1 # benchmark
2 [![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark)
3 [![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master)
4 [![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark)
5 [![slackin](https://slackin-iqtfqnpzxd.now.sh/badge.svg)](https://slackin-iqtfqnpzxd.now.sh/)
6
7 A library to support the benchmarking of functions, similar to unit-tests.
8
9 Discussion group: https://groups.google.com/d/forum/benchmark-discuss
10
11 IRC channel: https://freenode.net #googlebenchmark
12
13 [Known issues and common problems](#known-issues)
14
15 [Additional Tooling Documentation](docs/tools.md)
16
17
18 ## Building
19
20 The basic steps for configuring and building the library look like this:
21
22 ```bash
23 $ git clone https://github.com/google/benchmark.git
24 # Benchmark requires GTest as a dependency. Add the source tree as a subdirectory.
25 $ git clone https://github.com/google/googletest.git benchmark/googletest
26 $ mkdir build && cd build
27 $ cmake -G <generator> [options] ../benchmark
28 # Assuming a makefile generator was used
29 $ make
30 ```
31
32 Note that Google Benchmark requires GTest to build and run the tests. This
33 dependency can be provided three ways:
34
35 * Checkout the GTest sources into `benchmark/googletest`.
36 * Otherwise, if `-DBENCHMARK_DOWNLOAD_DEPENDENCIES=ON` is specified during
37 configuration, the library will automatically download and build any required
38 dependencies.
39 * Otherwise, if nothing is done, CMake will use `find_package(GTest REQUIRED)`
40 to resolve the required GTest dependency.
41
42 If you do not wish to build and run the tests, add `-DBENCHMARK_ENABLE_GTEST_TESTS=OFF`
43 to `CMAKE_ARGS`.
44
45
46 ## Installation Guide
47
48 For Ubuntu and Debian Based System
49
50 First make sure you have git and cmake installed (If not please install it)
51
52 ```
53 sudo apt-get install git
54 sudo apt-get install cmake
55 ```
56
57 Now, let's clone the repository and build it
58
59 ```
60 git clone https://github.com/google/benchmark.git
61 cd benchmark
62 mkdir build
63 cd build
64 cmake .. -DCMAKE_BUILD_TYPE=RELEASE
65 make
66 ```
67
68 We need to install the library globally now
69
70 ```
71 sudo make install
72 ```
73
74 Now you have google/benchmark installed in your machine
75 Note: Don't forget to link to pthread library while building
76
77 ## Stable and Experimental Library Versions
78
79 The main branch contains the latest stable version of the benchmarking library;
80 the API of which can be considered largely stable, with source breaking changes
81 being made only upon the release of a new major version.
82
83 Newer, experimental, features are implemented and tested on the
84 [`v2` branch](https://github.com/google/benchmark/tree/v2). Users who wish
85 to use, test, and provide feedback on the new features are encouraged to try
86 this branch. However, this branch provides no stability guarantees and reserves
87 the right to change and break the API at any time.
88
89
90 ## Example usage
91 ### Basic usage
92 Define a function that executes the code to be measured.
93
94 ```c++
95 #include <benchmark/benchmark.h>
96
97 static void BM_StringCreation(benchmark::State& state) {
98 for (auto _ : state)
99 std::string empty_string;
100 }
101 // Register the function as a benchmark
102 BENCHMARK(BM_StringCreation);
103
104 // Define another benchmark
105 static void BM_StringCopy(benchmark::State& state) {
106 std::string x = "hello";
107 for (auto _ : state)
108 std::string copy(x);
109 }
110 BENCHMARK(BM_StringCopy);
111
112 BENCHMARK_MAIN();
113 ```
114
115 Don't forget to inform your linker to add benchmark library e.g. through `-lbenchmark` compilation flag.
116
117 The benchmark library will reporting the timing for the code within the `for(...)` loop.
118
119 ### Passing arguments
120 Sometimes a family of benchmarks can be implemented with just one routine that
121 takes an extra argument to specify which one of the family of benchmarks to
122 run. For example, the following code defines a family of benchmarks for
123 measuring the speed of `memcpy()` calls of different lengths:
124
125 ```c++
126 static void BM_memcpy(benchmark::State& state) {
127 char* src = new char[state.range(0)];
128 char* dst = new char[state.range(0)];
129 memset(src, 'x', state.range(0));
130 for (auto _ : state)
131 memcpy(dst, src, state.range(0));
132 state.SetBytesProcessed(int64_t(state.iterations()) *
133 int64_t(state.range(0)));
134 delete[] src;
135 delete[] dst;
136 }
137 BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
138 ```
139
140 The preceding code is quite repetitive, and can be replaced with the following
141 short-hand. The following invocation will pick a few appropriate arguments in
142 the specified range and will generate a benchmark for each such argument.
143
144 ```c++
145 BENCHMARK(BM_memcpy)->Range(8, 8<<10);
146 ```
147
148 By default the arguments in the range are generated in multiples of eight and
149 the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
150 range multiplier is changed to multiples of two.
151
152 ```c++
153 BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
154 ```
155 Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
156
157 You might have a benchmark that depends on two or more inputs. For example, the
158 following code defines a family of benchmarks for measuring the speed of set
159 insertion.
160
161 ```c++
162 static void BM_SetInsert(benchmark::State& state) {
163 std::set<int> data;
164 for (auto _ : state) {
165 state.PauseTiming();
166 data = ConstructRandomSet(state.range(0));
167 state.ResumeTiming();
168 for (int j = 0; j < state.range(1); ++j)
169 data.insert(RandomNumber());
170 }
171 }
172 BENCHMARK(BM_SetInsert)
173 ->Args({1<<10, 128})
174 ->Args({2<<10, 128})
175 ->Args({4<<10, 128})
176 ->Args({8<<10, 128})
177 ->Args({1<<10, 512})
178 ->Args({2<<10, 512})
179 ->Args({4<<10, 512})
180 ->Args({8<<10, 512});
181 ```
182
183 The preceding code is quite repetitive, and can be replaced with the following
184 short-hand. The following macro will pick a few appropriate arguments in the
185 product of the two specified ranges and will generate a benchmark for each such
186 pair.
187
188 ```c++
189 BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});
190 ```
191
192 For more complex patterns of inputs, passing a custom function to `Apply` allows
193 programmatic specification of an arbitrary set of arguments on which to run the
194 benchmark. The following example enumerates a dense range on one parameter,
195 and a sparse range on the second.
196
197 ```c++
198 static void CustomArguments(benchmark::internal::Benchmark* b) {
199 for (int i = 0; i <= 10; ++i)
200 for (int j = 32; j <= 1024*1024; j *= 8)
201 b->Args({i, j});
202 }
203 BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
204 ```
205
206 ### Calculate asymptotic complexity (Big O)
207 Asymptotic complexity might be calculated for a family of benchmarks. The
208 following code will calculate the coefficient for the high-order term in the
209 running time and the normalized root-mean square error of string comparison.
210
211 ```c++
212 static void BM_StringCompare(benchmark::State& state) {
213 std::string s1(state.range(0), '-');
214 std::string s2(state.range(0), '-');
215 for (auto _ : state) {
216 benchmark::DoNotOptimize(s1.compare(s2));
217 }
218 state.SetComplexityN(state.range(0));
219 }
220 BENCHMARK(BM_StringCompare)
221 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
222 ```
223
224 As shown in the following invocation, asymptotic complexity might also be
225 calculated automatically.
226
227 ```c++
228 BENCHMARK(BM_StringCompare)
229 ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
230 ```
231
232 The following code will specify asymptotic complexity with a lambda function,
233 that might be used to customize high-order term calculation.
234
235 ```c++
236 BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
237 ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; });
238 ```
239
240 ### Templated benchmarks
241 Templated benchmarks work the same way: This example produces and consumes
242 messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the
243 absence of multiprogramming.
244
245 ```c++
246 template <class Q> int BM_Sequential(benchmark::State& state) {
247 Q q;
248 typename Q::value_type v;
249 for (auto _ : state) {
250 for (int i = state.range(0); i--; )
251 q.push(v);
252 for (int e = state.range(0); e--; )
253 q.Wait(&v);
254 }
255 // actually messages, not bytes:
256 state.SetBytesProcessed(
257 static_cast<int64_t>(state.iterations())*state.range(0));
258 }
259 BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
260 ```
261
262 Three macros are provided for adding benchmark templates.
263
264 ```c++
265 #ifdef BENCHMARK_HAS_CXX11
266 #define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters.
267 #else // C++ < C++11
268 #define BENCHMARK_TEMPLATE(func, arg1)
269 #endif
270 #define BENCHMARK_TEMPLATE1(func, arg1)
271 #define BENCHMARK_TEMPLATE2(func, arg1, arg2)
272 ```
273
274 ### A Faster KeepRunning loop
275
276 In C++11 mode, a ranged-based for loop should be used in preference to
277 the `KeepRunning` loop for running the benchmarks. For example:
278
279 ```c++
280 static void BM_Fast(benchmark::State &state) {
281 for (auto _ : state) {
282 FastOperation();
283 }
284 }
285 BENCHMARK(BM_Fast);
286 ```
287
288 The reason the ranged-for loop is faster than using `KeepRunning`, is
289 because `KeepRunning` requires a memory load and store of the iteration count
290 ever iteration, whereas the ranged-for variant is able to keep the iteration count
291 in a register.
292
293 For example, an empty inner loop of using the ranged-based for method looks like:
294
295 ```asm
296 # Loop Init
297 mov rbx, qword ptr [r14 + 104]
298 call benchmark::State::StartKeepRunning()
299 test rbx, rbx
300 je .LoopEnd
301 .LoopHeader: # =>This Inner Loop Header: Depth=1
302 add rbx, -1
303 jne .LoopHeader
304 .LoopEnd:
305 ```
306
307 Compared to an empty `KeepRunning` loop, which looks like:
308
309 ```asm
310 .LoopHeader: # in Loop: Header=BB0_3 Depth=1
311 cmp byte ptr [rbx], 1
312 jne .LoopInit
313 .LoopBody: # =>This Inner Loop Header: Depth=1
314 mov rax, qword ptr [rbx + 8]
315 lea rcx, [rax + 1]
316 mov qword ptr [rbx + 8], rcx
317 cmp rax, qword ptr [rbx + 104]
318 jb .LoopHeader
319 jmp .LoopEnd
320 .LoopInit:
321 mov rdi, rbx
322 call benchmark::State::StartKeepRunning()
323 jmp .LoopBody
324 .LoopEnd:
325 ```
326
327 Unless C++03 compatibility is required, the ranged-for variant of writing
328 the benchmark loop should be preferred.
329
330 ## Passing arbitrary arguments to a benchmark
331 In C++11 it is possible to define a benchmark that takes an arbitrary number
332 of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
333 macro creates a benchmark that invokes `func` with the `benchmark::State` as
334 the first argument followed by the specified `args...`.
335 The `test_case_name` is appended to the name of the benchmark and
336 should describe the values passed.
337
338 ```c++
339 template <class ...ExtraArgs>
340 void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
341 [...]
342 }
343 // Registers a benchmark named "BM_takes_args/int_string_test" that passes
344 // the specified values to `extra_args`.
345 BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
346 ```
347 Note that elements of `...args` may refer to global variables. Users should
348 avoid modifying global state inside of a benchmark.
349
350 ## Using RegisterBenchmark(name, fn, args...)
351
352 The `RegisterBenchmark(name, func, args...)` function provides an alternative
353 way to create and register benchmarks.
354 `RegisterBenchmark(name, func, args...)` creates, registers, and returns a
355 pointer to a new benchmark with the specified `name` that invokes
356 `func(st, args...)` where `st` is a `benchmark::State` object.
357
358 Unlike the `BENCHMARK` registration macros, which can only be used at the global
359 scope, the `RegisterBenchmark` can be called anywhere. This allows for
360 benchmark tests to be registered programmatically.
361
362 Additionally `RegisterBenchmark` allows any callable object to be registered
363 as a benchmark. Including capturing lambdas and function objects.
364
365 For Example:
366 ```c++
367 auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
368
369 int main(int argc, char** argv) {
370 for (auto& test_input : { /* ... */ })
371 benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
372 benchmark::Initialize(&argc, argv);
373 benchmark::RunSpecifiedBenchmarks();
374 }
375 ```
376
377 ### Multithreaded benchmarks
378 In a multithreaded test (benchmark invoked by multiple threads simultaneously),
379 it is guaranteed that none of the threads will start until all have reached
380 the start of the benchmark loop, and all will have finished before any thread
381 exits the benchmark loop. (This behavior is also provided by the `KeepRunning()`
382 API) As such, any global setup or teardown can be wrapped in a check against the thread
383 index:
384
385 ```c++
386 static void BM_MultiThreaded(benchmark::State& state) {
387 if (state.thread_index == 0) {
388 // Setup code here.
389 }
390 for (auto _ : state) {
391 // Run the test as normal.
392 }
393 if (state.thread_index == 0) {
394 // Teardown code here.
395 }
396 }
397 BENCHMARK(BM_MultiThreaded)->Threads(2);
398 ```
399
400 If the benchmarked code itself uses threads and you want to compare it to
401 single-threaded code, you may want to use real-time ("wallclock") measurements
402 for latency comparisons:
403
404 ```c++
405 BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
406 ```
407
408 Without `UseRealTime`, CPU time is used by default.
409
410
411 ## Manual timing
412 For benchmarking something for which neither CPU time nor real-time are
413 correct or accurate enough, completely manual timing is supported using
414 the `UseManualTime` function.
415
416 When `UseManualTime` is used, the benchmarked code must call
417 `SetIterationTime` once per iteration of the benchmark loop to
418 report the manually measured time.
419
420 An example use case for this is benchmarking GPU execution (e.g. OpenCL
421 or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
422 be accurately measured using CPU time or real-time. Instead, they can be
423 measured accurately using a dedicated API, and these measurement results
424 can be reported back with `SetIterationTime`.
425
426 ```c++
427 static void BM_ManualTiming(benchmark::State& state) {
428 int microseconds = state.range(0);
429 std::chrono::duration<double, std::micro> sleep_duration {
430 static_cast<double>(microseconds)
431 };
432
433 for (auto _ : state) {
434 auto start = std::chrono::high_resolution_clock::now();
435 // Simulate some useful workload with a sleep
436 std::this_thread::sleep_for(sleep_duration);
437 auto end = std::chrono::high_resolution_clock::now();
438
439 auto elapsed_seconds =
440 std::chrono::duration_cast<std::chrono::duration<double>>(
441 end - start);
442
443 state.SetIterationTime(elapsed_seconds.count());
444 }
445 }
446 BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
447 ```
448
449 ### Preventing optimisation
450 To prevent a value or expression from being optimized away by the compiler
451 the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
452 functions can be used.
453
454 ```c++
455 static void BM_test(benchmark::State& state) {
456 for (auto _ : state) {
457 int x = 0;
458 for (int i=0; i < 64; ++i) {
459 benchmark::DoNotOptimize(x += i);
460 }
461 }
462 }
463 ```
464
465 `DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either
466 memory or a register. For GNU based compilers it acts as read/write barrier
467 for global memory. More specifically it forces the compiler to flush pending
468 writes to memory and reload any other values as necessary.
469
470 Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
471 in any way. `<expr>` may even be removed entirely when the result is already
472 known. For example:
473
474 ```c++
475 /* Example 1: `<expr>` is removed entirely. */
476 int foo(int x) { return x + 42; }
477 while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
478
479 /* Example 2: Result of '<expr>' is only reused */
480 int bar(int) __attribute__((const));
481 while (...) DoNotOptimize(bar(0)); // Optimized to:
482 // int __result__ = bar(0);
483 // while (...) DoNotOptimize(__result__);
484 ```
485
486 The second tool for preventing optimizations is `ClobberMemory()`. In essence
487 `ClobberMemory()` forces the compiler to perform all pending writes to global
488 memory. Memory managed by block scope objects must be "escaped" using
489 `DoNotOptimize(...)` before it can be clobbered. In the below example
490 `ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
491 away.
492
493 ```c++
494 static void BM_vector_push_back(benchmark::State& state) {
495 for (auto _ : state) {
496 std::vector<int> v;
497 v.reserve(1);
498 benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
499 v.push_back(42);
500 benchmark::ClobberMemory(); // Force 42 to be written to memory.
501 }
502 }
503 ```
504
505 Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
506
507 ### Set time unit manually
508 If a benchmark runs a few milliseconds it may be hard to visually compare the
509 measured times, since the output data is given in nanoseconds per default. In
510 order to manually set the time unit, you can specify it manually:
511
512 ```c++
513 BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
514 ```
515
516 ## Controlling number of iterations
517 In all cases, the number of iterations for which the benchmark is run is
518 governed by the amount of time the benchmark takes. Concretely, the number of
519 iterations is at least one, not more than 1e9, until CPU time is greater than
520 the minimum time, or the wallclock time is 5x minimum time. The minimum time is
521 set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on
522 the registered benchmark object.
523
524 ## Reporting the mean, median and standard deviation by repeated benchmarks
525 By default each benchmark is run once and that single result is reported.
526 However benchmarks are often noisy and a single result may not be representative
527 of the overall behavior. For this reason it's possible to repeatedly rerun the
528 benchmark.
529
530 The number of runs of each benchmark is specified globally by the
531 `--benchmark_repetitions` flag or on a per benchmark basis by calling
532 `Repetitions` on the registered benchmark object. When a benchmark is run more
533 than once the mean, median and standard deviation of the runs will be reported.
534
535 Additionally the `--benchmark_report_aggregates_only={true|false}` flag or
536 `ReportAggregatesOnly(bool)` function can be used to change how repeated tests
537 are reported. By default the result of each repeated run is reported. When this
538 option is `true` only the mean, median and standard deviation of the runs is reported.
539 Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides
540 the value of the flag for that benchmark.
541
542 ## User-defined statistics for repeated benchmarks
543 While having mean, median and standard deviation is nice, this may not be
544 enough for everyone. For example you may want to know what is the largest
545 observation, e.g. because you have some real-time constraints. This is easy.
546 The following code will specify a custom statistic to be calculated, defined
547 by a lambda function.
548
549 ```c++
550 void BM_spin_empty(benchmark::State& state) {
551 for (auto _ : state) {
552 for (int x = 0; x < state.range(0); ++x) {
553 benchmark::DoNotOptimize(x);
554 }
555 }
556 }
557
558 BENCHMARK(BM_spin_empty)
559 ->ComputeStatistics("max", [](const std::vector<double>& v) -> double {
560 return *(std::max_element(std::begin(v), std::end(v)));
561 })
562 ->Arg(512);
563 ```
564
565 ## Fixtures
566 Fixture tests are created by
567 first defining a type that derives from `::benchmark::Fixture` and then
568 creating/registering the tests using the following macros:
569
570 * `BENCHMARK_F(ClassName, Method)`
571 * `BENCHMARK_DEFINE_F(ClassName, Method)`
572 * `BENCHMARK_REGISTER_F(ClassName, Method)`
573
574 For Example:
575
576 ```c++
577 class MyFixture : public benchmark::Fixture {};
578
579 BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
580 for (auto _ : st) {
581 ...
582 }
583 }
584
585 BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
586 for (auto _ : st) {
587 ...
588 }
589 }
590 /* BarTest is NOT registered */
591 BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
592 /* BarTest is now registered */
593 ```
594
595 ### Templated fixtures
596 Also you can create templated fixture by using the following macros:
597
598 * `BENCHMARK_TEMPLATE_F(ClassName, Method, ...)`
599 * `BENCHMARK_TEMPLATE_DEFINE_F(ClassName, Method, ...)`
600
601 For example:
602 ```c++
603 template<typename T>
604 class MyFixture : public benchmark::Fixture {};
605
606 BENCHMARK_TEMPLATE_F(MyFixture, IntTest, int)(benchmark::State& st) {
607 for (auto _ : st) {
608 ...
609 }
610 }
611
612 BENCHMARK_TEMPLATE_DEFINE_F(MyFixture, DoubleTest, double)(benchmark::State& st) {
613 for (auto _ : st) {
614 ...
615 }
616 }
617
618 BENCHMARK_REGISTER_F(MyFixture, DoubleTest)->Threads(2);
619 ```
620
621 ## User-defined counters
622
623 You can add your own counters with user-defined names. The example below
624 will add columns "Foo", "Bar" and "Baz" in its output:
625
626 ```c++
627 static void UserCountersExample1(benchmark::State& state) {
628 double numFoos = 0, numBars = 0, numBazs = 0;
629 for (auto _ : state) {
630 // ... count Foo,Bar,Baz events
631 }
632 state.counters["Foo"] = numFoos;
633 state.counters["Bar"] = numBars;
634 state.counters["Baz"] = numBazs;
635 }
636 ```
637
638 The `state.counters` object is a `std::map` with `std::string` keys
639 and `Counter` values. The latter is a `double`-like class, via an implicit
640 conversion to `double&`. Thus you can use all of the standard arithmetic
641 assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
642
643 In multithreaded benchmarks, each counter is set on the calling thread only.
644 When the benchmark finishes, the counters from each thread will be summed;
645 the resulting sum is the value which will be shown for the benchmark.
646
647 The `Counter` constructor accepts two parameters: the value as a `double`
648 and a bit flag which allows you to show counters as rates and/or as
649 per-thread averages:
650
651 ```c++
652 // sets a simple counter
653 state.counters["Foo"] = numFoos;
654
655 // Set the counter as a rate. It will be presented divided
656 // by the duration of the benchmark.
657 state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
658
659 // Set the counter as a thread-average quantity. It will
660 // be presented divided by the number of threads.
661 state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
662
663 // There's also a combined flag:
664 state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
665 ```
666
667 When you're compiling in C++11 mode or later you can use `insert()` with
668 `std::initializer_list`:
669
670 ```c++
671 // With C++11, this can be done:
672 state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
673 // ... instead of:
674 state.counters["Foo"] = numFoos;
675 state.counters["Bar"] = numBars;
676 state.counters["Baz"] = numBazs;
677 ```
678
679 ### Counter reporting
680
681 When using the console reporter, by default, user counters are are printed at
682 the end after the table, the same way as ``bytes_processed`` and
683 ``items_processed``. This is best for cases in which there are few counters,
684 or where there are only a couple of lines per benchmark. Here's an example of
685 the default output:
686
687 ```
688 ------------------------------------------------------------------------------
689 Benchmark Time CPU Iterations UserCounters...
690 ------------------------------------------------------------------------------
691 BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8
692 BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m
693 BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2
694 BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4
695 BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8
696 BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16
697 BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32
698 BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4
699 BM_Factorial 26 ns 26 ns 26608979 40320
700 BM_Factorial/real_time 26 ns 26 ns 26587936 40320
701 BM_CalculatePiRange/1 16 ns 16 ns 45704255 0
702 BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374
703 BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746
704 BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355
705 ```
706
707 If this doesn't suit you, you can print each counter as a table column by
708 passing the flag `--benchmark_counters_tabular=true` to the benchmark
709 application. This is best for cases in which there are a lot of counters, or
710 a lot of lines per individual benchmark. Note that this will trigger a
711 reprinting of the table header any time the counter set changes between
712 individual benchmarks. Here's an example of corresponding output when
713 `--benchmark_counters_tabular=true` is passed:
714
715 ```
716 ---------------------------------------------------------------------------------------
717 Benchmark Time CPU Iterations Bar Bat Baz Foo
718 ---------------------------------------------------------------------------------------
719 BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8
720 BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1
721 BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2
722 BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4
723 BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8
724 BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16
725 BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32
726 BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4
727 --------------------------------------------------------------
728 Benchmark Time CPU Iterations
729 --------------------------------------------------------------
730 BM_Factorial 26 ns 26 ns 26392245 40320
731 BM_Factorial/real_time 26 ns 26 ns 26494107 40320
732 BM_CalculatePiRange/1 15 ns 15 ns 45571597 0
733 BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374
734 BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746
735 BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355
736 BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184
737 BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162
738 BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416
739 BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159
740 BM_CalculatePi/threads:8 2255 ns 9943 ns 70936
741 ```
742 Note above the additional header printed when the benchmark changes from
743 ``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
744 not have the same counter set as ``BM_UserCounter``.
745
746 ## Exiting Benchmarks in Error
747
748 When errors caused by external influences, such as file I/O and network
749 communication, occur within a benchmark the
750 `State::SkipWithError(const char* msg)` function can be used to skip that run
751 of benchmark and report the error. Note that only future iterations of the
752 `KeepRunning()` are skipped. For the ranged-for version of the benchmark loop
753 Users must explicitly exit the loop, otherwise all iterations will be performed.
754 Users may explicitly return to exit the benchmark immediately.
755
756 The `SkipWithError(...)` function may be used at any point within the benchmark,
757 including before and after the benchmark loop.
758
759 For example:
760
761 ```c++
762 static void BM_test(benchmark::State& state) {
763 auto resource = GetResource();
764 if (!resource.good()) {
765 state.SkipWithError("Resource is not good!");
766 // KeepRunning() loop will not be entered.
767 }
768 for (state.KeepRunning()) {
769 auto data = resource.read_data();
770 if (!resource.good()) {
771 state.SkipWithError("Failed to read data!");
772 break; // Needed to skip the rest of the iteration.
773 }
774 do_stuff(data);
775 }
776 }
777
778 static void BM_test_ranged_fo(benchmark::State & state) {
779 state.SkipWithError("test will not be entered");
780 for (auto _ : state) {
781 state.SkipWithError("Failed!");
782 break; // REQUIRED to prevent all further iterations.
783 }
784 }
785 ```
786
787 ## Running a subset of the benchmarks
788
789 The `--benchmark_filter=<regex>` option can be used to only run the benchmarks
790 which match the specified `<regex>`. For example:
791
792 ```bash
793 $ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
794 Run on (1 X 2300 MHz CPU )
795 2016-06-25 19:34:24
796 Benchmark Time CPU Iterations
797 ----------------------------------------------------
798 BM_memcpy/32 11 ns 11 ns 79545455
799 BM_memcpy/32k 2181 ns 2185 ns 324074
800 BM_memcpy/32 12 ns 12 ns 54687500
801 BM_memcpy/32k 1834 ns 1837 ns 357143
802 ```
803
804
805 ## Output Formats
806 The library supports multiple output formats. Use the
807 `--benchmark_format=<console|json|csv>` flag to set the format type. `console`
808 is the default format.
809
810 The Console format is intended to be a human readable format. By default
811 the format generates color output. Context is output on stderr and the
812 tabular data on stdout. Example tabular output looks like:
813 ```
814 Benchmark Time(ns) CPU(ns) Iterations
815 ----------------------------------------------------------------------
816 BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
817 BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
818 BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
819 ```
820
821 The JSON format outputs human readable json split into two top level attributes.
822 The `context` attribute contains information about the run in general, including
823 information about the CPU and the date.
824 The `benchmarks` attribute contains a list of ever benchmark run. Example json
825 output looks like:
826 ```json
827 {
828 "context": {
829 "date": "2015/03/17-18:40:25",
830 "num_cpus": 40,
831 "mhz_per_cpu": 2801,
832 "cpu_scaling_enabled": false,
833 "build_type": "debug"
834 },
835 "benchmarks": [
836 {
837 "name": "BM_SetInsert/1024/1",
838 "iterations": 94877,
839 "real_time": 29275,
840 "cpu_time": 29836,
841 "bytes_per_second": 134066,
842 "items_per_second": 33516
843 },
844 {
845 "name": "BM_SetInsert/1024/8",
846 "iterations": 21609,
847 "real_time": 32317,
848 "cpu_time": 32429,
849 "bytes_per_second": 986770,
850 "items_per_second": 246693
851 },
852 {
853 "name": "BM_SetInsert/1024/10",
854 "iterations": 21393,
855 "real_time": 32724,
856 "cpu_time": 33355,
857 "bytes_per_second": 1199226,
858 "items_per_second": 299807
859 }
860 ]
861 }
862 ```
863
864 The CSV format outputs comma-separated values. The `context` is output on stderr
865 and the CSV itself on stdout. Example CSV output looks like:
866 ```
867 name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
868 "BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
869 "BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
870 "BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
871 ```
872
873 ## Output Files
874 The library supports writing the output of the benchmark to a file specified
875 by `--benchmark_out=<filename>`. The format of the output can be specified
876 using `--benchmark_out_format={json|console|csv}`. Specifying
877 `--benchmark_out` does not suppress the console output.
878
879 ## Debug vs Release
880 By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use:
881
882 ```
883 cmake -DCMAKE_BUILD_TYPE=Release
884 ```
885
886 To enable link-time optimisation, use
887
888 ```
889 cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true
890 ```
891
892 If you are using gcc, you might need to set `GCC_AR` and `GCC_RANLIB` cmake cache variables, if autodetection fails.
893 If you are using clang, you may need to set `LLVMAR_EXECUTABLE`, `LLVMNM_EXECUTABLE` and `LLVMRANLIB_EXECUTABLE` cmake cache variables.
894
895 ## Linking against the library
896 When using gcc, it is necessary to link against pthread to avoid runtime exceptions.
897 This is due to how gcc implements std::thread.
898 See [issue #67](https://github.com/google/benchmark/issues/67) for more details.
899
900 ## Compiler Support
901
902 Google Benchmark uses C++11 when building the library. As such we require
903 a modern C++ toolchain, both compiler and standard library.
904
905 The following minimum versions are strongly recommended build the library:
906
907 * GCC 4.8
908 * Clang 3.4
909 * Visual Studio 2013
910 * Intel 2015 Update 1
911
912 Anything older *may* work.
913
914 Note: Using the library and its headers in C++03 is supported. C++11 is only
915 required to build the library.
916
917 ## Disable CPU frequency scaling
918 If you see this error:
919 ```
920 ***WARNING*** CPU scaling is enabled, the benchmark real time measurements may be noisy and will incur extra overhead.
921 ```
922 you might want to disable the CPU frequency scaling while running the benchmark:
923 ```bash
924 sudo cpupower frequency-set --governor performance
925 ./mybench
926 sudo cpupower frequency-set --governor powersave
927 ```
928
929 # Known Issues
930
931 ### Windows
932
933 * Users must manually link `shlwapi.lib`. Failure to do so may result
934 in unresolved symbols.
935
936