1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "base/time/time.h" 6 7 #include <stdint.h> 8 #include <sys/time.h> 9 #include <time.h> 10 #if defined(OS_ANDROID) && !defined(__LP64__) 11 #include <time64.h> 12 #endif 13 #include <unistd.h> 14 15 #include <limits> 16 #include <ostream> 17 18 #include "base/logging.h" 19 #include "base/numerics/safe_math.h" 20 #include "build/build_config.h" 21 22 #if defined(OS_ANDROID) 23 #include "base/os_compat_android.h" 24 #elif defined(OS_NACL) 25 #include "base/os_compat_nacl.h" 26 #endif 27 28 #if !defined(OS_MACOSX) 29 #include "base/synchronization/lock.h" 30 #endif 31 32 namespace { 33 34 #if !defined(OS_MACOSX) 35 // This prevents a crash on traversing the environment global and looking up 36 // the 'TZ' variable in libc. See: crbug.com/390567. 37 base::Lock* GetSysTimeToTimeStructLock() { 38 static auto* lock = new base::Lock(); 39 return lock; 40 } 41 42 // Define a system-specific SysTime that wraps either to a time_t or 43 // a time64_t depending on the host system, and associated convertion. 44 // See crbug.com/162007 45 #if defined(OS_ANDROID) && !defined(__LP64__) 46 typedef time64_t SysTime; 47 48 SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { 49 base::AutoLock locked(*GetSysTimeToTimeStructLock()); 50 if (is_local) 51 return mktime64(timestruct); 52 else 53 return timegm64(timestruct); 54 } 55 56 void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { 57 base::AutoLock locked(*GetSysTimeToTimeStructLock()); 58 if (is_local) 59 localtime64_r(&t, timestruct); 60 else 61 gmtime64_r(&t, timestruct); 62 } 63 64 #else // OS_ANDROID && !__LP64__ 65 typedef time_t SysTime; 66 67 SysTime SysTimeFromTimeStruct(struct tm* timestruct, bool is_local) { 68 base::AutoLock locked(*GetSysTimeToTimeStructLock()); 69 if (is_local) 70 return mktime(timestruct); 71 else 72 return timegm(timestruct); 73 } 74 75 void SysTimeToTimeStruct(SysTime t, struct tm* timestruct, bool is_local) { 76 base::AutoLock locked(*GetSysTimeToTimeStructLock()); 77 if (is_local) 78 localtime_r(&t, timestruct); 79 else 80 gmtime_r(&t, timestruct); 81 } 82 #endif // OS_ANDROID 83 84 int64_t ConvertTimespecToMicros(const struct timespec& ts) { 85 // On 32-bit systems, the calculation cannot overflow int64_t. 86 // 2**32 * 1000000 + 2**64 / 1000 < 2**63 87 if (sizeof(ts.tv_sec) <= 4 && sizeof(ts.tv_nsec) <= 8) { 88 int64_t result = ts.tv_sec; 89 result *= base::Time::kMicrosecondsPerSecond; 90 result += (ts.tv_nsec / base::Time::kNanosecondsPerMicrosecond); 91 return result; 92 } else { 93 base::CheckedNumeric<int64_t> result(ts.tv_sec); 94 result *= base::Time::kMicrosecondsPerSecond; 95 result += (ts.tv_nsec / base::Time::kNanosecondsPerMicrosecond); 96 return result.ValueOrDie(); 97 } 98 } 99 100 // Helper function to get results from clock_gettime() and convert to a 101 // microsecond timebase. Minimum requirement is MONOTONIC_CLOCK to be supported 102 // on the system. FreeBSD 6 has CLOCK_MONOTONIC but defines 103 // _POSIX_MONOTONIC_CLOCK to -1. 104 #if (defined(OS_POSIX) && \ 105 defined(_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0) || \ 106 defined(OS_BSD) || defined(OS_ANDROID) 107 int64_t ClockNow(clockid_t clk_id) { 108 struct timespec ts; 109 if (clock_gettime(clk_id, &ts) != 0) { 110 NOTREACHED() << "clock_gettime(" << clk_id << ") failed."; 111 return 0; 112 } 113 return ConvertTimespecToMicros(ts); 114 } 115 #else // _POSIX_MONOTONIC_CLOCK 116 #error No usable tick clock function on this platform. 117 #endif // _POSIX_MONOTONIC_CLOCK 118 #endif // !defined(OS_MACOSX) 119 120 } // namespace 121 122 namespace base { 123 124 // static 125 TimeDelta TimeDelta::FromTimeSpec(const timespec& ts) { 126 return TimeDelta(ts.tv_sec * Time::kMicrosecondsPerSecond + 127 ts.tv_nsec / Time::kNanosecondsPerMicrosecond); 128 } 129 130 struct timespec TimeDelta::ToTimeSpec() const { 131 int64_t microseconds = InMicroseconds(); 132 time_t seconds = 0; 133 if (microseconds >= Time::kMicrosecondsPerSecond) { 134 seconds = InSeconds(); 135 microseconds -= seconds * Time::kMicrosecondsPerSecond; 136 } 137 struct timespec result = 138 {seconds, 139 static_cast<long>(microseconds * Time::kNanosecondsPerMicrosecond)}; 140 return result; 141 } 142 143 #if !defined(OS_MACOSX) 144 // The Time routines in this file use standard POSIX routines, or almost- 145 // standard routines in the case of timegm. We need to use a Mach-specific 146 // function for TimeTicks::Now() on Mac OS X. 147 148 // Time ----------------------------------------------------------------------- 149 150 // Windows uses a Gregorian epoch of 1601. We need to match this internally 151 // so that our time representations match across all platforms. See bug 14734. 152 // irb(main):010:0> Time.at(0).getutc() 153 // => Thu Jan 01 00:00:00 UTC 1970 154 // irb(main):011:0> Time.at(-11644473600).getutc() 155 // => Mon Jan 01 00:00:00 UTC 1601 156 static const int64_t kWindowsEpochDeltaSeconds = INT64_C(11644473600); 157 158 // static 159 const int64_t Time::kWindowsEpochDeltaMicroseconds = 160 kWindowsEpochDeltaSeconds * Time::kMicrosecondsPerSecond; 161 162 // Some functions in time.cc use time_t directly, so we provide an offset 163 // to convert from time_t (Unix epoch) and internal (Windows epoch). 164 // static 165 const int64_t Time::kTimeTToMicrosecondsOffset = kWindowsEpochDeltaMicroseconds; 166 167 // static 168 Time Time::Now() { 169 struct timeval tv; 170 struct timezone tz = { 0, 0 }; // UTC 171 if (gettimeofday(&tv, &tz) != 0) { 172 DCHECK(0) << "Could not determine time of day"; 173 PLOG(ERROR) << "Call to gettimeofday failed."; 174 // Return null instead of uninitialized |tv| value, which contains random 175 // garbage data. This may result in the crash seen in crbug.com/147570. 176 return Time(); 177 } 178 // Combine seconds and microseconds in a 64-bit field containing microseconds 179 // since the epoch. That's enough for nearly 600 centuries. Adjust from 180 // Unix (1970) to Windows (1601) epoch. 181 return Time((tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec) + 182 kWindowsEpochDeltaMicroseconds); 183 } 184 185 // static 186 Time Time::NowFromSystemTime() { 187 // Just use Now() because Now() returns the system time. 188 return Now(); 189 } 190 191 void Time::Explode(bool is_local, Exploded* exploded) const { 192 // Time stores times with microsecond resolution, but Exploded only carries 193 // millisecond resolution, so begin by being lossy. Adjust from Windows 194 // epoch (1601) to Unix epoch (1970); 195 int64_t microseconds = us_ - kWindowsEpochDeltaMicroseconds; 196 // The following values are all rounded towards -infinity. 197 int64_t milliseconds; // Milliseconds since epoch. 198 SysTime seconds; // Seconds since epoch. 199 int millisecond; // Exploded millisecond value (0-999). 200 if (microseconds >= 0) { 201 // Rounding towards -infinity <=> rounding towards 0, in this case. 202 milliseconds = microseconds / kMicrosecondsPerMillisecond; 203 seconds = milliseconds / kMillisecondsPerSecond; 204 millisecond = milliseconds % kMillisecondsPerSecond; 205 } else { 206 // Round these *down* (towards -infinity). 207 milliseconds = (microseconds - kMicrosecondsPerMillisecond + 1) / 208 kMicrosecondsPerMillisecond; 209 seconds = (milliseconds - kMillisecondsPerSecond + 1) / 210 kMillisecondsPerSecond; 211 // Make this nonnegative (and between 0 and 999 inclusive). 212 millisecond = milliseconds % kMillisecondsPerSecond; 213 if (millisecond < 0) 214 millisecond += kMillisecondsPerSecond; 215 } 216 217 struct tm timestruct; 218 SysTimeToTimeStruct(seconds, ×truct, is_local); 219 220 exploded->year = timestruct.tm_year + 1900; 221 exploded->month = timestruct.tm_mon + 1; 222 exploded->day_of_week = timestruct.tm_wday; 223 exploded->day_of_month = timestruct.tm_mday; 224 exploded->hour = timestruct.tm_hour; 225 exploded->minute = timestruct.tm_min; 226 exploded->second = timestruct.tm_sec; 227 exploded->millisecond = millisecond; 228 } 229 230 // static 231 bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) { 232 CheckedNumeric<int> month = exploded.month; 233 month--; 234 CheckedNumeric<int> year = exploded.year; 235 year -= 1900; 236 if (!month.IsValid() || !year.IsValid()) { 237 *time = Time(0); 238 return false; 239 } 240 241 struct tm timestruct; 242 timestruct.tm_sec = exploded.second; 243 timestruct.tm_min = exploded.minute; 244 timestruct.tm_hour = exploded.hour; 245 timestruct.tm_mday = exploded.day_of_month; 246 timestruct.tm_mon = month.ValueOrDie(); 247 timestruct.tm_year = year.ValueOrDie(); 248 timestruct.tm_wday = exploded.day_of_week; // mktime/timegm ignore this 249 timestruct.tm_yday = 0; // mktime/timegm ignore this 250 timestruct.tm_isdst = -1; // attempt to figure it out 251 #if !defined(OS_NACL) && !defined(OS_SOLARIS) 252 timestruct.tm_gmtoff = 0; // not a POSIX field, so mktime/timegm ignore 253 timestruct.tm_zone = NULL; // not a POSIX field, so mktime/timegm ignore 254 #endif 255 256 SysTime seconds; 257 258 // Certain exploded dates do not really exist due to daylight saving times, 259 // and this causes mktime() to return implementation-defined values when 260 // tm_isdst is set to -1. On Android, the function will return -1, while the 261 // C libraries of other platforms typically return a liberally-chosen value. 262 // Handling this requires the special code below. 263 264 // SysTimeFromTimeStruct() modifies the input structure, save current value. 265 struct tm timestruct0 = timestruct; 266 267 seconds = SysTimeFromTimeStruct(×truct, is_local); 268 if (seconds == -1) { 269 // Get the time values with tm_isdst == 0 and 1, then select the closest one 270 // to UTC 00:00:00 that isn't -1. 271 timestruct = timestruct0; 272 timestruct.tm_isdst = 0; 273 int64_t seconds_isdst0 = SysTimeFromTimeStruct(×truct, is_local); 274 275 timestruct = timestruct0; 276 timestruct.tm_isdst = 1; 277 int64_t seconds_isdst1 = SysTimeFromTimeStruct(×truct, is_local); 278 279 // seconds_isdst0 or seconds_isdst1 can be -1 for some timezones. 280 // E.g. "CLST" (Chile Summer Time) returns -1 for 'tm_isdt == 1'. 281 if (seconds_isdst0 < 0) 282 seconds = seconds_isdst1; 283 else if (seconds_isdst1 < 0) 284 seconds = seconds_isdst0; 285 else 286 seconds = std::min(seconds_isdst0, seconds_isdst1); 287 } 288 289 // Handle overflow. Clamping the range to what mktime and timegm might 290 // return is the best that can be done here. It's not ideal, but it's better 291 // than failing here or ignoring the overflow case and treating each time 292 // overflow as one second prior to the epoch. 293 int64_t milliseconds = 0; 294 if (seconds == -1 && 295 (exploded.year < 1969 || exploded.year > 1970)) { 296 // If exploded.year is 1969 or 1970, take -1 as correct, with the 297 // time indicating 1 second prior to the epoch. (1970 is allowed to handle 298 // time zone and DST offsets.) Otherwise, return the most future or past 299 // time representable. Assumes the time_t epoch is 1970-01-01 00:00:00 UTC. 300 // 301 // The minimum and maximum representible times that mktime and timegm could 302 // return are used here instead of values outside that range to allow for 303 // proper round-tripping between exploded and counter-type time 304 // representations in the presence of possible truncation to time_t by 305 // division and use with other functions that accept time_t. 306 // 307 // When representing the most distant time in the future, add in an extra 308 // 999ms to avoid the time being less than any other possible value that 309 // this function can return. 310 311 // On Android, SysTime is int64_t, special care must be taken to avoid 312 // overflows. 313 const int64_t min_seconds = (sizeof(SysTime) < sizeof(int64_t)) 314 ? std::numeric_limits<SysTime>::min() 315 : std::numeric_limits<int32_t>::min(); 316 const int64_t max_seconds = (sizeof(SysTime) < sizeof(int64_t)) 317 ? std::numeric_limits<SysTime>::max() 318 : std::numeric_limits<int32_t>::max(); 319 if (exploded.year < 1969) { 320 milliseconds = min_seconds * kMillisecondsPerSecond; 321 } else { 322 milliseconds = max_seconds * kMillisecondsPerSecond; 323 milliseconds += (kMillisecondsPerSecond - 1); 324 } 325 } else { 326 base::CheckedNumeric<int64_t> checked_millis = seconds; 327 checked_millis *= kMillisecondsPerSecond; 328 checked_millis += exploded.millisecond; 329 if (!checked_millis.IsValid()) { 330 *time = base::Time(0); 331 return false; 332 } 333 milliseconds = checked_millis.ValueOrDie(); 334 } 335 336 // Adjust from Unix (1970) to Windows (1601) epoch avoiding overflows. 337 base::CheckedNumeric<int64_t> checked_microseconds_win_epoch = milliseconds; 338 checked_microseconds_win_epoch *= kMicrosecondsPerMillisecond; 339 checked_microseconds_win_epoch += kWindowsEpochDeltaMicroseconds; 340 if (!checked_microseconds_win_epoch.IsValid()) { 341 *time = base::Time(0); 342 return false; 343 } 344 base::Time converted_time(checked_microseconds_win_epoch.ValueOrDie()); 345 346 // If |exploded.day_of_month| is set to 31 on a 28-30 day month, it will 347 // return the first day of the next month. Thus round-trip the time and 348 // compare the initial |exploded| with |utc_to_exploded| time. 349 base::Time::Exploded to_exploded; 350 if (!is_local) 351 converted_time.UTCExplode(&to_exploded); 352 else 353 converted_time.LocalExplode(&to_exploded); 354 355 if (ExplodedMostlyEquals(to_exploded, exploded)) { 356 *time = converted_time; 357 return true; 358 } 359 360 *time = Time(0); 361 return false; 362 } 363 364 // TimeTicks ------------------------------------------------------------------ 365 // static 366 TimeTicks TimeTicks::Now() { 367 return TimeTicks(ClockNow(CLOCK_MONOTONIC)); 368 } 369 370 // static 371 TimeTicks::Clock TimeTicks::GetClock() { 372 return Clock::LINUX_CLOCK_MONOTONIC; 373 } 374 375 // static 376 bool TimeTicks::IsHighResolution() { 377 return true; 378 } 379 380 // static 381 bool TimeTicks::IsConsistentAcrossProcesses() { 382 return true; 383 } 384 385 // static 386 ThreadTicks ThreadTicks::Now() { 387 #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ 388 defined(OS_ANDROID) 389 return ThreadTicks(ClockNow(CLOCK_THREAD_CPUTIME_ID)); 390 #else 391 NOTREACHED(); 392 return ThreadTicks(); 393 #endif 394 } 395 396 #endif // !OS_MACOSX 397 398 // static 399 Time Time::FromTimeVal(struct timeval t) { 400 DCHECK_LT(t.tv_usec, static_cast<int>(Time::kMicrosecondsPerSecond)); 401 DCHECK_GE(t.tv_usec, 0); 402 if (t.tv_usec == 0 && t.tv_sec == 0) 403 return Time(); 404 if (t.tv_usec == static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1 && 405 t.tv_sec == std::numeric_limits<time_t>::max()) 406 return Max(); 407 return Time((static_cast<int64_t>(t.tv_sec) * Time::kMicrosecondsPerSecond) + 408 t.tv_usec + kTimeTToMicrosecondsOffset); 409 } 410 411 struct timeval Time::ToTimeVal() const { 412 struct timeval result; 413 if (is_null()) { 414 result.tv_sec = 0; 415 result.tv_usec = 0; 416 return result; 417 } 418 if (is_max()) { 419 result.tv_sec = std::numeric_limits<time_t>::max(); 420 result.tv_usec = static_cast<suseconds_t>(Time::kMicrosecondsPerSecond) - 1; 421 return result; 422 } 423 int64_t us = us_ - kTimeTToMicrosecondsOffset; 424 result.tv_sec = us / Time::kMicrosecondsPerSecond; 425 result.tv_usec = us % Time::kMicrosecondsPerSecond; 426 return result; 427 } 428 429 } // namespace base 430