Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // The original file was copied from sqlite, and was in the public domain.
      6 
      7 /*
      8  * This code implements the MD5 message-digest algorithm.
      9  * The algorithm is due to Ron Rivest.  This code was
     10  * written by Colin Plumb in 1993, no copyright is claimed.
     11  * This code is in the public domain; do with it what you wish.
     12  *
     13  * Equivalent code is available from RSA Data Security, Inc.
     14  * This code has been tested against that, and is equivalent,
     15  * except that you don't need to include two pages of legalese
     16  * with every copy.
     17  *
     18  * To compute the message digest of a chunk of bytes, declare an
     19  * MD5Context structure, pass it to MD5Init, call MD5Update as
     20  * needed on buffers full of bytes, and then call MD5Final, which
     21  * will fill a supplied 16-byte array with the digest.
     22  */
     23 
     24 #include "base/md5.h"
     25 
     26 #include <stddef.h>
     27 
     28 namespace {
     29 
     30 struct Context {
     31   uint32_t buf[4];
     32   uint32_t bits[2];
     33   uint8_t in[64];
     34 };
     35 
     36 /*
     37  * Note: this code is harmless on little-endian machines.
     38  */
     39 void byteReverse(uint8_t* buf, unsigned longs) {
     40   do {
     41     uint32_t temp = static_cast<uint32_t>(
     42         static_cast<unsigned>(buf[3]) << 8 |
     43         buf[2]) << 16 |
     44         (static_cast<unsigned>(buf[1]) << 8 | buf[0]);
     45     *reinterpret_cast<uint32_t*>(buf) = temp;
     46     buf += 4;
     47   } while (--longs);
     48 }
     49 
     50 /* The four core functions - F1 is optimized somewhat */
     51 
     52 /* #define F1(x, y, z) (x & y | ~x & z) */
     53 #define F1(x, y, z) (z ^ (x & (y ^ z)))
     54 #define F2(x, y, z) F1(z, x, y)
     55 #define F3(x, y, z) (x ^ y ^ z)
     56 #define F4(x, y, z) (y ^ (x | ~z))
     57 
     58 /* This is the central step in the MD5 algorithm. */
     59 #define MD5STEP(f, w, x, y, z, data, s) \
     60   (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x)
     61 
     62 /*
     63  * The core of the MD5 algorithm, this alters an existing MD5 hash to
     64  * reflect the addition of 16 longwords of new data.  MD5Update blocks
     65  * the data and converts bytes into longwords for this routine.
     66  */
     67 void MD5Transform(uint32_t buf[4], const uint32_t in[16]) {
     68   uint32_t a, b, c, d;
     69 
     70   a = buf[0];
     71   b = buf[1];
     72   c = buf[2];
     73   d = buf[3];
     74 
     75   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
     76   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
     77   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
     78   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
     79   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
     80   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
     81   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
     82   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
     83   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
     84   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
     85   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
     86   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
     87   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
     88   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
     89   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
     90   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
     91 
     92   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
     93   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
     94   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
     95   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
     96   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
     97   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
     98   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
     99   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    100   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    101   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    102   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    103   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    104   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    105   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    106   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    107   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    108 
    109   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    110   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    111   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    112   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    113   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    114   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    115   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    116   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    117   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    118   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    119   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    120   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    121   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    122   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    123   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    124   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    125 
    126   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    127   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    128   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    129   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    130   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    131   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    132   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    133   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    134   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    135   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    136   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    137   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    138   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    139   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    140   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    141   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    142 
    143   buf[0] += a;
    144   buf[1] += b;
    145   buf[2] += c;
    146   buf[3] += d;
    147 }
    148 
    149 }  // namespace
    150 
    151 namespace base {
    152 
    153 /*
    154  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
    155  * initialization constants.
    156  */
    157 void MD5Init(MD5Context* context) {
    158   struct Context* ctx = reinterpret_cast<struct Context*>(context);
    159   ctx->buf[0] = 0x67452301;
    160   ctx->buf[1] = 0xefcdab89;
    161   ctx->buf[2] = 0x98badcfe;
    162   ctx->buf[3] = 0x10325476;
    163   ctx->bits[0] = 0;
    164   ctx->bits[1] = 0;
    165 }
    166 
    167 /*
    168  * Update context to reflect the concatenation of another buffer full
    169  * of bytes.
    170  */
    171 void MD5Update(MD5Context* context, const StringPiece& data) {
    172   struct Context* ctx = reinterpret_cast<struct Context*>(context);
    173   const uint8_t* buf = reinterpret_cast<const uint8_t*>(data.data());
    174   size_t len = data.size();
    175 
    176   /* Update bitcount */
    177 
    178   uint32_t t = ctx->bits[0];
    179   if ((ctx->bits[0] = t + (static_cast<uint32_t>(len) << 3)) < t)
    180     ctx->bits[1]++; /* Carry from low to high */
    181   ctx->bits[1] += static_cast<uint32_t>(len >> 29);
    182 
    183   t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
    184 
    185   /* Handle any leading odd-sized chunks */
    186 
    187   if (t) {
    188     uint8_t* p = static_cast<uint8_t*>(ctx->in + t);
    189 
    190     t = 64 - t;
    191     if (len < t) {
    192       memcpy(p, buf, len);
    193       return;
    194     }
    195     memcpy(p, buf, t);
    196     byteReverse(ctx->in, 16);
    197     MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));
    198     buf += t;
    199     len -= t;
    200   }
    201 
    202   /* Process data in 64-byte chunks */
    203 
    204   while (len >= 64) {
    205     memcpy(ctx->in, buf, 64);
    206     byteReverse(ctx->in, 16);
    207     MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));
    208     buf += 64;
    209     len -= 64;
    210   }
    211 
    212   /* Handle any remaining bytes of data. */
    213 
    214   memcpy(ctx->in, buf, len);
    215 }
    216 
    217 /*
    218  * Final wrapup - pad to 64-byte boundary with the bit pattern
    219  * 1 0* (64-bit count of bits processed, MSB-first)
    220  */
    221 void MD5Final(MD5Digest* digest, MD5Context* context) {
    222   struct Context* ctx = reinterpret_cast<struct Context*>(context);
    223   unsigned count;
    224   uint8_t* p;
    225 
    226   /* Compute number of bytes mod 64 */
    227   count = (ctx->bits[0] >> 3) & 0x3F;
    228 
    229   /* Set the first char of padding to 0x80.  This is safe since there is
    230      always at least one byte free */
    231   p = ctx->in + count;
    232   *p++ = 0x80;
    233 
    234   /* Bytes of padding needed to make 64 bytes */
    235   count = 64 - 1 - count;
    236 
    237   /* Pad out to 56 mod 64 */
    238   if (count < 8) {
    239     /* Two lots of padding:  Pad the first block to 64 bytes */
    240     memset(p, 0, count);
    241     byteReverse(ctx->in, 16);
    242     MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));
    243 
    244     /* Now fill the next block with 56 bytes */
    245     memset(ctx->in, 0, 56);
    246   } else {
    247     /* Pad block to 56 bytes */
    248     memset(p, 0, count - 8);
    249   }
    250   byteReverse(ctx->in, 14);
    251 
    252   /* Append length in bits and transform */
    253   memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], &ctx->bits[0],
    254          sizeof(ctx->bits[0]));
    255   memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], &ctx->bits[1],
    256          sizeof(ctx->bits[1]));
    257 
    258   MD5Transform(ctx->buf, reinterpret_cast<uint32_t*>(ctx->in));
    259   byteReverse(reinterpret_cast<uint8_t*>(ctx->buf), 4);
    260   memcpy(digest->a, ctx->buf, 16);
    261   memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
    262 }
    263 
    264 void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) {
    265   /* MD5Final mutates the MD5Context*. Make a copy for generating the
    266      intermediate value. */
    267   MD5Context context_copy;
    268   memcpy(&context_copy, context, sizeof(context_copy));
    269   MD5Final(digest, &context_copy);
    270 }
    271 
    272 std::string MD5DigestToBase16(const MD5Digest& digest) {
    273   static char const zEncode[] = "0123456789abcdef";
    274 
    275   std::string ret;
    276   ret.resize(32);
    277 
    278   for (int i = 0, j = 0; i < 16; i++, j += 2) {
    279     uint8_t a = digest.a[i];
    280     ret[j] = zEncode[(a >> 4) & 0xf];
    281     ret[j + 1] = zEncode[a & 0xf];
    282   }
    283   return ret;
    284 }
    285 
    286 void MD5Sum(const void* data, size_t length, MD5Digest* digest) {
    287   MD5Context ctx;
    288   MD5Init(&ctx);
    289   MD5Update(&ctx, StringPiece(reinterpret_cast<const char*>(data), length));
    290   MD5Final(digest, &ctx);
    291 }
    292 
    293 std::string MD5String(const StringPiece& str) {
    294   MD5Digest digest;
    295   MD5Sum(str.data(), str.length(), &digest);
    296   return MD5DigestToBase16(digest);
    297 }
    298 
    299 }  // namespace base
    300