1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // This is an implementation of the P224 elliptic curve group. It's written to 6 // be short and simple rather than fast, although it's still constant-time. 7 // 8 // See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background. 9 10 #include "crypto/p224.h" 11 12 #include <stddef.h> 13 #include <stdint.h> 14 #include <string.h> 15 16 #include "base/sys_byteorder.h" 17 18 namespace { 19 20 using base::HostToNet32; 21 using base::NetToHost32; 22 23 // Field element functions. 24 // 25 // The field that we're dealing with is /p where p = 2**224 - 2**96 + 1. 26 // 27 // Field elements are represented by a FieldElement, which is a typedef to an 28 // array of 8 uint32_t's. The value of a FieldElement, a, is: 29 // a[0] + 2**28a[1] + 2**56a[1] + ... + 2**196a[7] 30 // 31 // Using 28-bit limbs means that there's only 4 bits of headroom, which is less 32 // than we would really like. But it has the useful feature that we hit 2**224 33 // exactly, making the reflections during a reduce much nicer. 34 35 using crypto::p224::FieldElement; 36 37 // kP is the P224 prime. 38 const FieldElement kP = { 39 1, 0, 0, 268431360, 40 268435455, 268435455, 268435455, 268435455, 41 }; 42 43 void Contract(FieldElement* inout); 44 45 // IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise. 46 uint32_t IsZero(const FieldElement& a) { 47 FieldElement minimal; 48 memcpy(&minimal, &a, sizeof(minimal)); 49 Contract(&minimal); 50 51 uint32_t is_zero = 0, is_p = 0; 52 for (unsigned i = 0; i < 8; i++) { 53 is_zero |= minimal[i]; 54 is_p |= minimal[i] - kP[i]; 55 } 56 57 // If either is_zero or is_p is 0, then we should return 1. 58 is_zero |= is_zero >> 16; 59 is_zero |= is_zero >> 8; 60 is_zero |= is_zero >> 4; 61 is_zero |= is_zero >> 2; 62 is_zero |= is_zero >> 1; 63 64 is_p |= is_p >> 16; 65 is_p |= is_p >> 8; 66 is_p |= is_p >> 4; 67 is_p |= is_p >> 2; 68 is_p |= is_p >> 1; 69 70 // For is_zero and is_p, the LSB is 0 iff all the bits are zero. 71 is_zero &= is_p & 1; 72 is_zero = (~is_zero) << 31; 73 is_zero = static_cast<int32_t>(is_zero) >> 31; 74 return is_zero; 75 } 76 77 // Add computes *out = a+b 78 // 79 // a[i] + b[i] < 2**32 80 void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) { 81 for (int i = 0; i < 8; i++) { 82 (*out)[i] = a[i] + b[i]; 83 } 84 } 85 86 static const uint32_t kTwo31p3 = (1u << 31) + (1u << 3); 87 static const uint32_t kTwo31m3 = (1u << 31) - (1u << 3); 88 static const uint32_t kTwo31m15m3 = (1u << 31) - (1u << 15) - (1u << 3); 89 // kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can 90 // subtract smaller amounts without underflow. See the section "Subtraction" in 91 // [1] for why. 92 static const FieldElement kZero31ModP = { 93 kTwo31p3, kTwo31m3, kTwo31m3, kTwo31m15m3, 94 kTwo31m3, kTwo31m3, kTwo31m3, kTwo31m3 95 }; 96 97 // Subtract computes *out = a-b 98 // 99 // a[i], b[i] < 2**30 100 // out[i] < 2**32 101 void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) { 102 for (int i = 0; i < 8; i++) { 103 // See the section on "Subtraction" in [1] for details. 104 (*out)[i] = a[i] + kZero31ModP[i] - b[i]; 105 } 106 } 107 108 static const uint64_t kTwo63p35 = (1ull << 63) + (1ull << 35); 109 static const uint64_t kTwo63m35 = (1ull << 63) - (1ull << 35); 110 static const uint64_t kTwo63m35m19 = (1ull << 63) - (1ull << 35) - (1ull << 19); 111 // kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section 112 // "Subtraction" in [1] for why. 113 static const uint64_t kZero63ModP[8] = { 114 kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35, 115 kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35, 116 }; 117 118 static const uint32_t kBottom28Bits = 0xfffffff; 119 120 // LargeFieldElement also represents an element of the field. The limbs are 121 // still spaced 28-bits apart and in little-endian order. So the limbs are at 122 // 0, 28, 56, ..., 392 bits, each 64-bits wide. 123 typedef uint64_t LargeFieldElement[15]; 124 125 // ReduceLarge converts a LargeFieldElement to a FieldElement. 126 // 127 // in[i] < 2**62 128 void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) { 129 LargeFieldElement& in(*inptr); 130 131 for (int i = 0; i < 8; i++) { 132 in[i] += kZero63ModP[i]; 133 } 134 135 // Eliminate the coefficients at 2**224 and greater while maintaining the 136 // same value mod p. 137 for (int i = 14; i >= 8; i--) { 138 in[i-8] -= in[i]; // reflection off the "+1" term of p. 139 in[i-5] += (in[i] & 0xffff) << 12; // part of the "-2**96" reflection. 140 in[i-4] += in[i] >> 16; // the rest of the "-2**96" reflection. 141 } 142 in[8] = 0; 143 // in[0..8] < 2**64 144 145 // As the values become small enough, we start to store them in |out| and use 146 // 32-bit operations. 147 for (int i = 1; i < 8; i++) { 148 in[i+1] += in[i] >> 28; 149 (*out)[i] = static_cast<uint32_t>(in[i] & kBottom28Bits); 150 } 151 // Eliminate the term at 2*224 that we introduced while keeping the same 152 // value mod p. 153 in[0] -= in[8]; // reflection off the "+1" term of p. 154 (*out)[3] += static_cast<uint32_t>(in[8] & 0xffff) << 12; // "-2**96" term 155 (*out)[4] += static_cast<uint32_t>(in[8] >> 16); // rest of "-2**96" term 156 // in[0] < 2**64 157 // out[3] < 2**29 158 // out[4] < 2**29 159 // out[1,2,5..7] < 2**28 160 161 (*out)[0] = static_cast<uint32_t>(in[0] & kBottom28Bits); 162 (*out)[1] += static_cast<uint32_t>((in[0] >> 28) & kBottom28Bits); 163 (*out)[2] += static_cast<uint32_t>(in[0] >> 56); 164 // out[0] < 2**28 165 // out[1..4] < 2**29 166 // out[5..7] < 2**28 167 } 168 169 // Mul computes *out = a*b 170 // 171 // a[i] < 2**29, b[i] < 2**30 (or vice versa) 172 // out[i] < 2**29 173 void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) { 174 LargeFieldElement tmp; 175 memset(&tmp, 0, sizeof(tmp)); 176 177 for (int i = 0; i < 8; i++) { 178 for (int j = 0; j < 8; j++) { 179 tmp[i + j] += static_cast<uint64_t>(a[i]) * static_cast<uint64_t>(b[j]); 180 } 181 } 182 183 ReduceLarge(out, &tmp); 184 } 185 186 // Square computes *out = a*a 187 // 188 // a[i] < 2**29 189 // out[i] < 2**29 190 void Square(FieldElement* out, const FieldElement& a) { 191 LargeFieldElement tmp; 192 memset(&tmp, 0, sizeof(tmp)); 193 194 for (int i = 0; i < 8; i++) { 195 for (int j = 0; j <= i; j++) { 196 uint64_t r = static_cast<uint64_t>(a[i]) * static_cast<uint64_t>(a[j]); 197 if (i == j) { 198 tmp[i+j] += r; 199 } else { 200 tmp[i+j] += r << 1; 201 } 202 } 203 } 204 205 ReduceLarge(out, &tmp); 206 } 207 208 // Reduce reduces the coefficients of in_out to smaller bounds. 209 // 210 // On entry: a[i] < 2**31 + 2**30 211 // On exit: a[i] < 2**29 212 void Reduce(FieldElement* in_out) { 213 FieldElement& a = *in_out; 214 215 for (int i = 0; i < 7; i++) { 216 a[i+1] += a[i] >> 28; 217 a[i] &= kBottom28Bits; 218 } 219 uint32_t top = a[7] >> 28; 220 a[7] &= kBottom28Bits; 221 222 // top < 2**4 223 // Constant-time: mask = (top != 0) ? 0xffffffff : 0 224 uint32_t mask = top; 225 mask |= mask >> 2; 226 mask |= mask >> 1; 227 mask <<= 31; 228 mask = static_cast<uint32_t>(static_cast<int32_t>(mask) >> 31); 229 230 // Eliminate top while maintaining the same value mod p. 231 a[0] -= top; 232 a[3] += top << 12; 233 234 // We may have just made a[0] negative but, if we did, then we must 235 // have added something to a[3], thus it's > 2**12. Therefore we can 236 // carry down to a[0]. 237 a[3] -= 1 & mask; 238 a[2] += mask & ((1<<28) - 1); 239 a[1] += mask & ((1<<28) - 1); 240 a[0] += mask & (1<<28); 241 } 242 243 // Invert calcuates *out = in**-1 by computing in**(2**224 - 2**96 - 1), i.e. 244 // Fermat's little theorem. 245 void Invert(FieldElement* out, const FieldElement& in) { 246 FieldElement f1, f2, f3, f4; 247 248 Square(&f1, in); // 2 249 Mul(&f1, f1, in); // 2**2 - 1 250 Square(&f1, f1); // 2**3 - 2 251 Mul(&f1, f1, in); // 2**3 - 1 252 Square(&f2, f1); // 2**4 - 2 253 Square(&f2, f2); // 2**5 - 4 254 Square(&f2, f2); // 2**6 - 8 255 Mul(&f1, f1, f2); // 2**6 - 1 256 Square(&f2, f1); // 2**7 - 2 257 for (int i = 0; i < 5; i++) { // 2**12 - 2**6 258 Square(&f2, f2); 259 } 260 Mul(&f2, f2, f1); // 2**12 - 1 261 Square(&f3, f2); // 2**13 - 2 262 for (int i = 0; i < 11; i++) { // 2**24 - 2**12 263 Square(&f3, f3); 264 } 265 Mul(&f2, f3, f2); // 2**24 - 1 266 Square(&f3, f2); // 2**25 - 2 267 for (int i = 0; i < 23; i++) { // 2**48 - 2**24 268 Square(&f3, f3); 269 } 270 Mul(&f3, f3, f2); // 2**48 - 1 271 Square(&f4, f3); // 2**49 - 2 272 for (int i = 0; i < 47; i++) { // 2**96 - 2**48 273 Square(&f4, f4); 274 } 275 Mul(&f3, f3, f4); // 2**96 - 1 276 Square(&f4, f3); // 2**97 - 2 277 for (int i = 0; i < 23; i++) { // 2**120 - 2**24 278 Square(&f4, f4); 279 } 280 Mul(&f2, f4, f2); // 2**120 - 1 281 for (int i = 0; i < 6; i++) { // 2**126 - 2**6 282 Square(&f2, f2); 283 } 284 Mul(&f1, f1, f2); // 2**126 - 1 285 Square(&f1, f1); // 2**127 - 2 286 Mul(&f1, f1, in); // 2**127 - 1 287 for (int i = 0; i < 97; i++) { // 2**224 - 2**97 288 Square(&f1, f1); 289 } 290 Mul(out, f1, f3); // 2**224 - 2**96 - 1 291 } 292 293 // Contract converts a FieldElement to its minimal, distinguished form. 294 // 295 // On entry, in[i] < 2**29 296 // On exit, in[i] < 2**28 297 void Contract(FieldElement* inout) { 298 FieldElement& out = *inout; 299 300 // Reduce the coefficients to < 2**28. 301 for (int i = 0; i < 7; i++) { 302 out[i+1] += out[i] >> 28; 303 out[i] &= kBottom28Bits; 304 } 305 uint32_t top = out[7] >> 28; 306 out[7] &= kBottom28Bits; 307 308 // Eliminate top while maintaining the same value mod p. 309 out[0] -= top; 310 out[3] += top << 12; 311 312 // We may just have made out[0] negative. So we carry down. If we made 313 // out[0] negative then we know that out[3] is sufficiently positive 314 // because we just added to it. 315 for (int i = 0; i < 3; i++) { 316 uint32_t mask = static_cast<uint32_t>(static_cast<int32_t>(out[i]) >> 31); 317 out[i] += (1 << 28) & mask; 318 out[i+1] -= 1 & mask; 319 } 320 321 // We might have pushed out[3] over 2**28 so we perform another, partial 322 // carry chain. 323 for (int i = 3; i < 7; i++) { 324 out[i+1] += out[i] >> 28; 325 out[i] &= kBottom28Bits; 326 } 327 top = out[7] >> 28; 328 out[7] &= kBottom28Bits; 329 330 // Eliminate top while maintaining the same value mod p. 331 out[0] -= top; 332 out[3] += top << 12; 333 334 // There are two cases to consider for out[3]: 335 // 1) The first time that we eliminated top, we didn't push out[3] over 336 // 2**28. In this case, the partial carry chain didn't change any values 337 // and top is zero. 338 // 2) We did push out[3] over 2**28 the first time that we eliminated top. 339 // The first value of top was in [0..16), therefore, prior to eliminating 340 // the first top, 0xfff1000 <= out[3] <= 0xfffffff. Therefore, after 341 // overflowing and being reduced by the second carry chain, out[3] <= 342 // 0xf000. Thus it cannot have overflowed when we eliminated top for the 343 // second time. 344 345 // Again, we may just have made out[0] negative, so do the same carry down. 346 // As before, if we made out[0] negative then we know that out[3] is 347 // sufficiently positive. 348 for (int i = 0; i < 3; i++) { 349 uint32_t mask = static_cast<uint32_t>(static_cast<int32_t>(out[i]) >> 31); 350 out[i] += (1 << 28) & mask; 351 out[i+1] -= 1 & mask; 352 } 353 354 // The value is < 2**224, but maybe greater than p. In order to reduce to a 355 // unique, minimal value we see if the value is >= p and, if so, subtract p. 356 357 // First we build a mask from the top four limbs, which must all be 358 // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones 359 // ends up with any zero bits in the bottom 28 bits, then this wasn't 360 // true. 361 uint32_t top_4_all_ones = 0xffffffffu; 362 for (int i = 4; i < 8; i++) { 363 top_4_all_ones &= out[i]; 364 } 365 top_4_all_ones |= 0xf0000000; 366 // Now we replicate any zero bits to all the bits in top_4_all_ones. 367 top_4_all_ones &= top_4_all_ones >> 16; 368 top_4_all_ones &= top_4_all_ones >> 8; 369 top_4_all_ones &= top_4_all_ones >> 4; 370 top_4_all_ones &= top_4_all_ones >> 2; 371 top_4_all_ones &= top_4_all_ones >> 1; 372 top_4_all_ones = 373 static_cast<uint32_t>(static_cast<int32_t>(top_4_all_ones << 31) >> 31); 374 375 // Now we test whether the bottom three limbs are non-zero. 376 uint32_t bottom_3_non_zero = out[0] | out[1] | out[2]; 377 bottom_3_non_zero |= bottom_3_non_zero >> 16; 378 bottom_3_non_zero |= bottom_3_non_zero >> 8; 379 bottom_3_non_zero |= bottom_3_non_zero >> 4; 380 bottom_3_non_zero |= bottom_3_non_zero >> 2; 381 bottom_3_non_zero |= bottom_3_non_zero >> 1; 382 bottom_3_non_zero = 383 static_cast<uint32_t>(static_cast<int32_t>(bottom_3_non_zero) >> 31); 384 385 // Everything depends on the value of out[3]. 386 // If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p 387 // If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0, 388 // then the whole value is >= p 389 // If it's < 0xffff000, then the whole value is < p 390 uint32_t n = out[3] - 0xffff000; 391 uint32_t out_3_equal = n; 392 out_3_equal |= out_3_equal >> 16; 393 out_3_equal |= out_3_equal >> 8; 394 out_3_equal |= out_3_equal >> 4; 395 out_3_equal |= out_3_equal >> 2; 396 out_3_equal |= out_3_equal >> 1; 397 out_3_equal = 398 ~static_cast<uint32_t>(static_cast<int32_t>(out_3_equal << 31) >> 31); 399 400 // If out[3] > 0xffff000 then n's MSB will be zero. 401 uint32_t out_3_gt = 402 ~static_cast<uint32_t>(static_cast<int32_t>(n << 31) >> 31); 403 404 uint32_t mask = 405 top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt); 406 out[0] -= 1 & mask; 407 out[3] -= 0xffff000 & mask; 408 out[4] -= 0xfffffff & mask; 409 out[5] -= 0xfffffff & mask; 410 out[6] -= 0xfffffff & mask; 411 out[7] -= 0xfffffff & mask; 412 } 413 414 415 // Group element functions. 416 // 417 // These functions deal with group elements. The group is an elliptic curve 418 // group with a = -3 defined in FIPS 186-3, section D.2.2. 419 420 using crypto::p224::Point; 421 422 // kB is parameter of the elliptic curve. 423 const FieldElement kB = { 424 55967668, 11768882, 265861671, 185302395, 425 39211076, 180311059, 84673715, 188764328, 426 }; 427 428 void CopyConditional(Point* out, const Point& a, uint32_t mask); 429 void DoubleJacobian(Point* out, const Point& a); 430 431 // AddJacobian computes *out = a+b where a != b. 432 void AddJacobian(Point *out, 433 const Point& a, 434 const Point& b) { 435 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl 436 FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; 437 438 uint32_t z1_is_zero = IsZero(a.z); 439 uint32_t z2_is_zero = IsZero(b.z); 440 441 // Z1Z1 = Z1 442 Square(&z1z1, a.z); 443 444 // Z2Z2 = Z2 445 Square(&z2z2, b.z); 446 447 // U1 = X1*Z2Z2 448 Mul(&u1, a.x, z2z2); 449 450 // U2 = X2*Z1Z1 451 Mul(&u2, b.x, z1z1); 452 453 // S1 = Y1*Z2*Z2Z2 454 Mul(&s1, b.z, z2z2); 455 Mul(&s1, a.y, s1); 456 457 // S2 = Y2*Z1*Z1Z1 458 Mul(&s2, a.z, z1z1); 459 Mul(&s2, b.y, s2); 460 461 // H = U2-U1 462 Subtract(&h, u2, u1); 463 Reduce(&h); 464 uint32_t x_equal = IsZero(h); 465 466 // I = (2*H) 467 for (int k = 0; k < 8; k++) { 468 i[k] = h[k] << 1; 469 } 470 Reduce(&i); 471 Square(&i, i); 472 473 // J = H*I 474 Mul(&j, h, i); 475 // r = 2*(S2-S1) 476 Subtract(&r, s2, s1); 477 Reduce(&r); 478 uint32_t y_equal = IsZero(r); 479 480 if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { 481 // The two input points are the same therefore we must use the dedicated 482 // doubling function as the slope of the line is undefined. 483 DoubleJacobian(out, a); 484 return; 485 } 486 487 for (int k = 0; k < 8; k++) { 488 r[k] <<= 1; 489 } 490 Reduce(&r); 491 492 // V = U1*I 493 Mul(&v, u1, i); 494 495 // Z3 = ((Z1+Z2)-Z1Z1-Z2Z2)*H 496 Add(&z1z1, z1z1, z2z2); 497 Add(&z2z2, a.z, b.z); 498 Reduce(&z2z2); 499 Square(&z2z2, z2z2); 500 Subtract(&out->z, z2z2, z1z1); 501 Reduce(&out->z); 502 Mul(&out->z, out->z, h); 503 504 // X3 = r-J-2*V 505 for (int k = 0; k < 8; k++) { 506 z1z1[k] = v[k] << 1; 507 } 508 Add(&z1z1, j, z1z1); 509 Reduce(&z1z1); 510 Square(&out->x, r); 511 Subtract(&out->x, out->x, z1z1); 512 Reduce(&out->x); 513 514 // Y3 = r*(V-X3)-2*S1*J 515 for (int k = 0; k < 8; k++) { 516 s1[k] <<= 1; 517 } 518 Mul(&s1, s1, j); 519 Subtract(&z1z1, v, out->x); 520 Reduce(&z1z1); 521 Mul(&z1z1, z1z1, r); 522 Subtract(&out->y, z1z1, s1); 523 Reduce(&out->y); 524 525 CopyConditional(out, a, z2_is_zero); 526 CopyConditional(out, b, z1_is_zero); 527 } 528 529 // DoubleJacobian computes *out = a+a. 530 void DoubleJacobian(Point* out, const Point& a) { 531 // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b 532 FieldElement delta, gamma, beta, alpha, t; 533 534 Square(&delta, a.z); 535 Square(&gamma, a.y); 536 Mul(&beta, a.x, gamma); 537 538 // alpha = 3*(X1-delta)*(X1+delta) 539 Add(&t, a.x, delta); 540 for (int i = 0; i < 8; i++) { 541 t[i] += t[i] << 1; 542 } 543 Reduce(&t); 544 Subtract(&alpha, a.x, delta); 545 Reduce(&alpha); 546 Mul(&alpha, alpha, t); 547 548 // Z3 = (Y1+Z1)-gamma-delta 549 Add(&out->z, a.y, a.z); 550 Reduce(&out->z); 551 Square(&out->z, out->z); 552 Subtract(&out->z, out->z, gamma); 553 Reduce(&out->z); 554 Subtract(&out->z, out->z, delta); 555 Reduce(&out->z); 556 557 // X3 = alpha-8*beta 558 for (int i = 0; i < 8; i++) { 559 delta[i] = beta[i] << 3; 560 } 561 Reduce(&delta); 562 Square(&out->x, alpha); 563 Subtract(&out->x, out->x, delta); 564 Reduce(&out->x); 565 566 // Y3 = alpha*(4*beta-X3)-8*gamma 567 for (int i = 0; i < 8; i++) { 568 beta[i] <<= 2; 569 } 570 Reduce(&beta); 571 Subtract(&beta, beta, out->x); 572 Reduce(&beta); 573 Square(&gamma, gamma); 574 for (int i = 0; i < 8; i++) { 575 gamma[i] <<= 3; 576 } 577 Reduce(&gamma); 578 Mul(&out->y, alpha, beta); 579 Subtract(&out->y, out->y, gamma); 580 Reduce(&out->y); 581 } 582 583 // CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of 584 // 0xffffffff. 585 void CopyConditional(Point* out, const Point& a, uint32_t mask) { 586 for (int i = 0; i < 8; i++) { 587 out->x[i] ^= mask & (a.x[i] ^ out->x[i]); 588 out->y[i] ^= mask & (a.y[i] ^ out->y[i]); 589 out->z[i] ^= mask & (a.z[i] ^ out->z[i]); 590 } 591 } 592 593 // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of 594 // length scalar_len and != 0. 595 void ScalarMult(Point* out, 596 const Point& a, 597 const uint8_t* scalar, 598 size_t scalar_len) { 599 memset(out, 0, sizeof(*out)); 600 Point tmp; 601 602 for (size_t i = 0; i < scalar_len; i++) { 603 for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { 604 DoubleJacobian(out, *out); 605 uint32_t bit = static_cast<uint32_t>(static_cast<int32_t>( 606 (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); 607 AddJacobian(&tmp, a, *out); 608 CopyConditional(out, tmp, bit); 609 } 610 } 611 } 612 613 // Get224Bits reads 7 words from in and scatters their contents in 614 // little-endian form into 8 words at out, 28 bits per output word. 615 void Get224Bits(uint32_t* out, const uint32_t* in) { 616 out[0] = NetToHost32(in[6]) & kBottom28Bits; 617 out[1] = ((NetToHost32(in[5]) << 4) | 618 (NetToHost32(in[6]) >> 28)) & kBottom28Bits; 619 out[2] = ((NetToHost32(in[4]) << 8) | 620 (NetToHost32(in[5]) >> 24)) & kBottom28Bits; 621 out[3] = ((NetToHost32(in[3]) << 12) | 622 (NetToHost32(in[4]) >> 20)) & kBottom28Bits; 623 out[4] = ((NetToHost32(in[2]) << 16) | 624 (NetToHost32(in[3]) >> 16)) & kBottom28Bits; 625 out[5] = ((NetToHost32(in[1]) << 20) | 626 (NetToHost32(in[2]) >> 12)) & kBottom28Bits; 627 out[6] = ((NetToHost32(in[0]) << 24) | 628 (NetToHost32(in[1]) >> 8)) & kBottom28Bits; 629 out[7] = (NetToHost32(in[0]) >> 4) & kBottom28Bits; 630 } 631 632 // Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from 633 // each of 8 input words and writing them in big-endian order to 7 words at 634 // out. 635 void Put224Bits(uint32_t* out, const uint32_t* in) { 636 out[6] = HostToNet32((in[0] >> 0) | (in[1] << 28)); 637 out[5] = HostToNet32((in[1] >> 4) | (in[2] << 24)); 638 out[4] = HostToNet32((in[2] >> 8) | (in[3] << 20)); 639 out[3] = HostToNet32((in[3] >> 12) | (in[4] << 16)); 640 out[2] = HostToNet32((in[4] >> 16) | (in[5] << 12)); 641 out[1] = HostToNet32((in[5] >> 20) | (in[6] << 8)); 642 out[0] = HostToNet32((in[6] >> 24) | (in[7] << 4)); 643 } 644 645 } // anonymous namespace 646 647 namespace crypto { 648 649 namespace p224 { 650 651 bool Point::SetFromString(const base::StringPiece& in) { 652 if (in.size() != 2*28) 653 return false; 654 const uint32_t* inwords = reinterpret_cast<const uint32_t*>(in.data()); 655 Get224Bits(x, inwords); 656 Get224Bits(y, inwords + 7); 657 memset(&z, 0, sizeof(z)); 658 z[0] = 1; 659 660 // Check that the point is on the curve, i.e. that y = x - 3x + b. 661 FieldElement lhs; 662 Square(&lhs, y); 663 Contract(&lhs); 664 665 FieldElement rhs; 666 Square(&rhs, x); 667 Mul(&rhs, x, rhs); 668 669 FieldElement three_x; 670 for (int i = 0; i < 8; i++) { 671 three_x[i] = x[i] * 3; 672 } 673 Reduce(&three_x); 674 Subtract(&rhs, rhs, three_x); 675 Reduce(&rhs); 676 677 ::Add(&rhs, rhs, kB); 678 Contract(&rhs); 679 return memcmp(&lhs, &rhs, sizeof(lhs)) == 0; 680 } 681 682 std::string Point::ToString() const { 683 FieldElement zinv, zinv_sq, xx, yy; 684 685 // If this is the point at infinity we return a string of all zeros. 686 if (IsZero(this->z)) { 687 static const char zeros[56] = {0}; 688 return std::string(zeros, sizeof(zeros)); 689 } 690 691 Invert(&zinv, this->z); 692 Square(&zinv_sq, zinv); 693 Mul(&xx, x, zinv_sq); 694 Mul(&zinv_sq, zinv_sq, zinv); 695 Mul(&yy, y, zinv_sq); 696 697 Contract(&xx); 698 Contract(&yy); 699 700 uint32_t outwords[14]; 701 Put224Bits(outwords, xx); 702 Put224Bits(outwords + 7, yy); 703 return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords)); 704 } 705 706 void ScalarMult(const Point& in, const uint8_t* scalar, Point* out) { 707 ::ScalarMult(out, in, scalar, 28); 708 } 709 710 // kBasePoint is the base point (generator) of the elliptic curve group. 711 static const Point kBasePoint = { 712 {22813985, 52956513, 34677300, 203240812, 713 12143107, 133374265, 225162431, 191946955}, 714 {83918388, 223877528, 122119236, 123340192, 715 266784067, 263504429, 146143011, 198407736}, 716 {1, 0, 0, 0, 0, 0, 0, 0}, 717 }; 718 719 void ScalarBaseMult(const uint8_t* scalar, Point* out) { 720 ::ScalarMult(out, kBasePoint, scalar, 28); 721 } 722 723 void Add(const Point& a, const Point& b, Point* out) { 724 AddJacobian(out, a, b); 725 } 726 727 void Negate(const Point& in, Point* out) { 728 // Guide to elliptic curve cryptography, page 89 suggests that (X : X+Y : Z) 729 // is the negative in Jacobian coordinates, but it doesn't actually appear to 730 // be true in testing so this performs the negation in affine coordinates. 731 FieldElement zinv, zinv_sq, y; 732 Invert(&zinv, in.z); 733 Square(&zinv_sq, zinv); 734 Mul(&out->x, in.x, zinv_sq); 735 Mul(&zinv_sq, zinv_sq, zinv); 736 Mul(&y, in.y, zinv_sq); 737 738 Subtract(&out->y, kP, y); 739 Reduce(&out->y); 740 741 memset(&out->z, 0, sizeof(out->z)); 742 out->z[0] = 1; 743 } 744 745 } // namespace p224 746 747 } // namespace crypto 748