationException(
    151                         "reset primary-before first non-ignorable not supported");
    152             }
    153             if(p == Collation.FIRST_TRAILING_PRIMARY) {
    154                 // We do not support tailoring to an unassigned-implicit CE.
    155                 throw new UnsupportedOperationException(
    156                         "reset primary-before [first trailing] not supported");
    157             }
    158             p = rootElements.getPrimaryBefore(p, baseData.isCompressiblePrimary(p));
    159             index = findOrInsertNodeForPrimary(p);
    160             // Go to the last node in this list:
    161             // Tailor after the last node between adjacent root nodes.
    162             for(;;) {
    163                 node = nodes.elementAti(index);
    164                 int nextIndex = nextIndexFromNode(node);
    165                 if(nextIndex == 0) { break; }
    166                 index = nextIndex;
    167             }
    168         } else {
    169             // &[before 2] or &[before 3]
    170             index = findCommonNode(index, Collator.SECONDARY);
    171             if(strength >= Collator.TERTIARY) {
    172                 index = findCommonNode(index, Collator.TERTIARY);
    173             }
    174             // findCommonNode() stayed on the stronger node or moved to
    175             // an explicit common-weight node of the reset-before strength.
    176             node = nodes.elementAti(index);
    177             if(strengthFromNode(node) == strength) {
    178                 // Found a same-strength node with an explicit weight.
    179                 int weight16 = weight16FromNode(node);
    180                 if(weight16 == 0) {
    181                     throw new UnsupportedOperationException(
    182                             (strength == Collator.SECONDARY) ?
    183                                     "reset secondary-before secondary ignorable not possible" :
    184                                     "reset tertiary-before completely ignorable not possible");
    185                 }
    186                 assert(weight16 > Collation.BEFORE_WEIGHT16);
    187                 // Reset to just before this node.
    188                 // Insert the preceding same-level explicit weight if it is not there already.
    189                 // Which explicit weight immediately precedes this one?
    190                 weight16 = getWeight16Before(index, node, strength);
    191                 // Does this preceding weight have a node?
    192                 int previousWeight16;
    193                 int previousIndex = previousIndexFromNode(node);
    194                 for(int i = previousIndex;; i = previousIndexFromNode(node)) {
    195                     node = nodes.elementAti(i);
    196                     int previousStrength = strengthFromNode(node);
    197                     if(previousStrength < strength) {
    198                         assert(weight16 >= Collation.COMMON_WEIGHT16 || i == previousIndex);
    199                         // Either the reset element has an above-common weight and
    200                         // the parent node provides the implied common weight,
    201                         // or the reset element has a weight<=common in the node
    202                         // right after the parent, and we need to insert the preceding weight.
    203                         previousWeight16 = Collation.COMMON_WEIGHT16;
    204                         break;
    205                     } else if(previousStrength == strength && !isTailoredNode(node)) {
    206                         previousWeight16 = weight16FromNode(node);
    207                         break;
    208                     }
    209                     // Skip weaker nodes and same-level tailored nodes.
    210                 }
    211                 if(previousWeight16 == weight16) {
    212                     // The preceding weight has a node,
    213                     // maybe with following weaker or tailored nodes.
    214                     // Reset to the last of them.
    215                     index = previousIndex;
    216                 } else {
    217                     // Insert a node with the preceding weight, reset to that.
    218                     node = nodeFromWeight16(weight16) | nodeFromStrength(strength);
    219                     index = insertNodeBetween(previousIndex, index, node);
    220                 }
    221             } else {
    222                 // Found a stronger node with implied strength-common weight.
    223                 int weight16 = getWeight16Before(index, node, strength);
    224                 index = findOrInsertWeakNode(index, weight16, strength);
    225             }
    226             // Strength of the temporary CE = strength of its reset position.
    227             // Code above raises an error if the before-strength is stronger.
    228             strength = ceStrength(ces[cesLength - 1]);
    229         }
    230         ces[cesLength - 1] = tempCEFromIndexAndStrength(index, strength);
    231     }
    232 
    233     /**
    234      * Returns the secondary or tertiary weight preceding the current node's weight.
    235      * node=nodes[index].
    236      */
    237     private int getWeight16Before(int index, long node, int level) {
    238         assert(strengthFromNode(node) < level || !isTailoredNode(node));
    239         // Collect the root CE weights if this node is for a root CE.
    240         // If it is not, then return the low non-primary boundary for a tailored CE.
    241         int t;
    242         if(strengthFromNode(node) == Collator.TERTIARY) {
    243             t = weight16FromNode(node);
    244         } else {
    245             t = Collation.COMMON_WEIGHT16;  // Stronger node with implied common weight.
    246         }
    247         while(strengthFromNode(node) > Collator.SECONDARY) {
    248             index = previousIndexFromNode(node);
    249             node = nodes.elementAti(index);
    250         }
    251         if(isTailoredNode(node)) {
    252             return Collation.BEFORE_WEIGHT16;
    253         }
    254         int s;
    255         if(strengthFromNode(node) == Collator.SECONDARY) {
    256             s = weight16FromNode(node);
    257         } else {
    258             s = Collation.COMMON_WEIGHT16;  // Stronger node with implied common weight.
    259         }
    260         while(strengthFromNode(node) > Collator.PRIMARY) {
    261             index = previousIndexFromNode(node);
    262             node = nodes.elementAti(index);
    263         }
    264         if(isTailoredNode(node)) {
    265             return Collation.BEFORE_WEIGHT16;
    266         }
    267         // [p, s, t] is a root CE. Return the preceding weight for the requested level.
    268         long p = weight32FromNode(node);
    269         int weight16;
    270         if(level == Collator.SECONDARY) {
    271             weight16 = rootElements.getSecondaryBefore(p, s);
    272         } else {
    273             weight16 = rootElements.getTertiaryBefore(p, s, t);
    274             assert((weight16 & ~Collation.ONLY_TERTIARY_MASK) == 0);
    275         }
    276         return weight16;
    277     }
    278 
    279     private long getSpecialResetPosition(CharSequence str) {
    280         assert(str.length() == 2);
    281         long ce;
    282         int strength = Collator.PRIMARY;
    283         boolean isBoundary = false;
    284         CollationRuleParser.Position pos =
    285                 CollationRuleParser.POSITION_VALUES[str.charAt(1) - CollationRuleParser.POS_BASE];
    286         switch(pos) {
    287         case FIRST_TERTIARY_IGNORABLE:
    288             // Quaternary CEs are not supported.
    289             // Non-zero quaternary weights are possible only on tertiary or stronger CEs.
    290             return 0;
    291         case LAST_TERTIARY_IGNORABLE:
    292             return 0;
    293         case FIRST_SECONDARY_IGNORABLE: {
    294             // Look for a tailored tertiary node after [0, 0, 0].
    295             int index = findOrInsertNodeForRootCE(0, Collator.TERTIARY);
    296             long node = nodes.elementAti(index);
    297             if((index = nextIndexFromNode(node)) != 0) {
    298                 node = nodes.elementAti(index);
    299                 assert(strengthFromNode(node) <= Collator.TERTIARY);
    300                 if(isTailoredNode(node) && strengthFromNode(node) == Collator.TERTIARY) {
    301                     return tempCEFromIndexAndStrength(index, Collator.TERTIARY);
    302                 }
    303             }
    304             return rootElements.getFirstTertiaryCE();
    305             // No need to look for nodeHasAnyBefore() on a tertiary node.
    306         }
    307         case LAST_SECONDARY_IGNORABLE:
    308             ce = rootElements.getLastTertiaryCE();
    309             strength = Collator.TERTIARY;
    310             break;
    311         case FIRST_PRIMARY_IGNORABLE: {
    312             // Look for a tailored secondary node after [0, 0, *].
    313             int index = findOrInsertNodeForRootCE(0, Collator.SECONDARY);
    314             long node = nodes.elementAti(index);
    315             while((index = nextIndexFromNode(node)) != 0) {
    316                 node = nodes.elementAti(index);
    317                 strength = strengthFromNode(node);
    318                 if(strength < Collator.SECONDARY) { break; }
    319                 if(strength == Collator.SECONDARY) {
    320                     if(isTailoredNode(node)) {
    321                         if(nodeHasBefore3(node)) {
    322                             index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
    323                             assert(isTailoredNode(nodes.elementAti(index)));
    324                         }
    325                         return tempCEFromIndexAndStrength(index, Collator.SECONDARY);
    326                     } else {
    327                         break;
    328                     }
    329                 }
    330             }
    331             ce = rootElements.getFirstSecondaryCE();
    332             strength = Collator.SECONDARY;
    333             break;
    334         }
    335         case LAST_PRIMARY_IGNORABLE:
    336             ce = rootElements.getLastSecondaryCE();
    337             strength = Collator.SECONDARY;
    338             break;
    339         case FIRST_VARIABLE:
    340             ce = rootElements.getFirstPrimaryCE();
    341             isBoundary = true;  // FractionalUCA.txt: FDD1 00A0, SPACE first primary
    342             break;
    343         case LAST_VARIABLE:
    344             ce = rootElements.lastCEWithPrimaryBefore(variableTop + 1);
    345             break;
    346         case FIRST_REGULAR:
    347             ce = rootElements.firstCEWithPrimaryAtLeast(variableTop + 1);
    348             isBoundary = true;  // FractionalUCA.txt: FDD1 263A, SYMBOL first primary
    349             break;
    350         case LAST_REGULAR:
    351             // Use the Hani-first-primary rather than the actual last "regular" CE before it,
    352             // for backward compatibility with behavior before the introduction of
    353             // script-first-primary CEs in the root collator.
    354             ce = rootElements.firstCEWithPrimaryAtLeast(
    355                 baseData.getFirstPrimaryForGroup(UScript.HAN));
    356             break;
    357         case FIRST_IMPLICIT:
    358             ce = baseData.getSingleCE(0x4e00);
    359             break;
    360         case LAST_IMPLICIT:
    361             // We do not support tailoring to an unassigned-implicit CE.
    362             throw new UnsupportedOperationException(
    363                     "reset to [last implicit] not supported");
    364         case FIRST_TRAILING:
    365             ce = Collation.makeCE(Collation.FIRST_TRAILING_PRIMARY);
    366             isBoundary = true;  // trailing first primary (there is no mapping for it)
    367             break;
    368         case LAST_TRAILING:
    369             throw new IllegalArgumentException("LDML forbids tailoring to U+FFFF");
    370         default:
    371             assert(false);
    372             return 0;
    373         }
    374 
    375         int index = findOrInsertNodeForRootCE(ce, strength);
    376         long node = nodes.elementAti(index);
    377         if((pos.ordinal() & 1) == 0) {
    378             // even pos = [first xyz]
    379             if(!nodeHasAnyBefore(node) && isBoundary) {
    380                 // A <group> first primary boundary is artificially added to FractionalUCA.txt.
    381                 // It is reachable via its special contraction, but is not normally used.
    382                 // Find the first character tailored after the boundary CE,
    383                 // or the first real root CE after it.
    384                 if((index = nextIndexFromNode(node)) != 0) {
    385                     // If there is a following node, then it must be tailored
    386                     // because there are no root CEs with a boundary primary
    387                     // and non-common secondary/tertiary weights.
    388                     node = nodes.elementAti(index);
    389                     assert(isTailoredNode(node));
    390                     ce = tempCEFromIndexAndStrength(index, strength);
    391                 } else {
    392                     assert(strength == Collator.PRIMARY);
    393                     long p = ce >>> 32;
    394                     int pIndex = rootElements.findPrimary(p);
    395                     boolean isCompressible = baseData.isCompressiblePrimary(p);
    396                     p = rootElements.getPrimaryAfter(p, pIndex, isCompressible);
    397                     ce = Collation.makeCE(p);
    398                     index = findOrInsertNodeForRootCE(ce, Collator.PRIMARY);
    399                     node = nodes.elementAti(index);
    400                 }
    401             }
    402             if(nodeHasAnyBefore(node)) {
    403                 // Get the first node that was tailored before this one at a weaker strength.
    404                 if(nodeHasBefore2(node)) {
    405                     index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
    406                     node = nodes.elementAti(index);
    407                 }
    408                 if(nodeHasBefore3(node)) {
    409                     index = nextIndexFromNode(nodes.elementAti(nextIndexFromNode(node)));
    410                 }
    411                 assert(isTailoredNode(nodes.elementAti(index)));
    412                 ce = tempCEFromIndexAndStrength(index, strength);
    413             }
    414         } else {
    415             // odd pos = [last xyz]
    416             // Find the last node that was tailored after the [last xyz]
    417             // at a strength no greater than the position's strength.
    418             for(;;) {
    419                 int nextIndex = nextIndexFromNode(node);
    420                 if(nextIndex == 0) { break; }
    421                 long nextNode = nodes.elementAti(nextIndex);
    422                 if(strengthFromNode(nextNode) < strength) { break; }
    423                 index = nextIndex;
    424                 node = nextNode;
    425             }
    426             // Do not make a temporary CE for a root node.
    427             // This last node might be the node for the root CE itself,
    428             // or a node with a common secondary or tertiary weight.
    429             if(isTailoredNode(node)) {
    430                 ce = tempCEFromIndexAndStrength(index, strength);
    431             }
    432         }
    433         return ce;
    434     }
    435 
    436     /** Implements CollationRuleParser.Sink. */
    437     @Override
    438     void addRelation(int strength, CharSequence prefix, CharSequence str, CharSequence extension) {
    439         String nfdPrefix;
    440         if(prefix.length() == 0) {
    441             nfdPrefix = "";
    442         } else {
    443             nfdPrefix = nfd.normalize(prefix);
    444         }
    445         String nfdString = nfd.normalize(str);
    446 
    447         // The runtime code decomposes Hangul syllables on the fly,
    448         // with recursive processing but without making the Jamo pieces visible for matching.
    449         // It does not work with certain types of contextual mappings.
    450         int nfdLength = nfdString.length();
    451         if(nfdLength >= 2) {
    452             char c = nfdString.charAt(0);
    453             if(Hangul.isJamoL(c) || Hangul.isJamoV(c)) {
    454                 // While handling a Hangul syllable, contractions starting with Jamo L or V
    455                 // would not see the following Jamo of that syllable.
    456                 throw new UnsupportedOperationException(
    457                         "contractions starting with conjoining Jamo L or V not supported");
    458             }
    459             c = nfdString.charAt(nfdLength - 1);
    460             if(Hangul.isJamoL(c) ||
    461                     (Hangul.isJamoV(c) && Hangul.isJamoL(nfdString.charAt(nfdLength - 2)))) {
    462                 // A contraction ending with Jamo L or L+V would require
    463                 // generating Hangul syllables in addTailComposites() (588 for a Jamo L),
    464                 // or decomposing a following Hangul syllable on the fly, during contraction matching.
    465                 throw new UnsupportedOperationException(
    466                         "contractions ending with conjoining Jamo L or L+V not supported");
    467             }
    468             // A Hangul syllable completely inside a contraction is ok.
    469         }
    470         // Note: If there is a prefix, then the parser checked that
    471         // both the prefix and the string beging with NFC boundaries (not Jamo V or T).
    472         // Therefore: prefix.isEmpty() || !isJamoVOrT(nfdString.charAt(0))
    473         // (While handling a Hangul syllable, prefixes on Jamo V or T
    474         // would not see the previous Jamo of that syllable.)
    475 
    476         if(strength != Collator.IDENTICAL) {
    477             // Find the node index after which we insert the new tailored node.
    478             int index = findOrInsertNodeForCEs(strength);
    479             assert(cesLength > 0);
    480             long ce = ces[cesLength - 1];
    481             if(strength == Collator.PRIMARY && !isTempCE(ce) && (ce >>> 32) == 0) {
    482                 // There is no primary gap between ignorables and the space-first-primary.
    483                 throw new UnsupportedOperationException(
    484                         "tailoring primary after ignorables not supported");
    485             }
    486             if(strength == Collator.QUATERNARY && ce == 0) {
    487                 // The CE data structure does not support non-zero quaternary weights
    488                 // on tertiary ignorables.
    489                 throw new UnsupportedOperationException(
    490                         "tailoring quaternary after tertiary ignorables not supported");
    491             }
    492             // Insert the new tailored node.
    493             index = insertTailoredNodeAfter(index, strength);
    494             // Strength of the temporary CE:
    495             // The new relation may yield a stronger CE but not a weaker one.
    496             int tempStrength = ceStrength(ce);
    497             if(strength < tempStrength) { tempStrength = strength; }
    498             ces[cesLength - 1] = tempCEFromIndexAndStrength(index, tempStrength);
    499         }
    500 
    501         setCaseBits(nfdString);
    502 
    503         int cesLengthBeforeExtension = cesLength;
    504         if(extension.length() != 0) {
    505             String nfdExtension = nfd.normalize(extension);
    506             cesLength = dataBuilder.getCEs(nfdExtension, ces, cesLength);
    507             if(cesLength > Collation.MAX_EXPANSION_LENGTH) {
    508                 throw new IllegalArgumentException(
    509                         "extension string adds too many collation elements (more than 31 total)");
    510             }
    511         }
    512         int ce32 = Collation.UNASSIGNED_CE32;
    513         if((!nfdPrefix.contentEquals(prefix) || !nfdString.contentEquals(str)) &&
    514                 !ignorePrefix(prefix) && !ignoreString(str)) {
    515             // Map from the original input to the CEs.
    516             // We do this in case the canonical closure is incomplete,
    517             // so that it is possible to explicitly provide the missing mappings.
    518             ce32 = addIfDifferent(prefix, str, ces, cesLength, ce32);
    519         }
    520         addWithClosure(nfdPrefix, nfdString, ces, cesLength, ce32);
    521         cesLength = cesLengthBeforeExtension;
    522     }
    523 
    524     /**
    525      * Picks one of the current CEs and finds or inserts a node in the graph
    526      * for the CE + strength.
    527      */
    528     private int findOrInsertNodeForCEs(int strength) {
    529         assert(Collator.PRIMARY <= strength && strength <= Collator.QUATERNARY);
    530 
    531         // Find the last CE that is at least as "strong" as the requested difference.
    532         // Note: Stronger is smaller (Collator.PRIMARY=0).
    533         long ce;
    534         for(;; --cesLength) {
    535             if(cesLength == 0) {
    536                 ce = ces[0] = 0;
    537                 cesLength = 1;
    538                 break;
    539             } else {
    540                 ce = ces[cesLength - 1];
    541             }
    542             if(ceStrength(ce) <= strength) { break; }
    543         }
    544 
    545         if(isTempCE(ce)) {
    546             // No need to findCommonNode() here for lower levels
    547             // because insertTailoredNodeAfter() will do that anyway.
    548             return indexFromTempCE(ce);
    549         }
    550 
    551         // root CE
    552         if((int)(ce >>> 56) == Collation.UNASSIGNED_IMPLICIT_BYTE) {
    553             throw new UnsupportedOperationException(
    554                     "tailoring relative to an unassigned code point not supported");
    555         }
    556         return findOrInsertNodeForRootCE(ce, strength);
    557     }
    558 
    559     private int findOrInsertNodeForRootCE(long ce, int strength) {
    560         assert((int)(ce >>> 56) != Collation.UNASSIGNED_IMPLICIT_BYTE);
    561 
    562         // Find or insert the node for each of the root CE's weights,
    563         // down to the requested level/strength.
    564         // Root CEs must have common=zero quaternary weights (for which we never insert any nodes).
    565         assert((ce & 0xc0) == 0);
    566         int index = findOrInsertNodeForPrimary(ce >>> 32);
    567         if(strength >= Collator.SECONDARY) {
    568             int lower32 = (int)ce;
    569             index = findOrInsertWeakNode(index, lower32 >>> 16, Collator.SECONDARY);
    570             if(strength >= Collator.TERTIARY) {
    571                 index = findOrInsertWeakNode(index, lower32 & Collation.ONLY_TERTIARY_MASK,
    572                                             Collator.TERTIARY);
    573             }
    574         }
    575         return index;
    576     }
    577 
    578     /**
    579      * Like Java Collections.binarySearch(List, key, Comparator).
    580      *
    581      * @return the index>=0 where the item was found,
    582      *         or the index<0 for inserting the string at ~index in sorted order
    583      *         (index into rootPrimaryIndexes)
    584      */
    585     private static final int binarySearchForRootPrimaryNode(
    586             int[] rootPrimaryIndexes, int length, long[] nodes, long p) {
    587         if(length == 0) { return ~0; }
    588         int start = 0;
    589         int limit = length;
    590         for (;;) {
    591             int i = (int)(((long)start + (long)limit) / 2);
    592             long node = nodes[rootPrimaryIndexes[i]];
    593             long nodePrimary = node >>> 32;  // weight32FromNode(node)
    594             if (p == nodePrimary) {
    595                 return i;
    596             } else if (p < nodePrimary) {
    597                 if (i == start) {
    598                     return ~start;  // insert s before i
    599                 }
    600                 limit = i;
    601             } else {
    602                 if (i == start) {
    603                     return ~(start + 1);  // insert s after i
    604                 }
    605                 start = i;
    606             }
    607         }
    608     }
    609 
    610     /** Finds or inserts the node for a root CE's primary weight. */
    611     private int findOrInsertNodeForPrimary(long p) {
    612         int rootIndex = binarySearchForRootPrimaryNode(
    613             rootPrimaryIndexes.getBuffer(), rootPrimaryIndexes.size(), nodes.getBuffer(), p);
    614         if(rootIndex >= 0) {
    615             return rootPrimaryIndexes.elementAti(rootIndex);
    616         } else {
    617             // Start a new list of nodes with this primary.
    618             int index = nodes.size();
    619             nodes.addElement(nodeFromWeight32(p));
    620             rootPrimaryIndexes.insertElementAt(index, ~rootIndex);
    621             return index;
    622         }
    623     }
    624 
    625     /** Finds or inserts the node for a secondary or tertiary weight. */
    626     private int findOrInsertWeakNode(int index, int weight16, int level) {
    627         assert(0 <= index && index < nodes.size());
    628         assert(Collator.SECONDARY <= level && level <= Collator.TERTIARY);
    629 
    630         if(weight16 == Collation.COMMON_WEIGHT16) {
    631             return findCommonNode(index, level);
    632         }
    633 
    634         // If this will be the first below-common weight for the parent node,
    635         // then we will also need to insert a common weight after it.
    636         long node = nodes.elementAti(index);
    637         assert(strengthFromNode(node) < level);  // parent node is stronger
    638         if(weight16 != 0 && weight16 < Collation.COMMON_WEIGHT16) {
    639             int hasThisLevelBefore = level == Collator.SECONDARY ? HAS_BEFORE2 : HAS_BEFORE3;
    640             if((node & hasThisLevelBefore) == 0) {
    641                 // The parent node has an implied level-common weight.
    642                 long commonNode =
    643                     nodeFromWeight16(Collation.COMMON_WEIGHT16) | nodeFromStrength(level);
    644                 if(level == Collator.SECONDARY) {
    645                     // Move the HAS_BEFORE3 flag from the parent node
    646                     // to the new secondary common node.
    647                     commonNode |= node & HAS_BEFORE3;
    648                     node &= ~(long)HAS_BEFORE3;
    649                 }
    650                 nodes.setElementAt(node | hasThisLevelBefore, index);
    651                 // Insert below-common-weight node.
    652                 int nextIndex = nextIndexFromNode(node);
    653                 node = nodeFromWeight16(weight16) | nodeFromStrength(level);
    654                 index = insertNodeBetween(index, nextIndex, node);
    655                 // Insert common-weight node.
    656                 insertNodeBetween(index, nextIndex, commonNode);
    657                 // Return index of below-common-weight node.
    658                 return index;
    659             }
    660         }
    661 
    662         // Find the root CE's weight for this level.
    663         // Postpone insertion if not found:
    664         // Insert the new root node before the next stronger node,
    665         // or before the next root node with the same strength and a larger weight.
    666         int nextIndex;
    667         while((nextIndex = nextIndexFromNode(node)) != 0) {
    668             node = nodes.elementAti(nextIndex);
    669             int nextStrength = strengthFromNode(node);
    670             if(nextStrength <= level) {
    671                 // Insert before a stronger node.
    672                 if(nextStrength < level) { break; }
    673                 // nextStrength == level
    674                 if(!isTailoredNode(node)) {
    675                     int nextWeight16 = weight16FromNode(node);
    676                     if(nextWeight16 == weight16) {
    677                         // Found the node for the root CE up to this level.
    678                         return nextIndex;
    679                     }
    680                     // Insert before a node with a larger same-strength weight.
    681                     if(nextWeight16 > weight16) { break; }
    682                 }
    683             }
    684             // Skip the next node.
    685             index = nextIndex;
    686         }
    687         node = nodeFromWeight16(weight16) | nodeFromStrength(level);
    688         return insertNodeBetween(index, nextIndex, node);
    689     }
    690 
    691     /**
    692      * Makes and inserts a new tailored node into the list, after the one at index.
    693      * Skips over nodes of weaker strength to maintain collation order
    694      * ("postpone insertion").
    695      * @return the new node's index
    696      */
    697     private int insertTailoredNodeAfter(int index, int strength) {
    698         assert(0 <= index && index < nodes.size());
    699         if(strength >= Collator.SECONDARY) {
    700             index = findCommonNode(index, Collator.SECONDARY);
    701             if(strength >= Collator.TERTIARY) {
    702                 index = findCommonNode(index, Collator.TERTIARY);
    703             }
    704         }
    705         // Postpone insertion:
    706         // Insert the new node before the next one with a strength at least as strong.
    707         long node = nodes.elementAti(index);
    708         int nextIndex;
    709         while((nextIndex = nextIndexFromNode(node)) != 0) {
    710             node = nodes.elementAti(nextIndex);
    711             if(strengthFromNode(node) <= strength) { break; }
    712             // Skip the next node which has a weaker (larger) strength than the new one.
    713             index = nextIndex;
    714         }
    715         node = IS_TAILORED | nodeFromStrength(strength);
    716         return insertNodeBetween(index, nextIndex, node);
    717     }
    718 
    719     /**
    720      * Inserts a new node into the list, between list-adjacent items.
    721      * The node's previous and next indexes must not be set yet.
    722      * @return the new node's index
    723      */
    724     private int insertNodeBetween(int index, int nextIndex, long node) {
    725         assert(previousIndexFromNode(node) == 0);
    726         assert(nextIndexFromNode(node) == 0);
    727         assert(nextIndexFromNode(nodes.elementAti(index)) == nextIndex);
    728         // Append the new node and link it to the existing nodes.
    729         int newIndex = nodes.size();
    730         node |= nodeFromPreviousIndex(index) | nodeFromNextIndex(nextIndex);
    731         nodes.addElement(node);
    732         // nodes[index].nextIndex = newIndex
    733         node = nodes.elementAti(index);
    734         nodes.setElementAt(changeNodeNextIndex(node, newIndex), index);
    735         // nodes[nextIndex].previousIndex = newIndex
    736         if(nextIndex != 0) {
    737             node = nodes.elementAti(nextIndex);
    738             nodes.setElementAt(changeNodePreviousIndex(node, newIndex), nextIndex);
    739         }
    740         return newIndex;
    741     }
    742 
    743     /**
    744      * Finds the node which implies or contains a common=05 weight of the given strength
    745      * (secondary or tertiary), if the current node is stronger.
    746      * Skips weaker nodes and tailored nodes if the current node is stronger
    747      * and is followed by an explicit-common-weight node.
    748      * Always returns the input index if that node is no stronger than the given strength.
    749      */
    750     private int findCommonNode(int index, int strength) {
    751         assert(Collator.SECONDARY <= strength && strength <= Collator.TERTIARY);
    752         long node = nodes.elementAti(index);
    753         if(strengthFromNode(node) >= strength) {
    754             // The current node is no stronger.
    755             return index;
    756         }
    757         if(strength == Collator.SECONDARY ? !nodeHasBefore2(node) : !nodeHasBefore3(node)) {
    758             // The current node implies the strength-common weight.
    759             return index;
    760         }
    761         index = nextIndexFromNode(node);
    762         node = nodes.elementAti(index);
    763         assert(!isTailoredNode(node) && strengthFromNode(node) == strength &&
    764                 weight16FromNode(node) < Collation.COMMON_WEIGHT16);
    765         // Skip to the explicit common node.
    766         do {
    767             index = nextIndexFromNode(node);
    768             node = nodes.elementAti(index);
    769             assert(strengthFromNode(node) >= strength);
    770         } while(isTailoredNode(node) || strengthFromNode(node) > strength ||
    771                 weight16FromNode(node) < Collation.COMMON_WEIGHT16);
    772         assert(weight16FromNode(node) == Collation.COMMON_WEIGHT16);
    773         return index;
    774     }
    775 
    776     private void setCaseBits(CharSequence nfdString) {
    777         int numTailoredPrimaries = 0;
    778         for(int i = 0; i < cesLength; ++i) {
    779             if(ceStrength(ces[i]) == Collator.PRIMARY) { ++numTailoredPrimaries; }
    780         }
    781         // We should not be able to get too many case bits because
    782         // cesLength<=31==MAX_EXPANSION_LENGTH.
    783         // 31 pairs of case bits fit into an long without setting its sign bit.
    784         assert(numTailoredPrimaries <= 31);
    785 
    786         long cases = 0;
    787         if(numTailoredPrimaries > 0) {
    788             CharSequence s = nfdString;
    789             UTF16CollationIterator baseCEs = new UTF16CollationIterator(baseData, false, s, 0);
    790             int baseCEsLength = baseCEs.fetchCEs() - 1;
    791             assert(baseCEsLength >= 0 && baseCEs.getCE(baseCEsLength) == Collation.NO_CE);
    792 
    793             int lastCase = 0;
    794             int numBasePrimaries = 0;
    795             for(int i = 0; i < baseCEsLength; ++i) {
    796                 long ce = baseCEs.getCE(i);
    797                 if((ce >>> 32) != 0) {
    798                     ++numBasePrimaries;
    799                     int c = ((int)ce >> 14) & 3;
    800                     assert(c == 0 || c == 2);  // lowercase or uppercase, no mixed case in any base CE
    801                     if(numBasePrimaries < numTailoredPrimaries) {
    802                         cases |= (long)c << ((numBasePrimaries - 1) * 2);
    803                     } else if(numBasePrimaries == numTailoredPrimaries) {
    804                         lastCase = c;
    805                     } else if(c != lastCase) {
    806                         // There are more base primary CEs than tailored primaries.
    807                         // Set mixed case if the case bits of the remainder differ.
    808                         lastCase = 1;
    809                         // Nothing more can change.
    810                         break;
    811                     }
    812                 }
    813             }
    814             if(numBasePrimaries >= numTailoredPrimaries) {
    815                 cases |= (long)lastCase << ((numTailoredPrimaries - 1) * 2);
    816             }
    817         }
    818 
    819         for(int i = 0; i < cesLength; ++i) {
    820             long ce = ces[i] & 0xffffffffffff3fffL;  // clear old case bits
    821             int strength = ceStrength(ce);
    822             if(strength == Collator.PRIMARY) {
    823                 ce |= (cases & 3) << 14;
    824                 cases >>>= 2;
    825             } else if(strength == Collator.TERTIARY) {
    826                 // Tertiary CEs must have uppercase bits.
    827                 // See the LDML spec, and comments in class CollationCompare.
    828                 ce |= 0x8000;
    829             }
    830             // Tertiary ignorable CEs must have 0 case bits.
    831             // We set 0 case bits for secondary CEs too
    832             // since currently only U+0345 is cased and maps to a secondary CE,
    833             // and it is lowercase. Other secondaries are uncased.
    834             // See [[:Cased:]&[:uca1=:]] where uca1 queries the root primary weight.
    835             ces[i] = ce;
    836         }
    837     }
    838 
    839     /** Implements CollationRuleParser.Sink. */
    840     @Override
    841     void suppressContractions(UnicodeSet set) {
    842         dataBuilder.suppressContractions(set);
    843     }
    844 
    845     /** Implements CollationRuleParser.Sink. */
    846     @Override
    847     void optimize(UnicodeSet set) {
    848         optimizeSet.addAll(set);
    849     }
    850 
    851     /**
    852      * Adds the mapping and its canonical closure.
    853      * Takes ce32=dataBuilder.encodeCEs(...) so that the data builder
    854      * need not re-encode the CEs multiple times.
    855      */
    856     private int addWithClosure(CharSequence nfdPrefix, CharSequence nfdString,
    857                 long[] newCEs, int newCEsLength, int ce32) {
    858         // Map from the NFD input to the CEs.
    859         ce32 = addIfDifferent(nfdPrefix, nfdString, newCEs, newCEsLength, ce32);
    860         ce32 = addOnlyClosure(nfdPrefix, nfdString, newCEs, newCEsLength, ce32);
    861         addTailComposites(nfdPrefix, nfdString);
    862         return ce32;
    863     }
    864 
    865     private int addOnlyClosure(CharSequence nfdPrefix, CharSequence nfdString,
    866                 long[] newCEs, int newCEsLength, int ce32) {
    867         // Map from canonically equivalent input to the CEs. (But not from the all-NFD input.)
    868         // TODO: make CanonicalIterator work with CharSequence, or maybe change arguments here to String
    869         if(nfdPrefix.length() == 0) {
    870             CanonicalIterator stringIter = new CanonicalIterator(nfdString.toString());
    871             String prefix = "";
    872             for(;;) {
    873                 String str = stringIter.next();
    874                 if(str == null) { break; }
    875                 if(ignoreString(str) || str.contentEquals(nfdString)) { continue; }
    876                 ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32);
    877             }
    878         } else {
    879             CanonicalIterator prefixIter = new CanonicalIterator(nfdPrefix.toString());
    880             CanonicalIterator stringIter = new CanonicalIterator(nfdString.toString());
    881             for(;;) {
    882                 String prefix = prefixIter.next();
    883                 if(prefix == null) { break; }
    884                 if(ignorePrefix(prefix)) { continue; }
    885                 boolean samePrefix = prefix.contentEquals(nfdPrefix);
    886                 for(;;) {
    887                     String str = stringIter.next();
    888                     if(str == null) { break; }
    889                     if(ignoreString(str) || (samePrefix && str.contentEquals(nfdString))) { continue; }
    890                     ce32 = addIfDifferent(prefix, str, newCEs, newCEsLength, ce32);
    891                 }
    892                 stringIter.reset();
    893             }
    894         }
    895         return ce32;
    896     }
    897 
    898     private void addTailComposites(CharSequence nfdPrefix, CharSequence nfdString) {
    899         // Look for the last starter in the NFD string.
    900         int lastStarter;
    901         int indexAfterLastStarter = nfdString.length();
    902         for(;;) {
    903             if(indexAfterLastStarter == 0) { return; }  // no starter at all
    904             lastStarter = Character.codePointBefore(nfdString, indexAfterLastStarter);
    905             if(nfd.getCombiningClass(lastStarter) == 0) { break; }
    906             indexAfterLastStarter -= Character.charCount(lastStarter);
    907         }
    908         // No closure to Hangul syllables since we decompose them on the fly.
    909         if(Hangul.isJamoL(lastStarter)) { return; }
    910 
    911         // Are there any composites whose decomposition starts with the lastStarter?
    912         // Note: Normalizer2Impl does not currently return start sets for NFC_QC=Maybe characters.
    913         // We might find some more equivalent mappings here if it did.
    914         UnicodeSet composites = new UnicodeSet();
    915         if(!nfcImpl.getCanonStartSet(lastStarter, composites)) { return; }
    916 
    917         StringBuilder newNFDString = new StringBuilder(), newString = new StringBuilder();
    918         long[] newCEs = new long[Collation.MAX_EXPANSION_LENGTH];
    919         UnicodeSetIterator iter = new UnicodeSetIterator(composites);
    920         while(iter.next()) {
    921             assert(iter.codepoint != UnicodeSetIterator.IS_STRING);
    922             int composite = iter.codepoint;
    923             String decomp = nfd.getDecomposition(composite);
    924             if(!mergeCompositeIntoString(nfdString, indexAfterLastStarter, composite, decomp,
    925                     newNFDString, newString)) {
    926                 continue;
    927             }
    928             int newCEsLength = dataBuilder.getCEs(nfdPrefix, newNFDString, newCEs, 0);
    929             if(newCEsLength > Collation.MAX_EXPANSION_LENGTH) {
    930                 // Ignore mappings that we cannot store.
    931                 continue;
    932             }
    933             // Note: It is possible that the newCEs do not make use of the mapping
    934             // for which we are adding the tail composites, in which case we might be adding
    935             // unnecessary mappings.
    936             // For example, when we add tail composites for ae^ (^=combining circumflex),
    937             // UCA discontiguous-contraction matching does not find any matches
    938             // for ae_^ (_=any combining diacritic below) *unless* there is also
    939             // a contraction mapping for ae.
    940             // Thus, if there is no ae contraction, then the ae^ mapping is ignored
    941             // while fetching the newCEs for ae_^.
    942             // TODO: Try to detect this effectively.
    943             // (Alternatively, print a warning when prefix contractions are missing.)
    944 
    945             // We do not need an explicit mapping for the NFD strings.
    946             // It is fine if the NFD input collates like this via a sequence of mappings.
    947             // It also saves a little bit of space, and may reduce the set of characters with contractions.
    948             int ce32 = addIfDifferent(nfdPrefix, newString,
    949                                           newCEs, newCEsLength, Collation.UNASSIGNED_CE32);
    950             if(ce32 != Collation.UNASSIGNED_CE32) {
    951                 // was different, was added
    952                 addOnlyClosure(nfdPrefix, newNFDString, newCEs, newCEsLength, ce32);
    953             }
    954         }
    955     }
    956 
    957     private boolean mergeCompositeIntoString(CharSequence nfdString, int indexAfterLastStarter,
    958                 int composite, CharSequence decomp,
    959                 StringBuilder newNFDString, StringBuilder newString) {
    960         assert(Character.codePointBefore(nfdString, indexAfterLastStarter) ==
    961                 Character.codePointAt(decomp, 0));
    962         int lastStarterLength = Character.offsetByCodePoints(decomp, 0, 1);
    963         if(lastStarterLength == decomp.length()) {
    964             // Singleton decompositions should be found by addWithClosure()
    965             // and the CanonicalIterator, so we can ignore them here.
    966             return false;
    967         }
    968         if(equalSubSequences(nfdString, indexAfterLastStarter, decomp, lastStarterLength)) {
    969             // same strings, nothing new to be found here
    970             return false;
    971         }
    972 
    973         // Make new FCD strings that combine a composite, or its decomposition,
    974         // into the nfdString's last starter and the combining marks following it.
    975         // Make an NFD version, and a version with the composite.
    976         newNFDString.setLength(0);
    977         newNFDString.append(nfdString, 0, indexAfterLastStarter);
    978         newString.setLength(0);
    979         newString.append(nfdString, 0, indexAfterLastStarter - lastStarterLength)
    980             .appendCodePoint(composite);
    981 
    982         // The following is related to discontiguous contraction matching,
    983         // but builds only FCD strings (or else returns false).
    984         int sourceIndex = indexAfterLastStarter;
    985         int decompIndex = lastStarterLength;
    986         // Small optimization: We keep the source character across loop iterations
    987         // because we do not always consume it,
    988         // and then need not fetch it again nor look up its combining class again.
    989         int sourceChar = Collation.SENTINEL_CP;
    990         // The cc variables need to be declared before the loop so that at the end
    991         // they are set to the last combining classes seen.
    992         int sourceCC = 0;
    993         int decompCC = 0;
    994         for(;;) {
    995             if(sourceChar < 0) {
    996                 if(sourceIndex >= nfdString.length()) { break; }
    997                 sourceChar = Character.codePointAt(nfdString, sourceIndex);
    998                 sourceCC = nfd.getCombiningClass(sourceChar);
    999                 assert(sourceCC != 0);
   1000             }
   1001             // We consume a decomposition character in each iteration.
   1002             if(decompIndex >= decomp.length()) { break; }
   1003             int decompChar = Character.codePointAt(decomp, decompIndex);
   1004             decompCC = nfd.getCombiningClass(decompChar);
   1005             // Compare the two characters and their combining classes.
   1006             if(decompCC == 0) {
   1007                 // Unable to merge because the source contains a non-zero combining mark
   1008                 // but the composite's decomposition contains another starter.
   1009                 // The strings would not be equivalent.
   1010                 return false;
   1011             } else if(sourceCC < decompCC) {
   1012                 // Composite + sourceChar would not be FCD.
   1013                 return false;
   1014             } else if(decompCC < sourceCC) {
   1015                 newNFDString.appendCodePoint(decompChar);
   1016                 decompIndex += Character.charCount(decompChar);
   1017             } else if(decompChar != sourceChar) {
   1018                 // Blocked because same combining class.
   1019                 return false;
   1020             } else {  // match: decompChar == sourceChar
   1021                 newNFDString.appendCodePoint(decompChar);
   1022                 decompIndex += Character.charCount(decompChar);
   1023                 sourceIndex += Character.charCount(decompChar);
   1024                 sourceChar = Collation.SENTINEL_CP;
   1025             }
   1026         }
   1027         // We are at the end of at least one of the two inputs.
   1028         if(sourceChar >= 0) {  // more characters from nfdString but not from decomp
   1029             if(sourceCC < decompCC) {
   1030                 // Appending the next source character to the composite would not be FCD.
   1031                 return false;
   1032             }
   1033             newNFDString.append(nfdString, sourceIndex, nfdString.length());
   1034             newString.append(nfdString, sourceIndex, nfdString.length());
   1035         } else if(decompIndex < decomp.length()) {  // more characters from decomp, not from nfdString
   1036             newNFDString.append(decomp, decompIndex, decomp.length());
   1037         }
   1038         assert(nfd.isNormalized(newNFDString));
   1039         assert(fcd.isNormalized(newString));
   1040         assert(nfd.normalize(newString).equals(newNFDString.toString()));  // canonically equivalent
   1041         return true;
   1042     }
   1043 
   1044     private boolean equalSubSequences(CharSequence left, int leftStart, CharSequence right, int rightStart) {
   1045         // C++ UnicodeString::compare(leftStart, 0x7fffffff, right, rightStart, 0x7fffffff) == 0
   1046         int leftLength = left.length();
   1047         if((leftLength - leftStart) != (right.length() - rightStart)) { return false; }
   1048         while(leftStart < leftLength) {
   1049             if(left.charAt(leftStart++) != right.charAt(rightStart++)) {
   1050                 return false;
   1051             }
   1052         }
   1053         return true;
   1054     }
   1055     private boolean ignorePrefix(CharSequence s) {
   1056         // Do not map non-FCD prefixes.
   1057         return !isFCD(s);
   1058     }
   1059     private boolean ignoreString(CharSequence s) {
   1060         // Do not map non-FCD strings.
   1061         // Do not map strings that start with Hangul syllables: We decompose those on the fly.
   1062         return !isFCD(s) || Hangul.isHangul(s.charAt(0));
   1063     }
   1064     private boolean isFCD(CharSequence s) {
   1065         return fcd.isNormalized(s);
   1066     }
   1067 
   1068     private static final UnicodeSet COMPOSITES = new UnicodeSet("[:NFD_QC=N:]");
   1069     static {
   1070         // Hangul is decomposed on the fly during collation.
   1071         COMPOSITES.remove(Hangul.HANGUL_BASE, Hangul.HANGUL_END);
   1072     }
   1073 
   1074     private void closeOverComposites() {
   1075         String prefix = "";  // empty
   1076         UnicodeSetIterator iter = new UnicodeSetIterator(COMPOSITES);
   1077         while(iter.next()) {
   1078             assert(iter.codepoint != UnicodeSetIterator.IS_STRING);
   1079             String nfdString = nfd.getDecomposition(iter.codepoint);
   1080             cesLength = dataBuilder.getCEs(nfdString, ces, 0);
   1081             if(cesLength > Collation.MAX_EXPANSION_LENGTH) {
   1082                 // Too many CEs from the decomposition (unusual), ignore this composite.
   1083                 // We could add a capacity parameter to getCEs() and reallocate if necessary.
   1084                 // However, this can only really happen in contrived cases.
   1085                 continue;
   1086             }
   1087             String composite = iter.getString();
   1088             addIfDifferent(prefix, composite, ces, cesLength, Collation.UNASSIGNED_CE32);
   1089         }
   1090     }
   1091 
   1092     private int addIfDifferent(CharSequence prefix, CharSequence str,
   1093                 long[] newCEs, int newCEsLength, int ce32) {
   1094         long[] oldCEs = new long[Collation.MAX_EXPANSION_LENGTH];
   1095         int oldCEsLength = dataBuilder.getCEs(prefix, str, oldCEs, 0);
   1096         if(!sameCEs(newCEs, newCEsLength, oldCEs, oldCEsLength)) {
   1097             if(ce32 == Collation.UNASSIGNED_CE32) {
   1098                 ce32 = dataBuilder.encodeCEs(newCEs, newCEsLength);
   1099             }
   1100             dataBuilder.addCE32(prefix, str, ce32);
   1101         }
   1102         return ce32;
   1103     }
   1104 
   1105     private static boolean sameCEs(long[] ces1, int ces1Length,
   1106                 long[] ces2, int ces2Length) {
   1107         if(ces1Length != ces2Length) {
   1108             return false;
   1109         }
   1110         assert(ces1Length <= Collation.MAX_EXPANSION_LENGTH);
   1111         for(int i = 0; i < ces1Length; ++i) {
   1112             if(ces1[i] != ces2[i]) { return false; }
   1113         }
   1114         return true;
   1115     }
   1116 
   1117     private static final int alignWeightRight(int w) {
   1118         if(w != 0) {
   1119             while((w & 0xff) == 0) { w >>>= 8; }
   1120         }
   1121         return w;
   1122     }
   1123 
   1124     /**
   1125      * Walks the tailoring graph and overwrites tailored nodes with new CEs.
   1126      * After this, the graph is destroyed.
   1127      * The nodes array can then be used only as a source of tailored CEs.
   1128      */
   1129     private void makeTailoredCEs() {
   1130         CollationWeights primaries = new CollationWeights();
   1131         CollationWeights secondaries = new CollationWeights();
   1132         CollationWeights tertiaries = new CollationWeights();
   1133         long[] nodesArray = nodes.getBuffer();
   1134         if(DEBUG) {
   1135             System.out.println("\nCollationBuilder.makeTailoredCEs()");
   1136         }
   1137 
   1138         for(int rpi = 0; rpi < rootPrimaryIndexes.size(); ++rpi) {
   1139             int i = rootPrimaryIndexes.elementAti(rpi);
   1140             long node = nodesArray[i];
   1141             long p = weight32FromNode(node);
   1142             int s = p == 0 ? 0 : Collation.COMMON_WEIGHT16;
   1143             int t = s;
   1144             int q = 0;
   1145             boolean pIsTailored = false;
   1146             boolean sIsTailored = false;
   1147             boolean tIsTailored = false;
   1148             if(DEBUG) {
   1149                 System.out.printf("\nprimary     %x\n", alignWeightRight((int)p));
   1150             }
   1151             int pIndex = p == 0 ? 0 : rootElements.findPrimary(p);
   1152             int nextIndex = nextIndexFromNode(node);
   1153             while(nextIndex != 0) {
   1154                 i = nextIndex;
   1155                 node = nodesArray[i];
   1156                 nextIndex = nextIndexFromNode(node);
   1157                 int strength = strengthFromNode(node);
   1158                 if(strength == Collator.QUATERNARY) {
   1159                     assert(isTailoredNode(node));
   1160                     if(DEBUG) {
   1161                         System.out.print("      quat+     ");
   1162                     }
   1163                     if(q == 3) {
   1164                         // C++ U_BUFFER_OVERFLOW_ERROR
   1165                         throw new UnsupportedOperationException("quaternary tailoring gap too small");
   1166                     }
   1167                     ++q;
   1168                 } else {
   1169                     if(strength == Collator.TERTIARY) {
   1170                         if(isTailoredNode(node)) {
   1171                             if(DEBUG) {
   1172                                 System.out.print("    ter+        ");
   1173                             }
   1174                             if(!tIsTailored) {
   1175                                 // First tailored tertiary node for [p, s].
   1176                                 int tCount = countTailoredNodes(nodesArray, nextIndex,
   1177                                                                     Collator.TERTIARY) + 1;
   1178                                 int tLimit;
   1179                                 if(t == 0) {
   1180                                     // Gap at the beginning of the tertiary CE range.
   1181                                     t = rootElements.getTertiaryBoundary() - 0x100;
   1182                                     tLimit = (int)rootElements.getFirstTertiaryCE() & Collation.ONLY_TERTIARY_MASK;
   1183                                 } else if(!pIsTailored && !sIsTailored) {
   1184                                     // p and s are root weights.
   1185                                     tLimit = rootElements.getTertiaryAfter(pIndex, s, t);
   1186                                 } else if(t == Collation.BEFORE_WEIGHT16) {
   1187                                     tLimit = Collation.COMMON_WEIGHT16;
   1188                                 } else {
   1189                                     // [p, s] is tailored.
   1190                                     assert(t == Collation.COMMON_WEIGHT16);
   1191                                     tLimit = rootElements.getTertiaryBoundary();
   1192                                 }
   1193                                 assert(tLimit == 0x4000 || (tLimit & ~Collation.ONLY_TERTIARY_MASK) == 0);
   1194                                 tertiaries.initForTertiary();
   1195                                 if(!tertiaries.allocWeights(t, tLimit, tCount)) {
   1196                                     // C++ U_BUFFER_OVERFLOW_ERROR
   1197                                     throw new UnsupportedOperationException("tertiary tailoring gap too small");
   1198                                 }
   1199                                 tIsTailored = true;
   1200                             }
   1201                             t = (int)tertiaries.nextWeight();
   1202                             assert(t != 0xffffffff);
   1203                         } else {
   1204                             t = weight16FromNode(node);
   1205                             tIsTailored = false;
   1206                             if(DEBUG) {
   1207                                 System.out.printf("    ter     %x\n", alignWeightRight(t));
   1208                             }
   1209                         }
   1210                     } else {
   1211                         if(strength == Collator.SECONDARY) {
   1212                             if(isTailoredNode(node)) {
   1213                                 if(DEBUG) {
   1214                                     System.out.print("  sec+          ");
   1215                                 }
   1216                                 if(!sIsTailored) {
   1217                                     // First tailored secondary node for p.
   1218                                     int sCount = countTailoredNodes(nodesArray, nextIndex,
   1219                                                                         Collator.SECONDARY) + 1;
   1220                                     int sLimit;
   1221                                     if(s == 0) {
   1222                                         // Gap at the beginning of the secondary CE range.
   1223                                         s = rootElements.getSecondaryBoundary() - 0x100;
   1224                                         sLimit = (int)(rootElements.getFirstSecondaryCE() >> 16);
   1225                                     } else if(!pIsTailored) {
   1226                                         // p is a root primary.
   1227                                         sLimit = rootElements.getSecondaryAfter(pIndex, s);
   1228                                     } else if(s == Collation.BEFORE_WEIGHT16) {
   1229                                         sLimit = Collation.COMMON_WEIGHT16;
   1230                                     } else {
   1231                                         // p is a tailored primary.
   1232                                         assert(s == Collation.COMMON_WEIGHT16);
   1233                                         sLimit = rootElements.getSecondaryBoundary();
   1234                                     }
   1235                                     if(s == Collation.COMMON_WEIGHT16) {
   1236                                         // Do not tailor into the getSortKey() range of
   1237                                         // compressed common secondaries.
   1238                                         s = rootElements.getLastCommonSecondary();
   1239                                     }
   1240                                     secondaries.initForSecondary();
   1241                                     if(!secondaries.allocWeights(s, sLimit, sCount)) {
   1242                                         // C++ U_BUFFER_OVERFLOW_ERROR
   1243                                         if(DEBUG) {
   1244                                             System.out.printf("!secondaries.allocWeights(%x, %x, sCount=%d)\n",
   1245                                                     alignWeightRight(s), alignWeightRight(sLimit),
   1246                                                     alignWeightRight(sCount));
   1247                                         }
   1248                                         throw new UnsupportedOperationException("secondary tailoring gap too small");
   1249                                     }
   1250                                     sIsTailored = true;
   1251                                 }
   1252                                 s = (int)secondaries.nextWeight();
   1253                                 assert(s != 0xffffffff);
   1254                             } else {
   1255                                 s = weight16FromNode(node);
   1256                                 sIsTailored = false;
   1257                                 if(DEBUG) {
   1258                                     System.out.printf("  sec       %x\n", alignWeightRight(s));
   1259                                 }
   1260                             }
   1261                         } else /* Collator.PRIMARY */ {
   1262                             assert(isTailoredNode(node));
   1263                             if(DEBUG) {
   1264                                 System.out.print("pri+            ");
   1265                             }
   1266                             if(!pIsTailored) {
   1267                                 // First tailored primary node in this list.
   1268                                 int pCount = countTailoredNodes(nodesArray, nextIndex,
   1269                                                                     Collator.PRIMARY) + 1;
   1270                                 boolean isCompressible = baseData.isCompressiblePrimary(p);
   1271                                 long pLimit =
   1272                                     rootElements.getPrimaryAfter(p, pIndex, isCompressible);
   1273                                 primaries.initForPrimary(isCompressible);
   1274                                 if(!primaries.allocWeights(p, pLimit, pCount)) {
   1275                                     // C++ U_BUFFER_OVERFLOW_ERROR  // TODO: introduce a more specific UErrorCode?
   1276                                     throw new UnsupportedOperationException("primary tailoring gap too small");
   1277                                 }
   1278                                 pIsTailored = true;
   1279                             }
   1280                             p = primaries.nextWeight();
   1281                             assert(p != 0xffffffffL);
   1282                             s = Collation.COMMON_WEIGHT16;
   1283                             sIsTailored = false;
   1284                         }
   1285                         t = s == 0 ? 0 : Collation.COMMON_WEIGHT16;
   1286                         tIsTailored = false;
   1287                     }
   1288                     q = 0;
   1289                 }
   1290                 if(isTailoredNode(node)) {
   1291                     nodesArray[i] = Collation.makeCE(p, s, t, q);
   1292                     if(DEBUG) {
   1293                         System.out.printf("%016x\n", nodesArray[i]);
   1294                     }
   1295                 }
   1296             }
   1297         }
   1298     }
   1299 
   1300     /**
   1301      * Counts the tailored nodes of the given strength up to the next node
   1302      * which is either stronger or has an explicit weight of this strength.
   1303      */
   1304     private static int countTailoredNodes(long[] nodesArray, int i, int strength) {
   1305         int count = 0;
   1306         for(;;) {
   1307             if(i == 0) { break; }
   1308             long node = nodesArray[i];
   1309             if(strengthFromNode(node) < strength) { break; }
   1310             if(strengthFromNode(node) == strength) {
   1311                 if(isTailoredNode(node)) {
   1312                     ++count;
   1313                 } else {
   1314                     break;
   1315                 }
   1316             }
   1317             i = nextIndexFromNode(node);
   1318         }
   1319         return count;
   1320     }
   1321 
   1322     private static final class CEFinalizer implements CollationDataBuilder.CEModifier {
   1323         CEFinalizer(long[] ces) {
   1324             finalCEs = ces;
   1325         }
   1326         @Override
   1327         public long modifyCE32(int ce32) {
   1328             assert(!Collation.isSpecialCE32(ce32));
   1329             if(CollationBuilder.isTempCE32(ce32)) {
   1330                 // retain case bits
   1331                 return finalCEs[CollationBuilder.indexFromTempCE32(ce32)] | ((ce32 & 0xc0) << 8);
   1332             } else {
   1333                 return Collation.NO_CE;
   1334             }
   1335         }
   1336         @Override
   1337         public long modifyCE(long ce) {
   1338             if(CollationBuilder.isTempCE(ce)) {
   1339                 // retain case bits
   1340                 return finalCEs[CollationBuilder.indexFromTempCE(ce)] | (ce & 0xc000);
   1341             } else {
   1342                 return Collation.NO_CE;
   1343             }
   1344         }
   1345 
   1346         private long[] finalCEs;
   1347     };
   1348 
   1349     /** Replaces temporary CEs with the final CEs they point to. */
   1350     private void finalizeCEs() {
   1351         CollationDataBuilder newBuilder = new CollationDataBuilder();
   1352         newBuilder.initForTailoring(baseData);
   1353         CEFinalizer finalizer = new CEFinalizer(nodes.getBuffer());
   1354         newBuilder.copyFrom(dataBuilder, finalizer);
   1355         dataBuilder = newBuilder;
   1356     }
   1357 
   1358     /**
   1359      * Encodes "temporary CE" data into a CE that fits into the CE32 data structure,
   1360      * with 2-byte primary, 1-byte secondary and 6-bit tertiary,
   1361      * with valid CE byte values.
   1362      *
   1363      * The index must not exceed 20 bits (0xfffff).
   1364      * The strength must fit into 2 bits (Collator.PRIMARY..Collator.QUATERNARY).
   1365      *
   1366      * Temporary CEs are distinguished from real CEs by their use of
   1367      * secondary weights 06..45 which are otherwise reserved for compressed sort keys.
   1368      *
   1369      * The case bits are unused and available.
   1370      */
   1371     private static long tempCEFromIndexAndStrength(int index, int strength) {
   1372         return
   1373             // CE byte offsets, to ensure valid CE bytes, and case bits 11
   1374             0x4040000006002000L +
   1375             // index bits 19..13 -> primary byte 1 = CE bits 63..56 (byte values 40..BF)
   1376             ((long)(index & 0xfe000) << 43) +
   1377             // index bits 12..6 -> primary byte 2 = CE bits 55..48 (byte values 40..BF)
   1378             ((long)(index & 0x1fc0) << 42) +
   1379             // index bits 5..0 -> secondary byte 1 = CE bits 31..24 (byte values 06..45)
   1380             ((index & 0x3f) << 24) +
   1381             // strength bits 1..0 -> tertiary byte 1 = CE bits 13..8 (byte values 20..23)
   1382             (strength << 8);
   1383     }
   1384     private static int indexFromTempCE(long tempCE) {
   1385         tempCE -= 0x4040000006002000L;
   1386         return
   1387             ((int)(tempCE >> 43) & 0xfe000) |
   1388             ((int)(tempCE >> 42) & 0x1fc0) |
   1389             ((int)(tempCE >> 24) & 0x3f);
   1390     }
   1391     private static int strengthFromTempCE(long tempCE) {
   1392         return ((int)tempCE >> 8) & 3;
   1393     }
   1394     private static boolean isTempCE(long ce) {
   1395         int sec = (int)ce >>> 24;
   1396         return 6 <= sec && sec <= 0x45;
   1397     }
   1398 
   1399     private static int indexFromTempCE32(int tempCE32) {
   1400         tempCE32 -= 0x40400620;
   1401         return
   1402             ((tempCE32 >> 11) & 0xfe000) |
   1403             ((tempCE32 >> 10) & 0x1fc0) |
   1404             ((tempCE32 >> 8) & 0x3f);
   1405     }
   1406     private static boolean isTempCE32(int ce32) {
   1407         return
   1408             (ce32 & 0xff) >= 2 &&  // not a long-primary/long-secondary CE32
   1409             6 <= ((ce32 >> 8) & 0xff) && ((ce32 >> 8) & 0xff) <= 0x45;
   1410     }
   1411 
   1412     private static int ceStrength(long ce) {
   1413         return
   1414             isTempCE(ce) ? strengthFromTempCE(ce) :
   1415             (ce & 0xff00000000000000L) != 0 ? Collator.PRIMARY :
   1416             ((int)ce & 0xff000000) != 0 ? Collator.SECONDARY :
   1417             ce != 0 ? Collator.TERTIARY :
   1418             Collator.IDENTICAL;
   1419     }
   1420 
   1421     /** At most 1M nodes, limited by the 20 bits in node bit fields. */
   1422     private static final int MAX_INDEX = 0xfffff;
   1423     /**
   1424      * Node bit 6 is set on a primary node if there are nodes
   1425      * with secondary values below the common secondary weight (05).
   1426      */
   1427     private static final int HAS_BEFORE2 = 0x40;
   1428     /**
   1429      * Node bit 5 is set on a primary or secondary node if there are nodes
   1430      * with tertiary values below the common tertiary weight (05).
   1431      */
   1432     private static final int HAS_BEFORE3 = 0x20;
   1433     /**
   1434      * Node bit 3 distinguishes a tailored node, which has no weight value,
   1435      * from a node with an explicit (root or default) weight.
   1436      */
   1437     private static final int IS_TAILORED = 8;
   1438 
   1439     private static long nodeFromWeight32(long weight32) {
   1440         return weight32 << 32;
   1441     }
   1442     private static long nodeFromWeight16(int weight16) {
   1443         return (long)weight16 << 48;
   1444     }
   1445     private static long nodeFromPreviousIndex(int previous) {
   1446         return (long)previous << 28;
   1447     }
   1448     private static long nodeFromNextIndex(int next) {
   1449         return next << 8;
   1450     }
   1451     private static long nodeFromStrength(int strength) {
   1452         return strength;
   1453     }
   1454 
   1455     private static long weight32FromNode(long node) {
   1456         return node >>> 32;
   1457     }
   1458     private static int weight16FromNode(long node) {
   1459         return (int)(node >> 48) & 0xffff;
   1460     }
   1461     private static int previousIndexFromNode(long node) {
   1462         return (int)(node >> 28) & MAX_INDEX;
   1463     }
   1464     private static int nextIndexFromNode(long node) {
   1465         return ((int)node >> 8) & MAX_INDEX;
   1466     }
   1467     private static int strengthFromNode(long node) {
   1468         return (int)node & 3;
   1469     }
   1470 
   1471     private static boolean nodeHasBefore2(long node) {
   1472         return (node & HAS_BEFORE2) != 0;
   1473     }
   1474     private static boolean nodeHasBefore3(long node) {
   1475         return (node & HAS_BEFORE3) != 0;
   1476     }
   1477     private static boolean nodeHasAnyBefore(long node) {
   1478         return (node & (HAS_BEFORE2 | HAS_BEFORE3)) != 0;
   1479     }
   1480     private static boolean isTailoredNode(long node) {
   1481         return (node & IS_TAILORED) != 0;
   1482     }
   1483 
   1484     private static long changeNodePreviousIndex(long node, int previous) {
   1485         return (node & 0xffff00000fffffffL) | nodeFromPreviousIndex(previous);
   1486     }
   1487     private static long changeNodeNextIndex(long node, int next) {
   1488         return (node & 0xfffffffff00000ffL) | nodeFromNextIndex(next);
   1489     }
   1490 
   1491     private Normalizer2 nfd, fcd;
   1492     private Normalizer2Impl nfcImpl;
   1493 
   1494     private CollationTailoring base;
   1495     private CollationData baseData;
   1496     private CollationRootElements rootElements;
   1497     private long variableTop;
   1498 
   1499     private CollationDataBuilder dataBuilder;
   1500     private boolean fastLatinEnabled;
   1501     private UnicodeSet optimizeSet = new UnicodeSet();
   1502 
   1503     private long[] ces = new long[Collation.MAX_EXPANSION_LENGTH];
   1504     private int cesLength;
   1505 
   1506     /**
   1507      * Indexes of nodes with root primary weights, sorted by primary.
   1508      * Compact form of a TreeMap from root primary to node index.
   1509      *
   1510      * This is a performance optimization for finding reset positions.
   1511      * Without this, we would have to search through the entire nodes list.
   1512      * It also allows storing root primary weights in list head nodes,
   1513      * without previous index, leaving room in root primary nodes for 32-bit primary weights.
   1514      */
   1515     private UVector32 rootPrimaryIndexes;
   1516     /**
   1517      * Data structure for assigning tailored weights and CEs.
   1518      * Doubly-linked lists of nodes in mostly collation order.
   1519      * Each list starts with a root primary node and ends with a nextIndex of 0.
   1520      *
   1521      * When there are any nodes in the list, then there is always a root primary node at index 0.
   1522      * This allows some code not to have to check explicitly for nextIndex==0.
   1523      *
   1524      * Root primary nodes have 32-bit weights but do not have previous indexes.
   1525      * All other nodes have at most 16-bit weights and do have previous indexes.
   1526      *
   1527      * Nodes with explicit weights store root collator weights,
   1528      * or default weak weights (e.g., secondary 05) for stronger nodes.
   1529      * "Tailored" nodes, with the IS_TAILORED bit set,
   1530      * do not store explicit weights but rather
   1531      * create a difference of a certain strength from the preceding node.
   1532      *
   1533      * A root node is followed by either
   1534      * - a root/default node of the same strength, or
   1535      * - a root/default node of the next-weaker strength, or
   1536      * - a tailored node of the same strength.
   1537      *
   1538      * A node of a given strength normally implies "common" weights on weaker levels.
   1539      *
   1540      * A node with HAS_BEFORE2 must be immediately followed by
   1541      * a secondary node with an explicit below-common weight, then a secondary tailored node,
   1542      * and later an explicit common-secondary node.
   1543      * The below-common weight can be a root weight,
   1544      * or it can be BEFORE_WEIGHT16 for tailoring before an implied common weight
   1545      * or before the lowest root weight.
   1546      * (&[before 2] resets to an explicit secondary node so that
   1547      * the following addRelation(secondary) tailors right after that.
   1548      * If we did not have this node and instead were to reset on the primary node,
   1549      * then addRelation(secondary) would skip forward to the the COMMON_WEIGHT16 node.)
   1550      *
   1551      * If the flag is not set, then there are no explicit secondary nodes
   1552      * with the common or lower weights.
   1553      *
   1554      * Same for HAS_BEFORE3 for tertiary nodes and weights.
   1555      * A node must not have both flags set.
   1556      *
   1557      * Tailored CEs are initially represented in a CollationDataBuilder as temporary CEs
   1558      * which point to stable indexes in this list,
   1559      * and temporary CEs stored in a CollationDataBuilder only point to tailored nodes.
   1560      *
   1561      * A temporary CE in the ces[] array may point to a non-tailored reset-before-position node,
   1562      * until the next relation is added.
   1563      *
   1564      * At the end, the tailored weights are allocated as necessary,
   1565      * then the tailored nodes are replaced with final CEs,
   1566      * and the CollationData is rewritten by replacing temporary CEs with final ones.
   1567      *
   1568      * We cannot simply insert new nodes in the middle of the array
   1569      * because that would invalidate the indexes stored in existing temporary CEs.
   1570      * We need to use a linked graph with stable indexes to existing nodes.
   1571      * A doubly-linked list seems easiest to maintain.
   1572      *
   1573      * Each node is stored as an long, with its fields stored as bit fields.
   1574      *
   1575      * Root primary node:
   1576      * - primary weight: 32 bits 63..32
   1577      * - reserved/unused/zero: 4 bits 31..28
   1578      *
   1579      * Weaker root nodes & tailored nodes:
   1580      * - a weight: 16 bits 63..48
   1581      *   + a root or default weight for a non-tailored node
   1582      *   + unused/zero for a tailored node
   1583      * - index to the previous node: 20 bits 47..28
   1584      *
   1585      * All types of nodes:
   1586      * - index to the next node: 20 bits 27..8
   1587      *   + nextIndex=0 in last node per root-primary list
   1588      * - reserved/unused/zero bits: bits 7, 4, 2
   1589      * - HAS_BEFORE2: bit 6
   1590      * - HAS_BEFORE3: bit 5
   1591      * - IS_TAILORED: bit 3
   1592      * - the difference strength (primary/secondary/tertiary/quaternary): 2 bits 1..0
   1593      *
   1594      * We could allocate structs with pointers, but we would have to store them
   1595      * in a pointer list so that they can be indexed from temporary CEs,
   1596      * and they would require more memory allocations.
   1597      */
   1598     private UVector64 nodes;
   1599 }
   1600