Home | History | Annotate | Download | only in linux
      1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
      2 /*
      3  *
      4  * Copyright (c) 2011, Microsoft Corporation.
      5  *
      6  * This program is free software; you can redistribute it and/or modify it
      7  * under the terms and conditions of the GNU General Public License,
      8  * version 2, as published by the Free Software Foundation.
      9  *
     10  * This program is distributed in the hope it will be useful, but WITHOUT
     11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
     12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
     13  * more details.
     14  *
     15  * You should have received a copy of the GNU General Public License along with
     16  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
     17  * Place - Suite 330, Boston, MA 02111-1307 USA.
     18  *
     19  * Authors:
     20  *   Haiyang Zhang <haiyangz (at) microsoft.com>
     21  *   Hank Janssen  <hjanssen (at) microsoft.com>
     22  *   K. Y. Srinivasan <kys (at) microsoft.com>
     23  *
     24  */
     25 
     26 #ifndef _UAPI_HYPERV_H
     27 #define _UAPI_HYPERV_H
     28 
     29 #include <linux/uuid.h>
     30 
     31 /*
     32  * Framework version for util services.
     33  */
     34 #define UTIL_FW_MINOR  0
     35 
     36 #define UTIL_WS2K8_FW_MAJOR  1
     37 #define UTIL_WS2K8_FW_VERSION     (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR)
     38 
     39 #define UTIL_FW_MAJOR  3
     40 #define UTIL_FW_VERSION     (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR)
     41 
     42 
     43 /*
     44  * Implementation of host controlled snapshot of the guest.
     45  */
     46 
     47 #define VSS_OP_REGISTER 128
     48 
     49 /*
     50   Daemon code with full handshake support.
     51  */
     52 #define VSS_OP_REGISTER1 129
     53 
     54 enum hv_vss_op {
     55 	VSS_OP_CREATE = 0,
     56 	VSS_OP_DELETE,
     57 	VSS_OP_HOT_BACKUP,
     58 	VSS_OP_GET_DM_INFO,
     59 	VSS_OP_BU_COMPLETE,
     60 	/*
     61 	 * Following operations are only supported with IC version >= 5.0
     62 	 */
     63 	VSS_OP_FREEZE, /* Freeze the file systems in the VM */
     64 	VSS_OP_THAW, /* Unfreeze the file systems */
     65 	VSS_OP_AUTO_RECOVER,
     66 	VSS_OP_COUNT /* Number of operations, must be last */
     67 };
     68 
     69 
     70 /*
     71  * Header for all VSS messages.
     72  */
     73 struct hv_vss_hdr {
     74 	__u8 operation;
     75 	__u8 reserved[7];
     76 } __attribute__((packed));
     77 
     78 
     79 /*
     80  * Flag values for the hv_vss_check_feature. Linux supports only
     81  * one value.
     82  */
     83 #define VSS_HBU_NO_AUTO_RECOVERY	0x00000005
     84 
     85 struct hv_vss_check_feature {
     86 	__u32 flags;
     87 } __attribute__((packed));
     88 
     89 struct hv_vss_check_dm_info {
     90 	__u32 flags;
     91 } __attribute__((packed));
     92 
     93 struct hv_vss_msg {
     94 	union {
     95 		struct hv_vss_hdr vss_hdr;
     96 		int error;
     97 	};
     98 	union {
     99 		struct hv_vss_check_feature vss_cf;
    100 		struct hv_vss_check_dm_info dm_info;
    101 	};
    102 } __attribute__((packed));
    103 
    104 /*
    105  * Implementation of a host to guest copy facility.
    106  */
    107 
    108 #define FCOPY_VERSION_0 0
    109 #define FCOPY_VERSION_1 1
    110 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1
    111 #define W_MAX_PATH 260
    112 
    113 enum hv_fcopy_op {
    114 	START_FILE_COPY = 0,
    115 	WRITE_TO_FILE,
    116 	COMPLETE_FCOPY,
    117 	CANCEL_FCOPY,
    118 };
    119 
    120 struct hv_fcopy_hdr {
    121 	__u32 operation;
    122 	uuid_le service_id0; /* currently unused */
    123 	uuid_le service_id1; /* currently unused */
    124 } __attribute__((packed));
    125 
    126 #define OVER_WRITE	0x1
    127 #define CREATE_PATH	0x2
    128 
    129 struct hv_start_fcopy {
    130 	struct hv_fcopy_hdr hdr;
    131 	__u16 file_name[W_MAX_PATH];
    132 	__u16 path_name[W_MAX_PATH];
    133 	__u32 copy_flags;
    134 	__u64 file_size;
    135 } __attribute__((packed));
    136 
    137 /*
    138  * The file is chunked into fragments.
    139  */
    140 #define DATA_FRAGMENT	(6 * 1024)
    141 
    142 struct hv_do_fcopy {
    143 	struct hv_fcopy_hdr hdr;
    144 	__u32   pad;
    145 	__u64	offset;
    146 	__u32	size;
    147 	__u8	data[DATA_FRAGMENT];
    148 } __attribute__((packed));
    149 
    150 /*
    151  * An implementation of HyperV key value pair (KVP) functionality for Linux.
    152  *
    153  *
    154  * Copyright (C) 2010, Novell, Inc.
    155  * Author : K. Y. Srinivasan <ksrinivasan (at) novell.com>
    156  *
    157  */
    158 
    159 /*
    160  * Maximum value size - used for both key names and value data, and includes
    161  * any applicable NULL terminators.
    162  *
    163  * Note:  This limit is somewhat arbitrary, but falls easily within what is
    164  * supported for all native guests (back to Win 2000) and what is reasonable
    165  * for the IC KVP exchange functionality.  Note that Windows Me/98/95 are
    166  * limited to 255 character key names.
    167  *
    168  * MSDN recommends not storing data values larger than 2048 bytes in the
    169  * registry.
    170  *
    171  * Note:  This value is used in defining the KVP exchange message - this value
    172  * cannot be modified without affecting the message size and compatibility.
    173  */
    174 
    175 /*
    176  * bytes, including any null terminators
    177  */
    178 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE          (2048)
    179 
    180 
    181 /*
    182  * Maximum key size - the registry limit for the length of an entry name
    183  * is 256 characters, including the null terminator
    184  */
    185 
    186 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE            (512)
    187 
    188 /*
    189  * In Linux, we implement the KVP functionality in two components:
    190  * 1) The kernel component which is packaged as part of the hv_utils driver
    191  * is responsible for communicating with the host and responsible for
    192  * implementing the host/guest protocol. 2) A user level daemon that is
    193  * responsible for data gathering.
    194  *
    195  * Host/Guest Protocol: The host iterates over an index and expects the guest
    196  * to assign a key name to the index and also return the value corresponding to
    197  * the key. The host will have atmost one KVP transaction outstanding at any
    198  * given point in time. The host side iteration stops when the guest returns
    199  * an error. Microsoft has specified the following mapping of key names to
    200  * host specified index:
    201  *
    202  *	Index		Key Name
    203  *	0		FullyQualifiedDomainName
    204  *	1		IntegrationServicesVersion
    205  *	2		NetworkAddressIPv4
    206  *	3		NetworkAddressIPv6
    207  *	4		OSBuildNumber
    208  *	5		OSName
    209  *	6		OSMajorVersion
    210  *	7		OSMinorVersion
    211  *	8		OSVersion
    212  *	9		ProcessorArchitecture
    213  *
    214  * The Windows host expects the Key Name and Key Value to be encoded in utf16.
    215  *
    216  * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the
    217  * data gathering functionality in a user mode daemon. The user level daemon
    218  * is also responsible for binding the key name to the index as well. The
    219  * kernel and user-level daemon communicate using a connector channel.
    220  *
    221  * The user mode component first registers with the
    222  * the kernel component. Subsequently, the kernel component requests, data
    223  * for the specified keys. In response to this message the user mode component
    224  * fills in the value corresponding to the specified key. We overload the
    225  * sequence field in the cn_msg header to define our KVP message types.
    226  *
    227  *
    228  * The kernel component simply acts as a conduit for communication between the
    229  * Windows host and the user-level daemon. The kernel component passes up the
    230  * index received from the Host to the user-level daemon. If the index is
    231  * valid (supported), the corresponding key as well as its
    232  * value (both are strings) is returned. If the index is invalid
    233  * (not supported), a NULL key string is returned.
    234  */
    235 
    236 
    237 /*
    238  * Registry value types.
    239  */
    240 
    241 #define REG_SZ 1
    242 #define REG_U32 4
    243 #define REG_U64 8
    244 
    245 /*
    246  * As we look at expanding the KVP functionality to include
    247  * IP injection functionality, we need to maintain binary
    248  * compatibility with older daemons.
    249  *
    250  * The KVP opcodes are defined by the host and it was unfortunate
    251  * that I chose to treat the registration operation as part of the
    252  * KVP operations defined by the host.
    253  * Here is the level of compatibility
    254  * (between the user level daemon and the kernel KVP driver) that we
    255  * will implement:
    256  *
    257  * An older daemon will always be supported on a newer driver.
    258  * A given user level daemon will require a minimal version of the
    259  * kernel driver.
    260  * If we cannot handle the version differences, we will fail gracefully
    261  * (this can happen when we have a user level daemon that is more
    262  * advanced than the KVP driver.
    263  *
    264  * We will use values used in this handshake for determining if we have
    265  * workable user level daemon and the kernel driver. We begin by taking the
    266  * registration opcode out of the KVP opcode namespace. We will however,
    267  * maintain compatibility with the existing user-level daemon code.
    268  */
    269 
    270 /*
    271  * Daemon code not supporting IP injection (legacy daemon).
    272  */
    273 
    274 #define KVP_OP_REGISTER	4
    275 
    276 /*
    277  * Daemon code supporting IP injection.
    278  * The KVP opcode field is used to communicate the
    279  * registration information; so define a namespace that
    280  * will be distinct from the host defined KVP opcode.
    281  */
    282 
    283 #define KVP_OP_REGISTER1 100
    284 
    285 enum hv_kvp_exchg_op {
    286 	KVP_OP_GET = 0,
    287 	KVP_OP_SET,
    288 	KVP_OP_DELETE,
    289 	KVP_OP_ENUMERATE,
    290 	KVP_OP_GET_IP_INFO,
    291 	KVP_OP_SET_IP_INFO,
    292 	KVP_OP_COUNT /* Number of operations, must be last. */
    293 };
    294 
    295 enum hv_kvp_exchg_pool {
    296 	KVP_POOL_EXTERNAL = 0,
    297 	KVP_POOL_GUEST,
    298 	KVP_POOL_AUTO,
    299 	KVP_POOL_AUTO_EXTERNAL,
    300 	KVP_POOL_AUTO_INTERNAL,
    301 	KVP_POOL_COUNT /* Number of pools, must be last. */
    302 };
    303 
    304 /*
    305  * Some Hyper-V status codes.
    306  */
    307 
    308 #define HV_S_OK				0x00000000
    309 #define HV_E_FAIL			0x80004005
    310 #define HV_S_CONT			0x80070103
    311 #define HV_ERROR_NOT_SUPPORTED		0x80070032
    312 #define HV_ERROR_MACHINE_LOCKED		0x800704F7
    313 #define HV_ERROR_DEVICE_NOT_CONNECTED	0x8007048F
    314 #define HV_INVALIDARG			0x80070057
    315 #define HV_GUID_NOTFOUND		0x80041002
    316 #define HV_ERROR_ALREADY_EXISTS		0x80070050
    317 #define HV_ERROR_DISK_FULL		0x80070070
    318 
    319 #define ADDR_FAMILY_NONE	0x00
    320 #define ADDR_FAMILY_IPV4	0x01
    321 #define ADDR_FAMILY_IPV6	0x02
    322 
    323 #define MAX_ADAPTER_ID_SIZE	128
    324 #define MAX_IP_ADDR_SIZE	1024
    325 #define MAX_GATEWAY_SIZE	512
    326 
    327 
    328 struct hv_kvp_ipaddr_value {
    329 	__u16	adapter_id[MAX_ADAPTER_ID_SIZE];
    330 	__u8	addr_family;
    331 	__u8	dhcp_enabled;
    332 	__u16	ip_addr[MAX_IP_ADDR_SIZE];
    333 	__u16	sub_net[MAX_IP_ADDR_SIZE];
    334 	__u16	gate_way[MAX_GATEWAY_SIZE];
    335 	__u16	dns_addr[MAX_IP_ADDR_SIZE];
    336 } __attribute__((packed));
    337 
    338 
    339 struct hv_kvp_hdr {
    340 	__u8 operation;
    341 	__u8 pool;
    342 	__u16 pad;
    343 } __attribute__((packed));
    344 
    345 struct hv_kvp_exchg_msg_value {
    346 	__u32 value_type;
    347 	__u32 key_size;
    348 	__u32 value_size;
    349 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    350 	union {
    351 		__u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE];
    352 		__u32 value_u32;
    353 		__u64 value_u64;
    354 	};
    355 } __attribute__((packed));
    356 
    357 struct hv_kvp_msg_enumerate {
    358 	__u32 index;
    359 	struct hv_kvp_exchg_msg_value data;
    360 } __attribute__((packed));
    361 
    362 struct hv_kvp_msg_get {
    363 	struct hv_kvp_exchg_msg_value data;
    364 };
    365 
    366 struct hv_kvp_msg_set {
    367 	struct hv_kvp_exchg_msg_value data;
    368 };
    369 
    370 struct hv_kvp_msg_delete {
    371 	__u32 key_size;
    372 	__u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    373 };
    374 
    375 struct hv_kvp_register {
    376 	__u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE];
    377 };
    378 
    379 struct hv_kvp_msg {
    380 	union {
    381 		struct hv_kvp_hdr	kvp_hdr;
    382 		int error;
    383 	};
    384 	union {
    385 		struct hv_kvp_msg_get		kvp_get;
    386 		struct hv_kvp_msg_set		kvp_set;
    387 		struct hv_kvp_msg_delete	kvp_delete;
    388 		struct hv_kvp_msg_enumerate	kvp_enum_data;
    389 		struct hv_kvp_ipaddr_value      kvp_ip_val;
    390 		struct hv_kvp_register		kvp_register;
    391 	} body;
    392 } __attribute__((packed));
    393 
    394 struct hv_kvp_ip_msg {
    395 	__u8 operation;
    396 	__u8 pool;
    397 	struct hv_kvp_ipaddr_value      kvp_ip_val;
    398 } __attribute__((packed));
    399 
    400 #endif /* _UAPI_HYPERV_H */
    401