Home | History | Annotate | Download | only in ip
      1 /*
      2  * iplink_can.c	CAN device support
      3  *
      4  *		This program is free software; you can redistribute it and/or
      5  *		modify it under the terms of the GNU General Public License
      6  *		as published by the Free Software Foundation; either version
      7  *		2 of the License, or (at your option) any later version.
      8  *
      9  * Authors:	Wolfgang Grandegger <wg (at) grandegger.com>
     10  */
     11 
     12 #include <stdio.h>
     13 #include <stdlib.h>
     14 #include <string.h>
     15 
     16 #include <linux/can/netlink.h>
     17 
     18 #include "rt_names.h"
     19 #include "utils.h"
     20 #include "ip_common.h"
     21 
     22 static void print_usage(FILE *f)
     23 {
     24 	fprintf(f,
     25 		"Usage: ip link set DEVICE type can\n"
     26 		"\t[ bitrate BITRATE [ sample-point SAMPLE-POINT] ] |\n"
     27 		"\t[ tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1\n \t  phase-seg2 PHASE-SEG2 [ sjw SJW ] ]\n"
     28 		"\n"
     29 		"\t[ dbitrate BITRATE [ dsample-point SAMPLE-POINT] ] |\n"
     30 		"\t[ dtq TQ dprop-seg PROP_SEG dphase-seg1 PHASE-SEG1\n \t  dphase-seg2 PHASE-SEG2 [ dsjw SJW ] ]\n"
     31 		"\n"
     32 		"\t[ loopback { on | off } ]\n"
     33 		"\t[ listen-only { on | off } ]\n"
     34 		"\t[ triple-sampling { on | off } ]\n"
     35 		"\t[ one-shot { on | off } ]\n"
     36 		"\t[ berr-reporting { on | off } ]\n"
     37 		"\t[ fd { on | off } ]\n"
     38 		"\t[ fd-non-iso { on | off } ]\n"
     39 		"\t[ presume-ack { on | off } ]\n"
     40 		"\n"
     41 		"\t[ restart-ms TIME-MS ]\n"
     42 		"\t[ restart ]\n"
     43 		"\n"
     44 		"\t[ termination { 0..65535 } ]\n"
     45 		"\n"
     46 		"\tWhere: BITRATE	:= { 1..1000000 }\n"
     47 		"\t	  SAMPLE-POINT	:= { 0.000..0.999 }\n"
     48 		"\t	  TQ		:= { NUMBER }\n"
     49 		"\t	  PROP-SEG	:= { 1..8 }\n"
     50 		"\t	  PHASE-SEG1	:= { 1..8 }\n"
     51 		"\t	  PHASE-SEG2	:= { 1..8 }\n"
     52 		"\t	  SJW		:= { 1..4 }\n"
     53 		"\t	  RESTART-MS	:= { 0 | NUMBER }\n"
     54 		);
     55 }
     56 
     57 static void usage(void)
     58 {
     59 	print_usage(stderr);
     60 }
     61 
     62 static int get_float(float *val, const char *arg)
     63 {
     64 	float res;
     65 	char *ptr;
     66 
     67 	if (!arg || !*arg)
     68 		return -1;
     69 	res = strtof(arg, &ptr);
     70 	if (!ptr || ptr == arg || *ptr)
     71 		return -1;
     72 	*val = res;
     73 	return 0;
     74 }
     75 
     76 static void set_ctrlmode(char *name, char *arg,
     77 			 struct can_ctrlmode *cm, __u32 flags)
     78 {
     79 	if (strcmp(arg, "on") == 0) {
     80 		cm->flags |= flags;
     81 	} else if (strcmp(arg, "off") != 0) {
     82 		fprintf(stderr,
     83 			"Error: argument of \"%s\" must be \"on\" or \"off\", not \"%s\"\n",
     84 			name, arg);
     85 		exit(-1);
     86 	}
     87 	cm->mask |= flags;
     88 }
     89 
     90 static void print_ctrlmode(FILE *f, __u32 cm)
     91 {
     92 	open_json_array(PRINT_ANY, is_json_context() ? "ctrlmode" : "<");
     93 #define _PF(cmflag, cmname)						\
     94 	if (cm & cmflag) {						\
     95 		cm &= ~cmflag;						\
     96 		print_string(PRINT_ANY, NULL, cm ? "%s," : "%s", cmname); \
     97 	}
     98 	_PF(CAN_CTRLMODE_LOOPBACK, "LOOPBACK");
     99 	_PF(CAN_CTRLMODE_LISTENONLY, "LISTEN-ONLY");
    100 	_PF(CAN_CTRLMODE_3_SAMPLES, "TRIPLE-SAMPLING");
    101 	_PF(CAN_CTRLMODE_ONE_SHOT, "ONE-SHOT");
    102 	_PF(CAN_CTRLMODE_BERR_REPORTING, "BERR-REPORTING");
    103 	_PF(CAN_CTRLMODE_FD, "FD");
    104 	_PF(CAN_CTRLMODE_FD_NON_ISO, "FD-NON-ISO");
    105 	_PF(CAN_CTRLMODE_PRESUME_ACK, "PRESUME-ACK");
    106 #undef _PF
    107 	if (cm)
    108 		print_hex(PRINT_ANY, NULL, "%x", cm);
    109 	close_json_array(PRINT_ANY, "> ");
    110 }
    111 
    112 static int can_parse_opt(struct link_util *lu, int argc, char **argv,
    113 			 struct nlmsghdr *n)
    114 {
    115 	struct can_bittiming bt = {}, dbt = {};
    116 	struct can_ctrlmode cm = {0, 0};
    117 
    118 	while (argc > 0) {
    119 		if (matches(*argv, "bitrate") == 0) {
    120 			NEXT_ARG();
    121 			if (get_u32(&bt.bitrate, *argv, 0))
    122 				invarg("invalid \"bitrate\" value\n", *argv);
    123 		} else if (matches(*argv, "sample-point") == 0) {
    124 			float sp;
    125 
    126 			NEXT_ARG();
    127 			if (get_float(&sp, *argv))
    128 				invarg("invalid \"sample-point\" value\n",
    129 				       *argv);
    130 			bt.sample_point = (__u32)(sp * 1000);
    131 		} else if (matches(*argv, "tq") == 0) {
    132 			NEXT_ARG();
    133 			if (get_u32(&bt.tq, *argv, 0))
    134 				invarg("invalid \"tq\" value\n", *argv);
    135 		} else if (matches(*argv, "prop-seg") == 0) {
    136 			NEXT_ARG();
    137 			if (get_u32(&bt.prop_seg, *argv, 0))
    138 				invarg("invalid \"prop-seg\" value\n", *argv);
    139 		} else if (matches(*argv, "phase-seg1") == 0) {
    140 			NEXT_ARG();
    141 			if (get_u32(&bt.phase_seg1, *argv, 0))
    142 				invarg("invalid \"phase-seg1\" value\n", *argv);
    143 		} else if (matches(*argv, "phase-seg2") == 0) {
    144 			NEXT_ARG();
    145 			if (get_u32(&bt.phase_seg2, *argv, 0))
    146 				invarg("invalid \"phase-seg2\" value\n", *argv);
    147 		} else if (matches(*argv, "sjw") == 0) {
    148 			NEXT_ARG();
    149 			if (get_u32(&bt.sjw, *argv, 0))
    150 				invarg("invalid \"sjw\" value\n", *argv);
    151 		} else if (matches(*argv, "dbitrate") == 0) {
    152 			NEXT_ARG();
    153 			if (get_u32(&dbt.bitrate, *argv, 0))
    154 				invarg("invalid \"dbitrate\" value\n", *argv);
    155 		} else if (matches(*argv, "dsample-point") == 0) {
    156 			float sp;
    157 
    158 			NEXT_ARG();
    159 			if (get_float(&sp, *argv))
    160 				invarg("invalid \"dsample-point\" value\n", *argv);
    161 			dbt.sample_point = (__u32)(sp * 1000);
    162 		} else if (matches(*argv, "dtq") == 0) {
    163 			NEXT_ARG();
    164 			if (get_u32(&dbt.tq, *argv, 0))
    165 				invarg("invalid \"dtq\" value\n", *argv);
    166 		} else if (matches(*argv, "dprop-seg") == 0) {
    167 			NEXT_ARG();
    168 			if (get_u32(&dbt.prop_seg, *argv, 0))
    169 				invarg("invalid \"dprop-seg\" value\n", *argv);
    170 		} else if (matches(*argv, "dphase-seg1") == 0) {
    171 			NEXT_ARG();
    172 			if (get_u32(&dbt.phase_seg1, *argv, 0))
    173 				invarg("invalid \"dphase-seg1\" value\n", *argv);
    174 		} else if (matches(*argv, "dphase-seg2") == 0) {
    175 			NEXT_ARG();
    176 			if (get_u32(&dbt.phase_seg2, *argv, 0))
    177 				invarg("invalid \"dphase-seg2\" value\n", *argv);
    178 		} else if (matches(*argv, "dsjw") == 0) {
    179 			NEXT_ARG();
    180 			if (get_u32(&dbt.sjw, *argv, 0))
    181 				invarg("invalid \"dsjw\" value\n", *argv);
    182 		} else if (matches(*argv, "loopback") == 0) {
    183 			NEXT_ARG();
    184 			set_ctrlmode("loopback", *argv, &cm,
    185 				     CAN_CTRLMODE_LOOPBACK);
    186 		} else if (matches(*argv, "listen-only") == 0) {
    187 			NEXT_ARG();
    188 			set_ctrlmode("listen-only", *argv, &cm,
    189 				     CAN_CTRLMODE_LISTENONLY);
    190 		} else if (matches(*argv, "triple-sampling") == 0) {
    191 			NEXT_ARG();
    192 			set_ctrlmode("triple-sampling", *argv, &cm,
    193 				     CAN_CTRLMODE_3_SAMPLES);
    194 		} else if (matches(*argv, "one-shot") == 0) {
    195 			NEXT_ARG();
    196 			set_ctrlmode("one-shot", *argv, &cm,
    197 				     CAN_CTRLMODE_ONE_SHOT);
    198 		} else if (matches(*argv, "berr-reporting") == 0) {
    199 			NEXT_ARG();
    200 			set_ctrlmode("berr-reporting", *argv, &cm,
    201 				     CAN_CTRLMODE_BERR_REPORTING);
    202 		} else if (matches(*argv, "fd") == 0) {
    203 			NEXT_ARG();
    204 			set_ctrlmode("fd", *argv, &cm,
    205 				     CAN_CTRLMODE_FD);
    206 		} else if (matches(*argv, "fd-non-iso") == 0) {
    207 			NEXT_ARG();
    208 			set_ctrlmode("fd-non-iso", *argv, &cm,
    209 				     CAN_CTRLMODE_FD_NON_ISO);
    210 		} else if (matches(*argv, "presume-ack") == 0) {
    211 			NEXT_ARG();
    212 			set_ctrlmode("presume-ack", *argv, &cm,
    213 				     CAN_CTRLMODE_PRESUME_ACK);
    214 		} else if (matches(*argv, "restart") == 0) {
    215 			__u32 val = 1;
    216 
    217 			addattr32(n, 1024, IFLA_CAN_RESTART, val);
    218 		} else if (matches(*argv, "restart-ms") == 0) {
    219 			__u32 val;
    220 
    221 			NEXT_ARG();
    222 			if (get_u32(&val, *argv, 0))
    223 				invarg("invalid \"restart-ms\" value\n", *argv);
    224 			addattr32(n, 1024, IFLA_CAN_RESTART_MS, val);
    225 		} else if (matches(*argv, "termination") == 0) {
    226 			__u16 val;
    227 
    228 			NEXT_ARG();
    229 			if (get_u16(&val, *argv, 0))
    230 				invarg("invalid \"termination\" value\n",
    231 				       *argv);
    232 			addattr16(n, 1024, IFLA_CAN_TERMINATION, val);
    233 		} else if (matches(*argv, "help") == 0) {
    234 			usage();
    235 			return -1;
    236 		} else {
    237 			fprintf(stderr, "can: unknown option \"%s\"\n", *argv);
    238 			usage();
    239 			return -1;
    240 		}
    241 		argc--, argv++;
    242 	}
    243 
    244 	if (bt.bitrate || bt.tq)
    245 		addattr_l(n, 1024, IFLA_CAN_BITTIMING, &bt, sizeof(bt));
    246 	if (dbt.bitrate || dbt.tq)
    247 		addattr_l(n, 1024, IFLA_CAN_DATA_BITTIMING, &dbt, sizeof(dbt));
    248 	if (cm.mask)
    249 		addattr_l(n, 1024, IFLA_CAN_CTRLMODE, &cm, sizeof(cm));
    250 
    251 	return 0;
    252 }
    253 
    254 static const char *can_state_names[CAN_STATE_MAX] = {
    255 	[CAN_STATE_ERROR_ACTIVE] = "ERROR-ACTIVE",
    256 	[CAN_STATE_ERROR_WARNING] = "ERROR-WARNING",
    257 	[CAN_STATE_ERROR_PASSIVE] = "ERROR-PASSIVE",
    258 	[CAN_STATE_BUS_OFF] = "BUS-OFF",
    259 	[CAN_STATE_STOPPED] = "STOPPED",
    260 	[CAN_STATE_SLEEPING] = "SLEEPING"
    261 };
    262 
    263 static void can_print_json_timing_min_max(const char *attr, int min, int max)
    264 {
    265 	open_json_object(attr);
    266 	print_int(PRINT_JSON, "min", NULL, min);
    267 	print_int(PRINT_JSON, "max", NULL, max);
    268 	close_json_object();
    269 }
    270 
    271 static void can_print_opt(struct link_util *lu, FILE *f, struct rtattr *tb[])
    272 {
    273 	if (!tb)
    274 		return;
    275 
    276 	if (tb[IFLA_CAN_CTRLMODE]) {
    277 		struct can_ctrlmode *cm = RTA_DATA(tb[IFLA_CAN_CTRLMODE]);
    278 
    279 		if (cm->flags)
    280 			print_ctrlmode(f, cm->flags);
    281 	}
    282 
    283 	if (tb[IFLA_CAN_STATE]) {
    284 		uint32_t state = rta_getattr_u32(tb[IFLA_CAN_STATE]);
    285 
    286 		fprintf(f, "state %s ", state < CAN_STATE_MAX ?
    287 			can_state_names[state] : "UNKNOWN");
    288 	}
    289 
    290 	if (tb[IFLA_CAN_BERR_COUNTER]) {
    291 		struct can_berr_counter *bc =
    292 			RTA_DATA(tb[IFLA_CAN_BERR_COUNTER]);
    293 
    294 		if (is_json_context()) {
    295 			open_json_object("berr_counter");
    296 			print_int(PRINT_JSON, "tx", NULL, bc->txerr);
    297 			print_int(PRINT_JSON, "rx", NULL, bc->rxerr);
    298 			close_json_object();
    299 		} else {
    300 			fprintf(f, "(berr-counter tx %d rx %d) ",
    301 				bc->txerr, bc->rxerr);
    302 		}
    303 	}
    304 
    305 	if (tb[IFLA_CAN_RESTART_MS]) {
    306 		__u32 *restart_ms = RTA_DATA(tb[IFLA_CAN_RESTART_MS]);
    307 
    308 		print_int(PRINT_ANY,
    309 			  "restart_ms",
    310 			  "restart-ms %d ",
    311 			  *restart_ms);
    312 	}
    313 
    314 	/* bittiming is irrelevant if fixed bitrate is defined */
    315 	if (tb[IFLA_CAN_BITTIMING] && !tb[IFLA_CAN_BITRATE_CONST]) {
    316 		struct can_bittiming *bt = RTA_DATA(tb[IFLA_CAN_BITTIMING]);
    317 
    318 		if (is_json_context()) {
    319 			open_json_object("bittiming");
    320 			print_int(PRINT_ANY, "bitrate", NULL, bt->bitrate);
    321 			jsonw_float_field_fmt(get_json_writer(),
    322 					      "sample_point", "%.3f",
    323 					      (float) bt->sample_point / 1000.);
    324 			print_int(PRINT_ANY, "tq", NULL, bt->tq);
    325 			print_int(PRINT_ANY, "prop_seg", NULL, bt->prop_seg);
    326 			print_int(PRINT_ANY, "phase_seg1",
    327 				  NULL, bt->phase_seg1);
    328 			print_int(PRINT_ANY, "phase_seg2",
    329 				  NULL, bt->phase_seg2);
    330 			print_int(PRINT_ANY, "sjw", NULL, bt->sjw);
    331 			close_json_object();
    332 		} else {
    333 			fprintf(f, "\n	  bitrate %d sample-point %.3f ",
    334 				bt->bitrate, (float) bt->sample_point / 1000.);
    335 			fprintf(f,
    336 				"\n	  tq %d prop-seg %d phase-seg1 %d phase-seg2 %d sjw %d",
    337 				bt->tq, bt->prop_seg,
    338 				bt->phase_seg1, bt->phase_seg2,
    339 				bt->sjw);
    340 		}
    341 	}
    342 
    343 	/* bittiming const is irrelevant if fixed bitrate is defined */
    344 	if (tb[IFLA_CAN_BITTIMING_CONST] && !tb[IFLA_CAN_BITRATE_CONST]) {
    345 		struct can_bittiming_const *btc =
    346 			RTA_DATA(tb[IFLA_CAN_BITTIMING_CONST]);
    347 
    348 		if (is_json_context()) {
    349 			open_json_object("bittiming_const");
    350 			print_string(PRINT_JSON, "name", NULL, btc->name);
    351 			can_print_json_timing_min_max("tseg1",
    352 						      btc->tseg1_min,
    353 						      btc->tseg1_max);
    354 			can_print_json_timing_min_max("tseg2",
    355 						      btc->tseg2_min,
    356 						      btc->tseg2_max);
    357 			can_print_json_timing_min_max("sjw", 1, btc->sjw_max);
    358 			can_print_json_timing_min_max("brp",
    359 						      btc->brp_min,
    360 						      btc->brp_max);
    361 			print_int(PRINT_JSON, "brp_inc", NULL, btc->brp_inc);
    362 			close_json_object();
    363 		} else {
    364 			fprintf(f, "\n	  %s: tseg1 %d..%d tseg2 %d..%d "
    365 				"sjw 1..%d brp %d..%d brp-inc %d",
    366 				btc->name, btc->tseg1_min, btc->tseg1_max,
    367 				btc->tseg2_min, btc->tseg2_max, btc->sjw_max,
    368 				btc->brp_min, btc->brp_max, btc->brp_inc);
    369 		}
    370 	}
    371 
    372 	if (tb[IFLA_CAN_BITRATE_CONST]) {
    373 		__u32 *bitrate_const = RTA_DATA(tb[IFLA_CAN_BITRATE_CONST]);
    374 		int bitrate_cnt = RTA_PAYLOAD(tb[IFLA_CAN_BITRATE_CONST]) /
    375 			sizeof(*bitrate_const);
    376 		int i;
    377 		__u32 bitrate = 0;
    378 
    379 		if (tb[IFLA_CAN_BITTIMING]) {
    380 			struct can_bittiming *bt =
    381 				RTA_DATA(tb[IFLA_CAN_BITTIMING]);
    382 			bitrate = bt->bitrate;
    383 		}
    384 
    385 		if (is_json_context()) {
    386 			print_uint(PRINT_JSON,
    387 				   "bittiming_bitrate",
    388 				   NULL, bitrate);
    389 			open_json_array(PRINT_JSON, "bitrate_const");
    390 			for (i = 0; i < bitrate_cnt; ++i)
    391 				print_uint(PRINT_JSON, NULL, NULL,
    392 					   bitrate_const[i]);
    393 			close_json_array(PRINT_JSON, NULL);
    394 		} else {
    395 			fprintf(f, "\n	  bitrate %u", bitrate);
    396 			fprintf(f, "\n	     [");
    397 
    398 			for (i = 0; i < bitrate_cnt - 1; ++i) {
    399 				/* This will keep lines below 80 signs */
    400 				if (!(i % 6) && i)
    401 					fprintf(f, "\n	      ");
    402 
    403 				fprintf(f, "%8u, ", bitrate_const[i]);
    404 			}
    405 
    406 			if (!(i % 6) && i)
    407 				fprintf(f, "\n	      ");
    408 			fprintf(f, "%8u ]", bitrate_const[i]);
    409 		}
    410 	}
    411 
    412 	/* data bittiming is irrelevant if fixed bitrate is defined */
    413 	if (tb[IFLA_CAN_DATA_BITTIMING] && !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
    414 		struct can_bittiming *dbt =
    415 			RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
    416 
    417 		if (is_json_context()) {
    418 			open_json_object("data_bittiming");
    419 			print_int(PRINT_JSON, "bitrate", NULL, dbt->bitrate);
    420 			jsonw_float_field_fmt(get_json_writer(),
    421 					      "sample_point",
    422 					      "%.3f",
    423 					      (float) dbt->sample_point / 1000.);
    424 			print_int(PRINT_JSON, "tq", NULL, dbt->tq);
    425 			print_int(PRINT_JSON, "prop_seg", NULL, dbt->prop_seg);
    426 			print_int(PRINT_JSON, "phase_seg1",
    427 				  NULL, dbt->phase_seg1);
    428 			print_int(PRINT_JSON, "phase_seg2",
    429 				  NULL, dbt->phase_seg2);
    430 			print_int(PRINT_JSON, "sjw", NULL, dbt->sjw);
    431 			close_json_object();
    432 		} else {
    433 			fprintf(f, "\n	  dbitrate %d dsample-point %.3f ",
    434 				dbt->bitrate,
    435 				(float) dbt->sample_point / 1000.);
    436 			fprintf(f, "\n	  dtq %d dprop-seg %d dphase-seg1 %d "
    437 				"dphase-seg2 %d dsjw %d",
    438 				dbt->tq, dbt->prop_seg, dbt->phase_seg1,
    439 				dbt->phase_seg2, dbt->sjw);
    440 		}
    441 	}
    442 
    443 	/* data bittiming const is irrelevant if fixed bitrate is defined */
    444 	if (tb[IFLA_CAN_DATA_BITTIMING_CONST] &&
    445 	    !tb[IFLA_CAN_DATA_BITRATE_CONST]) {
    446 		struct can_bittiming_const *dbtc =
    447 			RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING_CONST]);
    448 
    449 		if (is_json_context()) {
    450 			open_json_object("data_bittiming_const");
    451 			print_string(PRINT_JSON, "name", NULL, dbtc->name);
    452 			can_print_json_timing_min_max("tseg1",
    453 						      dbtc->tseg1_min,
    454 						      dbtc->tseg1_max);
    455 			can_print_json_timing_min_max("tseg2",
    456 						      dbtc->tseg2_min,
    457 						      dbtc->tseg2_max);
    458 			can_print_json_timing_min_max("sjw", 1, dbtc->sjw_max);
    459 			can_print_json_timing_min_max("brp",
    460 						      dbtc->brp_min,
    461 						      dbtc->brp_max);
    462 
    463 			print_int(PRINT_JSON, "brp_inc", NULL, dbtc->brp_inc);
    464 			close_json_object();
    465 		} else {
    466 			fprintf(f, "\n	  %s: dtseg1 %d..%d dtseg2 %d..%d "
    467 				"dsjw 1..%d dbrp %d..%d dbrp-inc %d",
    468 				dbtc->name, dbtc->tseg1_min, dbtc->tseg1_max,
    469 				dbtc->tseg2_min, dbtc->tseg2_max, dbtc->sjw_max,
    470 				dbtc->brp_min, dbtc->brp_max, dbtc->brp_inc);
    471 		}
    472 	}
    473 
    474 	if (tb[IFLA_CAN_DATA_BITRATE_CONST]) {
    475 		__u32 *dbitrate_const =
    476 			RTA_DATA(tb[IFLA_CAN_DATA_BITRATE_CONST]);
    477 		int dbitrate_cnt =
    478 			RTA_PAYLOAD(tb[IFLA_CAN_DATA_BITRATE_CONST]) /
    479 			sizeof(*dbitrate_const);
    480 		int i;
    481 		__u32 dbitrate = 0;
    482 
    483 		if (tb[IFLA_CAN_DATA_BITTIMING]) {
    484 			struct can_bittiming *dbt =
    485 				RTA_DATA(tb[IFLA_CAN_DATA_BITTIMING]);
    486 			dbitrate = dbt->bitrate;
    487 		}
    488 
    489 		if (is_json_context()) {
    490 			print_uint(PRINT_JSON, "data_bittiming_bitrate",
    491 				   NULL, dbitrate);
    492 			open_json_array(PRINT_JSON, "data_bitrate_const");
    493 			for (i = 0; i < dbitrate_cnt; ++i)
    494 				print_uint(PRINT_JSON, NULL, NULL,
    495 					   dbitrate_const[i]);
    496 			close_json_array(PRINT_JSON, NULL);
    497 		} else {
    498 			fprintf(f, "\n	  dbitrate %u", dbitrate);
    499 			fprintf(f, "\n	     [");
    500 
    501 			for (i = 0; i < dbitrate_cnt - 1; ++i) {
    502 				/* This will keep lines below 80 signs */
    503 				if (!(i % 6) && i)
    504 					fprintf(f, "\n	      ");
    505 
    506 				fprintf(f, "%8u, ", dbitrate_const[i]);
    507 			}
    508 
    509 			if (!(i % 6) && i)
    510 				fprintf(f, "\n	      ");
    511 			fprintf(f, "%8u ]", dbitrate_const[i]);
    512 		}
    513 	}
    514 
    515 	if (tb[IFLA_CAN_TERMINATION_CONST] && tb[IFLA_CAN_TERMINATION]) {
    516 		__u16 *trm = RTA_DATA(tb[IFLA_CAN_TERMINATION]);
    517 		__u16 *trm_const = RTA_DATA(tb[IFLA_CAN_TERMINATION_CONST]);
    518 		int trm_cnt = RTA_PAYLOAD(tb[IFLA_CAN_TERMINATION_CONST]) /
    519 			sizeof(*trm_const);
    520 		int i;
    521 
    522 		if (is_json_context()) {
    523 			print_hu(PRINT_JSON, "termination", NULL, *trm);
    524 			open_json_array(PRINT_JSON, "termination_const");
    525 			for (i = 0; i < trm_cnt; ++i)
    526 				print_hu(PRINT_JSON, NULL, NULL, trm_const[i]);
    527 			close_json_array(PRINT_JSON, NULL);
    528 		} else {
    529 			fprintf(f, "\n	  termination %hu [ ", *trm);
    530 
    531 			for (i = 0; i < trm_cnt - 1; ++i)
    532 				fprintf(f, "%hu, ", trm_const[i]);
    533 
    534 			fprintf(f, "%hu ]", trm_const[i]);
    535 		}
    536 	}
    537 
    538 	if (tb[IFLA_CAN_CLOCK]) {
    539 		struct can_clock *clock = RTA_DATA(tb[IFLA_CAN_CLOCK]);
    540 
    541 		print_int(PRINT_ANY,
    542 			  "clock",
    543 			  "\n	  clock %d",
    544 			  clock->freq);
    545 	}
    546 
    547 }
    548 
    549 static void can_print_xstats(struct link_util *lu,
    550 			     FILE *f, struct rtattr *xstats)
    551 {
    552 	struct can_device_stats *stats;
    553 
    554 	if (xstats && RTA_PAYLOAD(xstats) == sizeof(*stats)) {
    555 		stats = RTA_DATA(xstats);
    556 
    557 		if (is_json_context()) {
    558 			print_int(PRINT_JSON, "restarts",
    559 				  NULL, stats->restarts);
    560 			print_int(PRINT_JSON, "bus_error",
    561 				  NULL, stats->bus_error);
    562 			print_int(PRINT_JSON, "arbitration_lost",
    563 				  NULL, stats->arbitration_lost);
    564 			print_int(PRINT_JSON, "error_warning",
    565 				  NULL, stats->error_warning);
    566 			print_int(PRINT_JSON, "error_passive",
    567 				  NULL, stats->error_passive);
    568 			print_int(PRINT_JSON, "bus_off", NULL, stats->bus_off);
    569 		} else {
    570 			fprintf(f, "\n	  re-started bus-errors arbit-lost "
    571 				"error-warn error-pass bus-off");
    572 			fprintf(f, "\n	  %-10d %-10d %-10d %-10d %-10d %-10d",
    573 				stats->restarts, stats->bus_error,
    574 				stats->arbitration_lost, stats->error_warning,
    575 				stats->error_passive, stats->bus_off);
    576 		}
    577 	}
    578 }
    579 
    580 static void can_print_help(struct link_util *lu, int argc, char **argv,
    581 			   FILE *f)
    582 {
    583 	print_usage(f);
    584 }
    585 
    586 struct link_util can_link_util = {
    587 	.id		= "can",
    588 	.maxattr	= IFLA_CAN_MAX,
    589 	.parse_opt	= can_parse_opt,
    590 	.print_opt	= can_print_opt,
    591 	.print_xstats	= can_print_xstats,
    592 	.print_help	= can_print_help,
    593 };
    594