1 /* 2 This is a version (aka dlmalloc) of malloc/free/realloc written by 3 Doug Lea and released to the public domain, as explained at 4 http://creativecommons.org/licenses/publicdomain. Send questions, 5 comments, complaints, performance data, etc to dl (at) cs.oswego.edu 6 7 * Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee) 8 9 Note: There may be an updated version of this malloc obtainable at 10 ftp://gee.cs.oswego.edu/pub/misc/malloc.c 11 Check before installing! 12 13 * Quickstart 14 15 This library is all in one file to simplify the most common usage: 16 ftp it, compile it (-O3), and link it into another program. All of 17 the compile-time options default to reasonable values for use on 18 most platforms. You might later want to step through various 19 compile-time and dynamic tuning options. 20 21 For convenience, an include file for code using this malloc is at: 22 ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h 23 You don't really need this .h file unless you call functions not 24 defined in your system include files. The .h file contains only the 25 excerpts from this file needed for using this malloc on ANSI C/C++ 26 systems, so long as you haven't changed compile-time options about 27 naming and tuning parameters. If you do, then you can create your 28 own malloc.h that does include all settings by cutting at the point 29 indicated below. Note that you may already by default be using a C 30 library containing a malloc that is based on some version of this 31 malloc (for example in linux). You might still want to use the one 32 in this file to customize settings or to avoid overheads associated 33 with library versions. 34 35 * Vital statistics: 36 37 Supported pointer/size_t representation: 4 or 8 bytes 38 size_t MUST be an unsigned type of the same width as 39 pointers. (If you are using an ancient system that declares 40 size_t as a signed type, or need it to be a different width 41 than pointers, you can use a previous release of this malloc 42 (e.g. 2.7.2) supporting these.) 43 44 Alignment: 8 bytes (default) 45 This suffices for nearly all current machines and C compilers. 46 However, you can define MALLOC_ALIGNMENT to be wider than this 47 if necessary (up to 128bytes), at the expense of using more space. 48 49 Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) 50 8 or 16 bytes (if 8byte sizes) 51 Each malloced chunk has a hidden word of overhead holding size 52 and status information, and additional cross-check word 53 if FOOTERS is defined. 54 55 Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) 56 8-byte ptrs: 32 bytes (including overhead) 57 58 Even a request for zero bytes (i.e., malloc(0)) returns a 59 pointer to something of the minimum allocatable size. 60 The maximum overhead wastage (i.e., number of extra bytes 61 allocated than were requested in malloc) is less than or equal 62 to the minimum size, except for requests >= mmap_threshold that 63 are serviced via mmap(), where the worst case wastage is about 64 32 bytes plus the remainder from a system page (the minimal 65 mmap unit); typically 4096 or 8192 bytes. 66 67 Security: static-safe; optionally more or less 68 The "security" of malloc refers to the ability of malicious 69 code to accentuate the effects of errors (for example, freeing 70 space that is not currently malloc'ed or overwriting past the 71 ends of chunks) in code that calls malloc. This malloc 72 guarantees not to modify any memory locations below the base of 73 heap, i.e., static variables, even in the presence of usage 74 errors. The routines additionally detect most improper frees 75 and reallocs. All this holds as long as the static bookkeeping 76 for malloc itself is not corrupted by some other means. This 77 is only one aspect of security -- these checks do not, and 78 cannot, detect all possible programming errors. 79 80 If FOOTERS is defined nonzero, then each allocated chunk 81 carries an additional check word to verify that it was malloced 82 from its space. These check words are the same within each 83 execution of a program using malloc, but differ across 84 executions, so externally crafted fake chunks cannot be 85 freed. This improves security by rejecting frees/reallocs that 86 could corrupt heap memory, in addition to the checks preventing 87 writes to statics that are always on. This may further improve 88 security at the expense of time and space overhead. (Note that 89 FOOTERS may also be worth using with MSPACES.) 90 91 By default detected errors cause the program to abort (calling 92 "abort()"). You can override this to instead proceed past 93 errors by defining PROCEED_ON_ERROR. In this case, a bad free 94 has no effect, and a malloc that encounters a bad address 95 caused by user overwrites will ignore the bad address by 96 dropping pointers and indices to all known memory. This may 97 be appropriate for programs that should continue if at all 98 possible in the face of programming errors, although they may 99 run out of memory because dropped memory is never reclaimed. 100 101 If you don't like either of these options, you can define 102 CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything 103 else. And if if you are sure that your program using malloc has 104 no errors or vulnerabilities, you can define INSECURE to 1, 105 which might (or might not) provide a small performance improvement. 106 107 Thread-safety: NOT thread-safe unless USE_LOCKS defined 108 When USE_LOCKS is defined, each public call to malloc, free, 109 etc is surrounded with either a pthread mutex or a win32 110 spinlock (depending on WIN32). This is not especially fast, and 111 can be a major bottleneck. It is designed only to provide 112 minimal protection in concurrent environments, and to provide a 113 basis for extensions. If you are using malloc in a concurrent 114 program, consider instead using ptmalloc, which is derived from 115 a version of this malloc. (See http://www.malloc.de). 116 117 System requirements: Any combination of MORECORE and/or MMAP/MUNMAP 118 This malloc can use unix sbrk or any emulation (invoked using 119 the CALL_MORECORE macro) and/or mmap/munmap or any emulation 120 (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system 121 memory. On most unix systems, it tends to work best if both 122 MORECORE and MMAP are enabled. On Win32, it uses emulations 123 based on VirtualAlloc. It also uses common C library functions 124 like memset. 125 126 Compliance: I believe it is compliant with the Single Unix Specification 127 (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably 128 others as well. 129 130 * Overview of algorithms 131 132 This is not the fastest, most space-conserving, most portable, or 133 most tunable malloc ever written. However it is among the fastest 134 while also being among the most space-conserving, portable and 135 tunable. Consistent balance across these factors results in a good 136 general-purpose allocator for malloc-intensive programs. 137 138 In most ways, this malloc is a best-fit allocator. Generally, it 139 chooses the best-fitting existing chunk for a request, with ties 140 broken in approximately least-recently-used order. (This strategy 141 normally maintains low fragmentation.) However, for requests less 142 than 256bytes, it deviates from best-fit when there is not an 143 exactly fitting available chunk by preferring to use space adjacent 144 to that used for the previous small request, as well as by breaking 145 ties in approximately most-recently-used order. (These enhance 146 locality of series of small allocations.) And for very large requests 147 (>= 256Kb by default), it relies on system memory mapping 148 facilities, if supported. (This helps avoid carrying around and 149 possibly fragmenting memory used only for large chunks.) 150 151 All operations (except malloc_stats and mallinfo) have execution 152 times that are bounded by a constant factor of the number of bits in 153 a size_t, not counting any clearing in calloc or copying in realloc, 154 or actions surrounding MORECORE and MMAP that have times 155 proportional to the number of non-contiguous regions returned by 156 system allocation routines, which is often just 1. 157 158 The implementation is not very modular and seriously overuses 159 macros. Perhaps someday all C compilers will do as good a job 160 inlining modular code as can now be done by brute-force expansion, 161 but now, enough of them seem not to. 162 163 Some compilers issue a lot of warnings about code that is 164 dead/unreachable only on some platforms, and also about intentional 165 uses of negation on unsigned types. All known cases of each can be 166 ignored. 167 168 For a longer but out of date high-level description, see 169 http://gee.cs.oswego.edu/dl/html/malloc.html 170 171 * MSPACES 172 If MSPACES is defined, then in addition to malloc, free, etc., 173 this file also defines mspace_malloc, mspace_free, etc. These 174 are versions of malloc routines that take an "mspace" argument 175 obtained using create_mspace, to control all internal bookkeeping. 176 If ONLY_MSPACES is defined, only these versions are compiled. 177 So if you would like to use this allocator for only some allocations, 178 and your system malloc for others, you can compile with 179 ONLY_MSPACES and then do something like... 180 static mspace mymspace = create_mspace(0,0); // for example 181 #define mymalloc(bytes) mspace_malloc(mymspace, bytes) 182 183 (Note: If you only need one instance of an mspace, you can instead 184 use "USE_DL_PREFIX" to relabel the global malloc.) 185 186 You can similarly create thread-local allocators by storing 187 mspaces as thread-locals. For example: 188 static __thread mspace tlms = 0; 189 void* tlmalloc(size_t bytes) { 190 if (tlms == 0) tlms = create_mspace(0, 0); 191 return mspace_malloc(tlms, bytes); 192 } 193 void tlfree(void* mem) { mspace_free(tlms, mem); } 194 195 Unless FOOTERS is defined, each mspace is completely independent. 196 You cannot allocate from one and free to another (although 197 conformance is only weakly checked, so usage errors are not always 198 caught). If FOOTERS is defined, then each chunk carries around a tag 199 indicating its originating mspace, and frees are directed to their 200 originating spaces. 201 202 ------------------------- Compile-time options --------------------------- 203 204 Be careful in setting #define values for numerical constants of type 205 size_t. On some systems, literal values are not automatically extended 206 to size_t precision unless they are explicitly casted. 207 208 WIN32 default: defined if _WIN32 defined 209 Defining WIN32 sets up defaults for MS environment and compilers. 210 Otherwise defaults are for unix. 211 212 MALLOC_ALIGNMENT default: (size_t)8 213 Controls the minimum alignment for malloc'ed chunks. It must be a 214 power of two and at least 8, even on machines for which smaller 215 alignments would suffice. It may be defined as larger than this 216 though. Note however that code and data structures are optimized for 217 the case of 8-byte alignment. 218 219 MSPACES default: 0 (false) 220 If true, compile in support for independent allocation spaces. 221 This is only supported if HAVE_MMAP is true. 222 223 ONLY_MSPACES default: 0 (false) 224 If true, only compile in mspace versions, not regular versions. 225 226 USE_LOCKS default: 0 (false) 227 Causes each call to each public routine to be surrounded with 228 pthread or WIN32 mutex lock/unlock. (If set true, this can be 229 overridden on a per-mspace basis for mspace versions.) 230 231 FOOTERS default: 0 232 If true, provide extra checking and dispatching by placing 233 information in the footers of allocated chunks. This adds 234 space and time overhead. 235 236 INSECURE default: 0 237 If true, omit checks for usage errors and heap space overwrites. 238 239 USE_DL_PREFIX default: NOT defined 240 Causes compiler to prefix all public routines with the string 'dl'. 241 This can be useful when you only want to use this malloc in one part 242 of a program, using your regular system malloc elsewhere. 243 244 ABORT default: defined as abort() 245 Defines how to abort on failed checks. On most systems, a failed 246 check cannot die with an "assert" or even print an informative 247 message, because the underlying print routines in turn call malloc, 248 which will fail again. Generally, the best policy is to simply call 249 abort(). It's not very useful to do more than this because many 250 errors due to overwriting will show up as address faults (null, odd 251 addresses etc) rather than malloc-triggered checks, so will also 252 abort. Also, most compilers know that abort() does not return, so 253 can better optimize code conditionally calling it. 254 255 PROCEED_ON_ERROR default: defined as 0 (false) 256 Controls whether detected bad addresses cause them to bypassed 257 rather than aborting. If set, detected bad arguments to free and 258 realloc are ignored. And all bookkeeping information is zeroed out 259 upon a detected overwrite of freed heap space, thus losing the 260 ability to ever return it from malloc again, but enabling the 261 application to proceed. If PROCEED_ON_ERROR is defined, the 262 static variable malloc_corruption_error_count is compiled in 263 and can be examined to see if errors have occurred. This option 264 generates slower code than the default abort policy. 265 266 DEBUG default: NOT defined 267 The DEBUG setting is mainly intended for people trying to modify 268 this code or diagnose problems when porting to new platforms. 269 However, it may also be able to better isolate user errors than just 270 using runtime checks. The assertions in the check routines spell 271 out in more detail the assumptions and invariants underlying the 272 algorithms. The checking is fairly extensive, and will slow down 273 execution noticeably. Calling malloc_stats or mallinfo with DEBUG 274 set will attempt to check every non-mmapped allocated and free chunk 275 in the course of computing the summaries. 276 277 ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) 278 Debugging assertion failures can be nearly impossible if your 279 version of the assert macro causes malloc to be called, which will 280 lead to a cascade of further failures, blowing the runtime stack. 281 ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), 282 which will usually make debugging easier. 283 284 MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 285 The action to take before "return 0" when malloc fails to be able to 286 return memory because there is none available. 287 288 HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES 289 True if this system supports sbrk or an emulation of it. 290 291 MORECORE default: sbrk 292 The name of the sbrk-style system routine to call to obtain more 293 memory. See below for guidance on writing custom MORECORE 294 functions. The type of the argument to sbrk/MORECORE varies across 295 systems. It cannot be size_t, because it supports negative 296 arguments, so it is normally the signed type of the same width as 297 size_t (sometimes declared as "intptr_t"). It doesn't much matter 298 though. Internally, we only call it with arguments less than half 299 the max value of a size_t, which should work across all reasonable 300 possibilities, although sometimes generating compiler warnings. See 301 near the end of this file for guidelines for creating a custom 302 version of MORECORE. 303 304 MORECORE_CONTIGUOUS default: 1 (true) 305 If true, take advantage of fact that consecutive calls to MORECORE 306 with positive arguments always return contiguous increasing 307 addresses. This is true of unix sbrk. It does not hurt too much to 308 set it true anyway, since malloc copes with non-contiguities. 309 Setting it false when definitely non-contiguous saves time 310 and possibly wasted space it would take to discover this though. 311 312 MORECORE_CANNOT_TRIM default: NOT defined 313 True if MORECORE cannot release space back to the system when given 314 negative arguments. This is generally necessary only if you are 315 using a hand-crafted MORECORE function that cannot handle negative 316 arguments. 317 318 HAVE_MMAP default: 1 (true) 319 True if this system supports mmap or an emulation of it. If so, and 320 HAVE_MORECORE is not true, MMAP is used for all system 321 allocation. If set and HAVE_MORECORE is true as well, MMAP is 322 primarily used to directly allocate very large blocks. It is also 323 used as a backup strategy in cases where MORECORE fails to provide 324 space from system. Note: A single call to MUNMAP is assumed to be 325 able to unmap memory that may have be allocated using multiple calls 326 to MMAP, so long as they are adjacent. 327 328 HAVE_MREMAP default: 1 on linux, else 0 329 If true realloc() uses mremap() to re-allocate large blocks and 330 extend or shrink allocation spaces. 331 332 MMAP_CLEARS default: 1 on unix 333 True if mmap clears memory so calloc doesn't need to. This is true 334 for standard unix mmap using /dev/zero. 335 336 USE_BUILTIN_FFS default: 0 (i.e., not used) 337 Causes malloc to use the builtin ffs() function to compute indices. 338 Some compilers may recognize and intrinsify ffs to be faster than the 339 supplied C version. Also, the case of x86 using gcc is special-cased 340 to an asm instruction, so is already as fast as it can be, and so 341 this setting has no effect. (On most x86s, the asm version is only 342 slightly faster than the C version.) 343 344 malloc_getpagesize default: derive from system includes, or 4096. 345 The system page size. To the extent possible, this malloc manages 346 memory from the system in page-size units. This may be (and 347 usually is) a function rather than a constant. This is ignored 348 if WIN32, where page size is determined using getSystemInfo during 349 initialization. 350 351 USE_DEV_RANDOM default: 0 (i.e., not used) 352 Causes malloc to use /dev/random to initialize secure magic seed for 353 stamping footers. Otherwise, the current time is used. 354 355 NO_MALLINFO default: 0 356 If defined, don't compile "mallinfo". This can be a simple way 357 of dealing with mismatches between system declarations and 358 those in this file. 359 360 MALLINFO_FIELD_TYPE default: size_t 361 The type of the fields in the mallinfo struct. This was originally 362 defined as "int" in SVID etc, but is more usefully defined as 363 size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set 364 365 REALLOC_ZERO_BYTES_FREES default: not defined 366 This should be set if a call to realloc with zero bytes should 367 be the same as a call to free. Some people think it should. Otherwise, 368 since this malloc returns a unique pointer for malloc(0), so does 369 realloc(p, 0). 370 371 LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H 372 LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H 373 LACKS_STDLIB_H default: NOT defined unless on WIN32 374 Define these if your system does not have these header files. 375 You might need to manually insert some of the declarations they provide. 376 377 DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, 378 system_info.dwAllocationGranularity in WIN32, 379 otherwise 64K. 380 Also settable using mallopt(M_GRANULARITY, x) 381 The unit for allocating and deallocating memory from the system. On 382 most systems with contiguous MORECORE, there is no reason to 383 make this more than a page. However, systems with MMAP tend to 384 either require or encourage larger granularities. You can increase 385 this value to prevent system allocation functions to be called so 386 often, especially if they are slow. The value must be at least one 387 page and must be a power of two. Setting to 0 causes initialization 388 to either page size or win32 region size. (Note: In previous 389 versions of malloc, the equivalent of this option was called 390 "TOP_PAD") 391 392 DEFAULT_TRIM_THRESHOLD default: 2MB 393 Also settable using mallopt(M_TRIM_THRESHOLD, x) 394 The maximum amount of unused top-most memory to keep before 395 releasing via malloc_trim in free(). Automatic trimming is mainly 396 useful in long-lived programs using contiguous MORECORE. Because 397 trimming via sbrk can be slow on some systems, and can sometimes be 398 wasteful (in cases where programs immediately afterward allocate 399 more large chunks) the value should be high enough so that your 400 overall system performance would improve by releasing this much 401 memory. As a rough guide, you might set to a value close to the 402 average size of a process (program) running on your system. 403 Releasing this much memory would allow such a process to run in 404 memory. Generally, it is worth tuning trim thresholds when a 405 program undergoes phases where several large chunks are allocated 406 and released in ways that can reuse each other's storage, perhaps 407 mixed with phases where there are no such chunks at all. The trim 408 value must be greater than page size to have any useful effect. To 409 disable trimming completely, you can set to MAX_SIZE_T. Note that the trick 410 some people use of mallocing a huge space and then freeing it at 411 program startup, in an attempt to reserve system memory, doesn't 412 have the intended effect under automatic trimming, since that memory 413 will immediately be returned to the system. 414 415 DEFAULT_MMAP_THRESHOLD default: 256K 416 Also settable using mallopt(M_MMAP_THRESHOLD, x) 417 The request size threshold for using MMAP to directly service a 418 request. Requests of at least this size that cannot be allocated 419 using already-existing space will be serviced via mmap. (If enough 420 normal freed space already exists it is used instead.) Using mmap 421 segregates relatively large chunks of memory so that they can be 422 individually obtained and released from the host system. A request 423 serviced through mmap is never reused by any other request (at least 424 not directly; the system may just so happen to remap successive 425 requests to the same locations). Segregating space in this way has 426 the benefits that: Mmapped space can always be individually released 427 back to the system, which helps keep the system level memory demands 428 of a long-lived program low. Also, mapped memory doesn't become 429 `locked' between other chunks, as can happen with normally allocated 430 chunks, which means that even trimming via malloc_trim would not 431 release them. However, it has the disadvantage that the space 432 cannot be reclaimed, consolidated, and then used to service later 433 requests, as happens with normal chunks. The advantages of mmap 434 nearly always outweigh disadvantages for "large" chunks, but the 435 value of "large" may vary across systems. The default is an 436 empirically derived value that works well in most systems. You can 437 disable mmap by setting to MAX_SIZE_T. 438 439 */ 440 441 #ifndef WIN32 442 #ifdef _WIN32 443 #define WIN32 1 444 #endif /* _WIN32 */ 445 #endif /* WIN32 */ 446 #ifdef WIN32 447 #define WIN32_LEAN_AND_MEAN 448 #include <windows.h> 449 #define HAVE_MMAP 1 450 #define HAVE_MORECORE 0 451 #define LACKS_UNISTD_H 452 #define LACKS_SYS_PARAM_H 453 #define LACKS_SYS_MMAN_H 454 #define LACKS_STRING_H 455 #define LACKS_STRINGS_H 456 #define LACKS_SYS_TYPES_H 457 #define LACKS_ERRNO_H 458 #define MALLOC_FAILURE_ACTION 459 #define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */ 460 #endif /* WIN32 */ 461 462 #ifdef __OS2__ 463 #define INCL_DOS 464 #include <os2.h> 465 #define HAVE_MMAP 1 466 #define HAVE_MORECORE 0 467 #define LACKS_SYS_MMAN_H 468 #endif /* __OS2__ */ 469 470 #if defined(DARWIN) || defined(_DARWIN) 471 /* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ 472 #ifndef HAVE_MORECORE 473 #define HAVE_MORECORE 0 474 #define HAVE_MMAP 1 475 #endif /* HAVE_MORECORE */ 476 #endif /* DARWIN */ 477 478 #ifndef LACKS_SYS_TYPES_H 479 #include <sys/types.h> /* For size_t */ 480 #endif /* LACKS_SYS_TYPES_H */ 481 482 /* The maximum possible size_t value has all bits set */ 483 #define MAX_SIZE_T (~(size_t)0) 484 485 #ifndef ONLY_MSPACES 486 #define ONLY_MSPACES 0 487 #endif /* ONLY_MSPACES */ 488 #ifndef MSPACES 489 #if ONLY_MSPACES 490 #define MSPACES 1 491 #else /* ONLY_MSPACES */ 492 #define MSPACES 0 493 #endif /* ONLY_MSPACES */ 494 #endif /* MSPACES */ 495 #ifndef MALLOC_ALIGNMENT 496 #define MALLOC_ALIGNMENT ((size_t)8U) 497 #endif /* MALLOC_ALIGNMENT */ 498 #ifndef FOOTERS 499 #define FOOTERS 0 500 #endif /* FOOTERS */ 501 #ifndef ABORT 502 #define ABORT abort() 503 #endif /* ABORT */ 504 #ifndef ABORT_ON_ASSERT_FAILURE 505 #define ABORT_ON_ASSERT_FAILURE 1 506 #endif /* ABORT_ON_ASSERT_FAILURE */ 507 #ifndef PROCEED_ON_ERROR 508 #define PROCEED_ON_ERROR 0 509 #endif /* PROCEED_ON_ERROR */ 510 #ifndef USE_LOCKS 511 #define USE_LOCKS 0 512 #endif /* USE_LOCKS */ 513 #ifndef INSECURE 514 #define INSECURE 0 515 #endif /* INSECURE */ 516 #ifndef HAVE_MMAP 517 #define HAVE_MMAP 1 518 #endif /* HAVE_MMAP */ 519 #ifndef MMAP_CLEARS 520 #define MMAP_CLEARS 1 521 #endif /* MMAP_CLEARS */ 522 #ifndef HAVE_MREMAP 523 #ifdef linux 524 #define HAVE_MREMAP 1 525 #else /* linux */ 526 #define HAVE_MREMAP 0 527 #endif /* linux */ 528 #endif /* HAVE_MREMAP */ 529 #ifndef MALLOC_FAILURE_ACTION 530 #define MALLOC_FAILURE_ACTION errno = ENOMEM; 531 #endif /* MALLOC_FAILURE_ACTION */ 532 #ifndef HAVE_MORECORE 533 #if ONLY_MSPACES 534 #define HAVE_MORECORE 0 535 #else /* ONLY_MSPACES */ 536 #define HAVE_MORECORE 1 537 #endif /* ONLY_MSPACES */ 538 #endif /* HAVE_MORECORE */ 539 #if !HAVE_MORECORE 540 #define MORECORE_CONTIGUOUS 0 541 #else /* !HAVE_MORECORE */ 542 #ifndef MORECORE 543 #define MORECORE sbrk 544 #endif /* MORECORE */ 545 #ifndef MORECORE_CONTIGUOUS 546 #define MORECORE_CONTIGUOUS 1 547 #endif /* MORECORE_CONTIGUOUS */ 548 #endif /* HAVE_MORECORE */ 549 #ifndef DEFAULT_GRANULARITY 550 #if MORECORE_CONTIGUOUS 551 #define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ 552 #else /* MORECORE_CONTIGUOUS */ 553 #define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) 554 #endif /* MORECORE_CONTIGUOUS */ 555 #endif /* DEFAULT_GRANULARITY */ 556 #ifndef DEFAULT_TRIM_THRESHOLD 557 #ifndef MORECORE_CANNOT_TRIM 558 #define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) 559 #else /* MORECORE_CANNOT_TRIM */ 560 #define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T 561 #endif /* MORECORE_CANNOT_TRIM */ 562 #endif /* DEFAULT_TRIM_THRESHOLD */ 563 #ifndef DEFAULT_MMAP_THRESHOLD 564 #if HAVE_MMAP 565 #define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) 566 #else /* HAVE_MMAP */ 567 #define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T 568 #endif /* HAVE_MMAP */ 569 #endif /* DEFAULT_MMAP_THRESHOLD */ 570 #ifndef USE_BUILTIN_FFS 571 #define USE_BUILTIN_FFS 0 572 #endif /* USE_BUILTIN_FFS */ 573 #ifndef USE_DEV_RANDOM 574 #define USE_DEV_RANDOM 0 575 #endif /* USE_DEV_RANDOM */ 576 #ifndef NO_MALLINFO 577 #define NO_MALLINFO 0 578 #endif /* NO_MALLINFO */ 579 #ifndef MALLINFO_FIELD_TYPE 580 #define MALLINFO_FIELD_TYPE size_t 581 #endif /* MALLINFO_FIELD_TYPE */ 582 583 /* 584 mallopt tuning options. SVID/XPG defines four standard parameter 585 numbers for mallopt, normally defined in malloc.h. None of these 586 are used in this malloc, so setting them has no effect. But this 587 malloc does support the following options. 588 */ 589 590 #define M_TRIM_THRESHOLD (-1) 591 #define M_GRANULARITY (-2) 592 #define M_MMAP_THRESHOLD (-3) 593 594 /* ------------------------ Mallinfo declarations ------------------------ */ 595 596 #if !NO_MALLINFO 597 /* 598 This version of malloc supports the standard SVID/XPG mallinfo 599 routine that returns a struct containing usage properties and 600 statistics. It should work on any system that has a 601 /usr/include/malloc.h defining struct mallinfo. The main 602 declaration needed is the mallinfo struct that is returned (by-copy) 603 by mallinfo(). The malloinfo struct contains a bunch of fields that 604 are not even meaningful in this version of malloc. These fields are 605 are instead filled by mallinfo() with other numbers that might be of 606 interest. 607 608 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a 609 /usr/include/malloc.h file that includes a declaration of struct 610 mallinfo. If so, it is included; else a compliant version is 611 declared below. These must be precisely the same for mallinfo() to 612 work. The original SVID version of this struct, defined on most 613 systems with mallinfo, declares all fields as ints. But some others 614 define as unsigned long. If your system defines the fields using a 615 type of different width than listed here, you MUST #include your 616 system version and #define HAVE_USR_INCLUDE_MALLOC_H. 617 */ 618 619 /* #define HAVE_USR_INCLUDE_MALLOC_H */ 620 621 #ifdef HAVE_USR_INCLUDE_MALLOC_H 622 #include "/usr/include/malloc.h" 623 #else /* HAVE_USR_INCLUDE_MALLOC_H */ 624 625 /* HP-UX's stdlib.h redefines mallinfo unless _STRUCT_MALLINFO is defined */ 626 #define _STRUCT_MALLINFO 627 628 struct mallinfo { 629 MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ 630 MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ 631 MALLINFO_FIELD_TYPE smblks; /* always 0 */ 632 MALLINFO_FIELD_TYPE hblks; /* always 0 */ 633 MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ 634 MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ 635 MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ 636 MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ 637 MALLINFO_FIELD_TYPE fordblks; /* total free space */ 638 MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ 639 }; 640 641 #endif /* HAVE_USR_INCLUDE_MALLOC_H */ 642 #endif /* NO_MALLINFO */ 643 644 #ifdef __cplusplus 645 extern "C" { 646 #endif /* __cplusplus */ 647 648 #if !ONLY_MSPACES 649 650 /* ------------------- Declarations of public routines ------------------- */ 651 652 #ifndef USE_DL_PREFIX 653 #define dlcalloc calloc 654 #define dlfree free 655 #define dlmalloc malloc 656 #define dlmemalign memalign 657 #define dlrealloc realloc 658 #define dlvalloc valloc 659 #define dlpvalloc pvalloc 660 #define dlmallinfo mallinfo 661 #define dlmallopt mallopt 662 #define dlmalloc_trim malloc_trim 663 #define dlmalloc_stats malloc_stats 664 #define dlmalloc_usable_size malloc_usable_size 665 #define dlmalloc_footprint malloc_footprint 666 #define dlmalloc_max_footprint malloc_max_footprint 667 #define dlindependent_calloc independent_calloc 668 #define dlindependent_comalloc independent_comalloc 669 #endif /* USE_DL_PREFIX */ 670 671 672 /* 673 malloc(size_t n) 674 Returns a pointer to a newly allocated chunk of at least n bytes, or 675 null if no space is available, in which case errno is set to ENOMEM 676 on ANSI C systems. 677 678 If n is zero, malloc returns a minimum-sized chunk. (The minimum 679 size is 16 bytes on most 32bit systems, and 32 bytes on 64bit 680 systems.) Note that size_t is an unsigned type, so calls with 681 arguments that would be negative if signed are interpreted as 682 requests for huge amounts of space, which will often fail. The 683 maximum supported value of n differs across systems, but is in all 684 cases less than the maximum representable value of a size_t. 685 */ 686 void* dlmalloc(size_t); 687 688 /* 689 free(void* p) 690 Releases the chunk of memory pointed to by p, that had been previously 691 allocated using malloc or a related routine such as realloc. 692 It has no effect if p is null. If p was not malloced or already 693 freed, free(p) will by default cause the current program to abort. 694 */ 695 void dlfree(void*); 696 697 /* 698 calloc(size_t n_elements, size_t element_size); 699 Returns a pointer to n_elements * element_size bytes, with all locations 700 set to zero. 701 */ 702 void* dlcalloc(size_t, size_t); 703 704 /* 705 realloc(void* p, size_t n) 706 Returns a pointer to a chunk of size n that contains the same data 707 as does chunk p up to the minimum of (n, p's size) bytes, or null 708 if no space is available. 709 710 The returned pointer may or may not be the same as p. The algorithm 711 prefers extending p in most cases when possible, otherwise it 712 employs the equivalent of a malloc-copy-free sequence. 713 714 If p is null, realloc is equivalent to malloc. 715 716 If space is not available, realloc returns null, errno is set (if on 717 ANSI) and p is NOT freed. 718 719 if n is for fewer bytes than already held by p, the newly unused 720 space is lopped off and freed if possible. realloc with a size 721 argument of zero (re)allocates a minimum-sized chunk. 722 723 The old unix realloc convention of allowing the last-free'd chunk 724 to be used as an argument to realloc is not supported. 725 */ 726 727 void* dlrealloc(void*, size_t); 728 729 /* 730 memalign(size_t alignment, size_t n); 731 Returns a pointer to a newly allocated chunk of n bytes, aligned 732 in accord with the alignment argument. 733 734 The alignment argument should be a power of two. If the argument is 735 not a power of two, the nearest greater power is used. 736 8-byte alignment is guaranteed by normal malloc calls, so don't 737 bother calling memalign with an argument of 8 or less. 738 739 Overreliance on memalign is a sure way to fragment space. 740 */ 741 void* dlmemalign(size_t, size_t); 742 743 /* 744 valloc(size_t n); 745 Equivalent to memalign(pagesize, n), where pagesize is the page 746 size of the system. If the pagesize is unknown, 4096 is used. 747 */ 748 void* dlvalloc(size_t); 749 750 /* 751 mallopt(int parameter_number, int parameter_value) 752 Sets tunable parameters The format is to provide a 753 (parameter-number, parameter-value) pair. mallopt then sets the 754 corresponding parameter to the argument value if it can (i.e., so 755 long as the value is meaningful), and returns 1 if successful else 756 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, 757 normally defined in malloc.h. None of these are use in this malloc, 758 so setting them has no effect. But this malloc also supports other 759 options in mallopt. See below for details. Briefly, supported 760 parameters are as follows (listed defaults are for "typical" 761 configurations). 762 763 Symbol param # default allowed param values 764 M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables) 765 M_GRANULARITY -2 page size any power of 2 >= page size 766 M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) 767 */ 768 int dlmallopt(int, int); 769 770 /* 771 malloc_footprint(); 772 Returns the number of bytes obtained from the system. The total 773 number of bytes allocated by malloc, realloc etc., is less than this 774 value. Unlike mallinfo, this function returns only a precomputed 775 result, so can be called frequently to monitor memory consumption. 776 Even if locks are otherwise defined, this function does not use them, 777 so results might not be up to date. 778 */ 779 size_t dlmalloc_footprint(void); 780 781 /* 782 malloc_max_footprint(); 783 Returns the maximum number of bytes obtained from the system. This 784 value will be greater than current footprint if deallocated space 785 has been reclaimed by the system. The peak number of bytes allocated 786 by malloc, realloc etc., is less than this value. Unlike mallinfo, 787 this function returns only a precomputed result, so can be called 788 frequently to monitor memory consumption. Even if locks are 789 otherwise defined, this function does not use them, so results might 790 not be up to date. 791 */ 792 size_t dlmalloc_max_footprint(void); 793 794 #if !NO_MALLINFO 795 /* 796 mallinfo() 797 Returns (by copy) a struct containing various summary statistics: 798 799 arena: current total non-mmapped bytes allocated from system 800 ordblks: the number of free chunks 801 smblks: always zero. 802 hblks: current number of mmapped regions 803 hblkhd: total bytes held in mmapped regions 804 usmblks: the maximum total allocated space. This will be greater 805 than current total if trimming has occurred. 806 fsmblks: always zero 807 uordblks: current total allocated space (normal or mmapped) 808 fordblks: total free space 809 keepcost: the maximum number of bytes that could ideally be released 810 back to system via malloc_trim. ("ideally" means that 811 it ignores page restrictions etc.) 812 813 Because these fields are ints, but internal bookkeeping may 814 be kept as longs, the reported values may wrap around zero and 815 thus be inaccurate. 816 */ 817 struct mallinfo dlmallinfo(void); 818 #endif /* NO_MALLINFO */ 819 820 /* 821 independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); 822 823 independent_calloc is similar to calloc, but instead of returning a 824 single cleared space, it returns an array of pointers to n_elements 825 independent elements that can hold contents of size elem_size, each 826 of which starts out cleared, and can be independently freed, 827 realloc'ed etc. The elements are guaranteed to be adjacently 828 allocated (this is not guaranteed to occur with multiple callocs or 829 mallocs), which may also improve cache locality in some 830 applications. 831 832 The "chunks" argument is optional (i.e., may be null, which is 833 probably the most typical usage). If it is null, the returned array 834 is itself dynamically allocated and should also be freed when it is 835 no longer needed. Otherwise, the chunks array must be of at least 836 n_elements in length. It is filled in with the pointers to the 837 chunks. 838 839 In either case, independent_calloc returns this pointer array, or 840 null if the allocation failed. If n_elements is zero and "chunks" 841 is null, it returns a chunk representing an array with zero elements 842 (which should be freed if not wanted). 843 844 Each element must be individually freed when it is no longer 845 needed. If you'd like to instead be able to free all at once, you 846 should instead use regular calloc and assign pointers into this 847 space to represent elements. (In this case though, you cannot 848 independently free elements.) 849 850 independent_calloc simplifies and speeds up implementations of many 851 kinds of pools. It may also be useful when constructing large data 852 structures that initially have a fixed number of fixed-sized nodes, 853 but the number is not known at compile time, and some of the nodes 854 may later need to be freed. For example: 855 856 struct Node { int item; struct Node* next; }; 857 858 struct Node* build_list() { 859 struct Node** pool; 860 int n = read_number_of_nodes_needed(); 861 if (n <= 0) return 0; 862 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); 863 if (pool == 0) die(); 864 // organize into a linked list... 865 struct Node* first = pool[0]; 866 for (i = 0; i < n-1; ++i) 867 pool[i]->next = pool[i+1]; 868 free(pool); // Can now free the array (or not, if it is needed later) 869 return first; 870 } 871 */ 872 void** dlindependent_calloc(size_t, size_t, void**); 873 874 /* 875 independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); 876 877 independent_comalloc allocates, all at once, a set of n_elements 878 chunks with sizes indicated in the "sizes" array. It returns 879 an array of pointers to these elements, each of which can be 880 independently freed, realloc'ed etc. The elements are guaranteed to 881 be adjacently allocated (this is not guaranteed to occur with 882 multiple callocs or mallocs), which may also improve cache locality 883 in some applications. 884 885 The "chunks" argument is optional (i.e., may be null). If it is null 886 the returned array is itself dynamically allocated and should also 887 be freed when it is no longer needed. Otherwise, the chunks array 888 must be of at least n_elements in length. It is filled in with the 889 pointers to the chunks. 890 891 In either case, independent_comalloc returns this pointer array, or 892 null if the allocation failed. If n_elements is zero and chunks is 893 null, it returns a chunk representing an array with zero elements 894 (which should be freed if not wanted). 895 896 Each element must be individually freed when it is no longer 897 needed. If you'd like to instead be able to free all at once, you 898 should instead use a single regular malloc, and assign pointers at 899 particular offsets in the aggregate space. (In this case though, you 900 cannot independently free elements.) 901 902 independent_comallac differs from independent_calloc in that each 903 element may have a different size, and also that it does not 904 automatically clear elements. 905 906 independent_comalloc can be used to speed up allocation in cases 907 where several structs or objects must always be allocated at the 908 same time. For example: 909 910 struct Head { ... } 911 struct Foot { ... } 912 913 void send_message(char* msg) { 914 int msglen = strlen(msg); 915 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; 916 void* chunks[3]; 917 if (independent_comalloc(3, sizes, chunks) == 0) 918 die(); 919 struct Head* head = (struct Head*)(chunks[0]); 920 char* body = (char*)(chunks[1]); 921 struct Foot* foot = (struct Foot*)(chunks[2]); 922 // ... 923 } 924 925 In general though, independent_comalloc is worth using only for 926 larger values of n_elements. For small values, you probably won't 927 detect enough difference from series of malloc calls to bother. 928 929 Overuse of independent_comalloc can increase overall memory usage, 930 since it cannot reuse existing noncontiguous small chunks that 931 might be available for some of the elements. 932 */ 933 void** dlindependent_comalloc(size_t, size_t*, void**); 934 935 936 /* 937 pvalloc(size_t n); 938 Equivalent to valloc(minimum-page-that-holds(n)), that is, 939 round up n to nearest pagesize. 940 */ 941 void* dlpvalloc(size_t); 942 943 /* 944 malloc_trim(size_t pad); 945 946 If possible, gives memory back to the system (via negative arguments 947 to sbrk) if there is unused memory at the `high' end of the malloc 948 pool or in unused MMAP segments. You can call this after freeing 949 large blocks of memory to potentially reduce the system-level memory 950 requirements of a program. However, it cannot guarantee to reduce 951 memory. Under some allocation patterns, some large free blocks of 952 memory will be locked between two used chunks, so they cannot be 953 given back to the system. 954 955 The `pad' argument to malloc_trim represents the amount of free 956 trailing space to leave untrimmed. If this argument is zero, only 957 the minimum amount of memory to maintain internal data structures 958 will be left. Non-zero arguments can be supplied to maintain enough 959 trailing space to service future expected allocations without having 960 to re-obtain memory from the system. 961 962 Malloc_trim returns 1 if it actually released any memory, else 0. 963 */ 964 int dlmalloc_trim(size_t); 965 966 /* 967 malloc_usable_size(void* p); 968 969 Returns the number of bytes you can actually use in 970 an allocated chunk, which may be more than you requested (although 971 often not) due to alignment and minimum size constraints. 972 You can use this many bytes without worrying about 973 overwriting other allocated objects. This is not a particularly great 974 programming practice. malloc_usable_size can be more useful in 975 debugging and assertions, for example: 976 977 p = malloc(n); 978 assert(malloc_usable_size(p) >= 256); 979 */ 980 size_t dlmalloc_usable_size(void*); 981 982 /* 983 malloc_stats(); 984 Prints on stderr the amount of space obtained from the system (both 985 via sbrk and mmap), the maximum amount (which may be more than 986 current if malloc_trim and/or munmap got called), and the current 987 number of bytes allocated via malloc (or realloc, etc) but not yet 988 freed. Note that this is the number of bytes allocated, not the 989 number requested. It will be larger than the number requested 990 because of alignment and bookkeeping overhead. Because it includes 991 alignment wastage as being in use, this figure may be greater than 992 zero even when no user-level chunks are allocated. 993 994 The reported current and maximum system memory can be inaccurate if 995 a program makes other calls to system memory allocation functions 996 (normally sbrk) outside of malloc. 997 998 malloc_stats prints only the most commonly interesting statistics. 999 More information can be obtained by calling mallinfo. 1000 */ 1001 void dlmalloc_stats(void); 1002 1003 #endif /* ONLY_MSPACES */ 1004 1005 #if MSPACES 1006 1007 /* 1008 mspace is an opaque type representing an independent 1009 region of space that supports mspace_malloc, etc. 1010 */ 1011 typedef void* mspace; 1012 1013 /* 1014 create_mspace creates and returns a new independent space with the 1015 given initial capacity, or, if 0, the default granularity size. It 1016 returns null if there is no system memory available to create the 1017 space. If argument locked is non-zero, the space uses a separate 1018 lock to control access. The capacity of the space will grow 1019 dynamically as needed to service mspace_malloc requests. You can 1020 control the sizes of incremental increases of this space by 1021 compiling with a different DEFAULT_GRANULARITY or dynamically 1022 setting with mallopt(M_GRANULARITY, value). 1023 */ 1024 mspace create_mspace(size_t capacity, int locked); 1025 1026 /* 1027 destroy_mspace destroys the given space, and attempts to return all 1028 of its memory back to the system, returning the total number of 1029 bytes freed. After destruction, the results of access to all memory 1030 used by the space become undefined. 1031 */ 1032 size_t destroy_mspace(mspace msp); 1033 1034 /* 1035 create_mspace_with_base uses the memory supplied as the initial base 1036 of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this 1037 space is used for bookkeeping, so the capacity must be at least this 1038 large. (Otherwise 0 is returned.) When this initial space is 1039 exhausted, additional memory will be obtained from the system. 1040 Destroying this space will deallocate all additionally allocated 1041 space (if possible) but not the initial base. 1042 */ 1043 mspace create_mspace_with_base(void* base, size_t capacity, int locked); 1044 1045 /* 1046 mspace_malloc behaves as malloc, but operates within 1047 the given space. 1048 */ 1049 void* mspace_malloc(mspace msp, size_t bytes); 1050 1051 /* 1052 mspace_free behaves as free, but operates within 1053 the given space. 1054 1055 If compiled with FOOTERS==1, mspace_free is not actually needed. 1056 free may be called instead of mspace_free because freed chunks from 1057 any space are handled by their originating spaces. 1058 */ 1059 void mspace_free(mspace msp, void* mem); 1060 1061 /* 1062 mspace_realloc behaves as realloc, but operates within 1063 the given space. 1064 1065 If compiled with FOOTERS==1, mspace_realloc is not actually 1066 needed. realloc may be called instead of mspace_realloc because 1067 realloced chunks from any space are handled by their originating 1068 spaces. 1069 */ 1070 void* mspace_realloc(mspace msp, void* mem, size_t newsize); 1071 1072 /* 1073 mspace_calloc behaves as calloc, but operates within 1074 the given space. 1075 */ 1076 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); 1077 1078 /* 1079 mspace_memalign behaves as memalign, but operates within 1080 the given space. 1081 */ 1082 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); 1083 1084 /* 1085 mspace_independent_calloc behaves as independent_calloc, but 1086 operates within the given space. 1087 */ 1088 void** mspace_independent_calloc(mspace msp, size_t n_elements, 1089 size_t elem_size, void* chunks[]); 1090 1091 /* 1092 mspace_independent_comalloc behaves as independent_comalloc, but 1093 operates within the given space. 1094 */ 1095 void** mspace_independent_comalloc(mspace msp, size_t n_elements, 1096 size_t sizes[], void* chunks[]); 1097 1098 /* 1099 mspace_footprint() returns the number of bytes obtained from the 1100 system for this space. 1101 */ 1102 size_t mspace_footprint(mspace msp); 1103 1104 /* 1105 mspace_max_footprint() returns the peak number of bytes obtained from the 1106 system for this space. 1107 */ 1108 size_t mspace_max_footprint(mspace msp); 1109 1110 1111 #if !NO_MALLINFO 1112 /* 1113 mspace_mallinfo behaves as mallinfo, but reports properties of 1114 the given space. 1115 */ 1116 struct mallinfo mspace_mallinfo(mspace msp); 1117 #endif /* NO_MALLINFO */ 1118 1119 /* 1120 mspace_malloc_stats behaves as malloc_stats, but reports 1121 properties of the given space. 1122 */ 1123 void mspace_malloc_stats(mspace msp); 1124 1125 /* 1126 mspace_trim behaves as malloc_trim, but 1127 operates within the given space. 1128 */ 1129 int mspace_trim(mspace msp, size_t pad); 1130 1131 /* 1132 An alias for mallopt. 1133 */ 1134 int mspace_mallopt(int, int); 1135 1136 #endif /* MSPACES */ 1137 1138 #ifdef __cplusplus 1139 }; /* end of extern "C" */ 1140 #endif /* __cplusplus */ 1141 1142 /* 1143 ======================================================================== 1144 To make a fully customizable malloc.h header file, cut everything 1145 above this line, put into file malloc.h, edit to suit, and #include it 1146 on the next line, as well as in programs that use this malloc. 1147 ======================================================================== 1148 */ 1149 1150 /* #include "malloc.h" */ 1151 1152 /*------------------------------ internal #includes ---------------------- */ 1153 1154 #ifdef _MSC_VER 1155 #pragma warning( disable : 4146 ) /* no "unsigned" warnings */ 1156 #endif /* _MSC_VER */ 1157 1158 #include <stdio.h> /* for printing in malloc_stats */ 1159 1160 #ifndef LACKS_ERRNO_H 1161 #include <errno.h> /* for MALLOC_FAILURE_ACTION */ 1162 #endif /* LACKS_ERRNO_H */ 1163 #if FOOTERS 1164 #include <time.h> /* for magic initialization */ 1165 #endif /* FOOTERS */ 1166 #ifndef LACKS_STDLIB_H 1167 #include <stdlib.h> /* for abort() */ 1168 #endif /* LACKS_STDLIB_H */ 1169 #ifdef DEBUG 1170 #if ABORT_ON_ASSERT_FAILURE 1171 #define assert(x) if(!(x)) ABORT 1172 #else /* ABORT_ON_ASSERT_FAILURE */ 1173 #include <assert.h> 1174 #endif /* ABORT_ON_ASSERT_FAILURE */ 1175 #else /* DEBUG */ 1176 #define assert(x) 1177 #endif /* DEBUG */ 1178 #ifndef LACKS_STRING_H 1179 #include <string.h> /* for memset etc */ 1180 #endif /* LACKS_STRING_H */ 1181 #if USE_BUILTIN_FFS 1182 #ifndef LACKS_STRINGS_H 1183 #include <strings.h> /* for ffs */ 1184 #endif /* LACKS_STRINGS_H */ 1185 #endif /* USE_BUILTIN_FFS */ 1186 #if HAVE_MMAP 1187 #ifndef LACKS_SYS_MMAN_H 1188 #include <sys/mman.h> /* for mmap */ 1189 #endif /* LACKS_SYS_MMAN_H */ 1190 #ifndef LACKS_FCNTL_H 1191 #include <fcntl.h> 1192 #endif /* LACKS_FCNTL_H */ 1193 #endif /* HAVE_MMAP */ 1194 #if HAVE_MORECORE 1195 #ifndef LACKS_UNISTD_H 1196 #include <unistd.h> /* for sbrk */ 1197 #else /* LACKS_UNISTD_H */ 1198 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) 1199 extern void* sbrk(ptrdiff_t); 1200 #endif /* FreeBSD etc */ 1201 #endif /* LACKS_UNISTD_H */ 1202 #endif /* HAVE_MMAP */ 1203 1204 #ifndef WIN32 1205 #ifndef malloc_getpagesize 1206 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ 1207 # ifndef _SC_PAGE_SIZE 1208 # define _SC_PAGE_SIZE _SC_PAGESIZE 1209 # endif 1210 # endif 1211 # ifdef _SC_PAGE_SIZE 1212 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) 1213 # else 1214 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) 1215 extern size_t getpagesize(); 1216 # define malloc_getpagesize getpagesize() 1217 # else 1218 # ifdef WIN32 /* use supplied emulation of getpagesize */ 1219 # define malloc_getpagesize getpagesize() 1220 # else 1221 # ifndef LACKS_SYS_PARAM_H 1222 # include <sys/param.h> 1223 # endif 1224 # ifdef EXEC_PAGESIZE 1225 # define malloc_getpagesize EXEC_PAGESIZE 1226 # else 1227 # ifdef NBPG 1228 # ifndef CLSIZE 1229 # define malloc_getpagesize NBPG 1230 # else 1231 # define malloc_getpagesize (NBPG * CLSIZE) 1232 # endif 1233 # else 1234 # ifdef NBPC 1235 # define malloc_getpagesize NBPC 1236 # else 1237 # ifdef PAGESIZE 1238 # define malloc_getpagesize PAGESIZE 1239 # else /* just guess */ 1240 # define malloc_getpagesize ((size_t)4096U) 1241 # endif 1242 # endif 1243 # endif 1244 # endif 1245 # endif 1246 # endif 1247 # endif 1248 #endif 1249 #endif 1250 1251 /* ------------------- size_t and alignment properties -------------------- */ 1252 1253 /* The byte and bit size of a size_t */ 1254 #define SIZE_T_SIZE (sizeof(size_t)) 1255 #define SIZE_T_BITSIZE (sizeof(size_t) << 3) 1256 1257 /* Some constants coerced to size_t */ 1258 /* Annoying but necessary to avoid errors on some platforms */ 1259 #define SIZE_T_ZERO ((size_t)0) 1260 #define SIZE_T_ONE ((size_t)1) 1261 #define SIZE_T_TWO ((size_t)2) 1262 #define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) 1263 #define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) 1264 #define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) 1265 #define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) 1266 1267 /* The bit mask value corresponding to MALLOC_ALIGNMENT */ 1268 #define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) 1269 1270 /* True if address a has acceptable alignment */ 1271 #define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) 1272 1273 /* the number of bytes to offset an address to align it */ 1274 #define align_offset(A)\ 1275 ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ 1276 ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) 1277 1278 /* -------------------------- MMAP preliminaries ------------------------- */ 1279 1280 /* 1281 If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and 1282 checks to fail so compiler optimizer can delete code rather than 1283 using so many "#if"s. 1284 */ 1285 1286 1287 /* MORECORE and MMAP must return MFAIL on failure */ 1288 #define MFAIL ((void*)(MAX_SIZE_T)) 1289 #define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ 1290 1291 #if !HAVE_MMAP 1292 #define IS_MMAPPED_BIT (SIZE_T_ZERO) 1293 #define USE_MMAP_BIT (SIZE_T_ZERO) 1294 #define CALL_MMAP(s) MFAIL 1295 #define CALL_MUNMAP(a, s) (-1) 1296 #define DIRECT_MMAP(s) MFAIL 1297 1298 #else /* HAVE_MMAP */ 1299 #define IS_MMAPPED_BIT (SIZE_T_ONE) 1300 #define USE_MMAP_BIT (SIZE_T_ONE) 1301 1302 #if !defined(WIN32) && !defined (__OS2__) 1303 #define CALL_MUNMAP(a, s) munmap((a), (s)) 1304 #define MMAP_PROT (PROT_READ|PROT_WRITE) 1305 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) 1306 #define MAP_ANONYMOUS MAP_ANON 1307 #endif /* MAP_ANON */ 1308 #ifdef MAP_ANONYMOUS 1309 #define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) 1310 #define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) 1311 #else /* MAP_ANONYMOUS */ 1312 /* 1313 Nearly all versions of mmap support MAP_ANONYMOUS, so the following 1314 is unlikely to be needed, but is supplied just in case. 1315 */ 1316 #define MMAP_FLAGS (MAP_PRIVATE) 1317 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ 1318 #define CALL_MMAP(s) ((dev_zero_fd < 0) ? \ 1319 (dev_zero_fd = open("/dev/zero", O_RDWR), \ 1320 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ 1321 mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) 1322 #endif /* MAP_ANONYMOUS */ 1323 1324 #define DIRECT_MMAP(s) CALL_MMAP(s) 1325 1326 #elif defined(__OS2__) 1327 1328 /* OS/2 MMAP via DosAllocMem */ 1329 static void* os2mmap(size_t size) { 1330 void* ptr; 1331 if (DosAllocMem(&ptr, size, OBJ_ANY|PAG_COMMIT|PAG_READ|PAG_WRITE) && 1332 DosAllocMem(&ptr, size, PAG_COMMIT|PAG_READ|PAG_WRITE)) 1333 return MFAIL; 1334 return ptr; 1335 } 1336 1337 #define os2direct_mmap(n) os2mmap(n) 1338 1339 /* This function supports releasing coalesed segments */ 1340 static int os2munmap(void* ptr, size_t size) { 1341 while (size) { 1342 ULONG ulSize = size; 1343 ULONG ulFlags = 0; 1344 if (DosQueryMem(ptr, &ulSize, &ulFlags) != 0) 1345 return -1; 1346 if ((ulFlags & PAG_BASE) == 0 ||(ulFlags & PAG_COMMIT) == 0 || 1347 ulSize > size) 1348 return -1; 1349 if (DosFreeMem(ptr) != 0) 1350 return -1; 1351 ptr = ( void * ) ( ( char * ) ptr + ulSize ); 1352 size -= ulSize; 1353 } 1354 return 0; 1355 } 1356 1357 #define CALL_MMAP(s) os2mmap(s) 1358 #define CALL_MUNMAP(a, s) os2munmap((a), (s)) 1359 #define DIRECT_MMAP(s) os2direct_mmap(s) 1360 1361 #else /* WIN32 */ 1362 1363 /* Win32 MMAP via VirtualAlloc */ 1364 static void* win32mmap(size_t size) { 1365 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE); 1366 return (ptr != 0)? ptr: MFAIL; 1367 } 1368 1369 /* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ 1370 static void* win32direct_mmap(size_t size) { 1371 void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, 1372 PAGE_EXECUTE_READWRITE); 1373 return (ptr != 0)? ptr: MFAIL; 1374 } 1375 1376 /* This function supports releasing coalesed segments */ 1377 static int win32munmap(void* ptr, size_t size) { 1378 MEMORY_BASIC_INFORMATION minfo; 1379 char* cptr = ptr; 1380 while (size) { 1381 if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) 1382 return -1; 1383 if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || 1384 minfo.State != MEM_COMMIT || minfo.RegionSize > size) 1385 return -1; 1386 if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) 1387 return -1; 1388 cptr += minfo.RegionSize; 1389 size -= minfo.RegionSize; 1390 } 1391 return 0; 1392 } 1393 1394 #define CALL_MMAP(s) win32mmap(s) 1395 #define CALL_MUNMAP(a, s) win32munmap((a), (s)) 1396 #define DIRECT_MMAP(s) win32direct_mmap(s) 1397 #endif /* WIN32 */ 1398 #endif /* HAVE_MMAP */ 1399 1400 #if HAVE_MMAP && HAVE_MREMAP 1401 #define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) 1402 #else /* HAVE_MMAP && HAVE_MREMAP */ 1403 #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL 1404 #endif /* HAVE_MMAP && HAVE_MREMAP */ 1405 1406 #if HAVE_MORECORE 1407 #define CALL_MORECORE(S) MORECORE(S) 1408 #else /* HAVE_MORECORE */ 1409 #define CALL_MORECORE(S) MFAIL 1410 #endif /* HAVE_MORECORE */ 1411 1412 /* mstate bit set if contiguous morecore disabled or failed */ 1413 #define USE_NONCONTIGUOUS_BIT (4U) 1414 1415 /* segment bit set in create_mspace_with_base */ 1416 #define EXTERN_BIT (8U) 1417 1418 1419 /* --------------------------- Lock preliminaries ------------------------ */ 1420 1421 #if USE_LOCKS 1422 1423 /* 1424 When locks are defined, there are up to two global locks: 1425 1426 * If HAVE_MORECORE, morecore_mutex protects sequences of calls to 1427 MORECORE. In many cases sys_alloc requires two calls, that should 1428 not be interleaved with calls by other threads. This does not 1429 protect against direct calls to MORECORE by other threads not 1430 using this lock, so there is still code to cope the best we can on 1431 interference. 1432 1433 * magic_init_mutex ensures that mparams.magic and other 1434 unique mparams values are initialized only once. 1435 */ 1436 1437 #if !defined(WIN32) && !defined(__OS2__) 1438 /* By default use posix locks */ 1439 #include <pthread.h> 1440 #define MLOCK_T pthread_mutex_t 1441 #define INITIAL_LOCK(l) pthread_mutex_init(l, NULL) 1442 #define ACQUIRE_LOCK(l) pthread_mutex_lock(l) 1443 #define RELEASE_LOCK(l) pthread_mutex_unlock(l) 1444 1445 #if HAVE_MORECORE 1446 static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER; 1447 #endif /* HAVE_MORECORE */ 1448 1449 static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER; 1450 1451 #elif defined(__OS2__) 1452 #define MLOCK_T HMTX 1453 #define INITIAL_LOCK(l) DosCreateMutexSem(0, l, 0, FALSE) 1454 #define ACQUIRE_LOCK(l) DosRequestMutexSem(*l, SEM_INDEFINITE_WAIT) 1455 #define RELEASE_LOCK(l) DosReleaseMutexSem(*l) 1456 #if HAVE_MORECORE 1457 static MLOCK_T morecore_mutex; 1458 #endif /* HAVE_MORECORE */ 1459 static MLOCK_T magic_init_mutex; 1460 1461 #else /* WIN32 */ 1462 /* 1463 Because lock-protected regions have bounded times, and there 1464 are no recursive lock calls, we can use simple spinlocks. 1465 */ 1466 1467 #define MLOCK_T long 1468 static int win32_acquire_lock (MLOCK_T *sl) { 1469 for (;;) { 1470 #ifdef InterlockedCompareExchangePointer 1471 if (!InterlockedCompareExchange(sl, 1, 0)) 1472 return 0; 1473 #else /* Use older void* version */ 1474 if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0)) 1475 return 0; 1476 #endif /* InterlockedCompareExchangePointer */ 1477 Sleep (0); 1478 } 1479 } 1480 1481 static void win32_release_lock (MLOCK_T *sl) { 1482 InterlockedExchange (sl, 0); 1483 } 1484 1485 #define INITIAL_LOCK(l) *(l)=0 1486 #define ACQUIRE_LOCK(l) win32_acquire_lock(l) 1487 #define RELEASE_LOCK(l) win32_release_lock(l) 1488 #if HAVE_MORECORE 1489 static MLOCK_T morecore_mutex; 1490 #endif /* HAVE_MORECORE */ 1491 static MLOCK_T magic_init_mutex; 1492 #endif /* WIN32 */ 1493 1494 #define USE_LOCK_BIT (2U) 1495 #else /* USE_LOCKS */ 1496 #define USE_LOCK_BIT (0U) 1497 #define INITIAL_LOCK(l) 1498 #endif /* USE_LOCKS */ 1499 1500 #if USE_LOCKS && HAVE_MORECORE 1501 #define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex); 1502 #define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex); 1503 #else /* USE_LOCKS && HAVE_MORECORE */ 1504 #define ACQUIRE_MORECORE_LOCK() 1505 #define RELEASE_MORECORE_LOCK() 1506 #endif /* USE_LOCKS && HAVE_MORECORE */ 1507 1508 #if USE_LOCKS 1509 #define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex); 1510 #define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex); 1511 #else /* USE_LOCKS */ 1512 #define ACQUIRE_MAGIC_INIT_LOCK() 1513 #define RELEASE_MAGIC_INIT_LOCK() 1514 #endif /* USE_LOCKS */ 1515 1516 1517 /* ----------------------- Chunk representations ------------------------ */ 1518 1519 /* 1520 (The following includes lightly edited explanations by Colin Plumb.) 1521 1522 The malloc_chunk declaration below is misleading (but accurate and 1523 necessary). It declares a "view" into memory allowing access to 1524 necessary fields at known offsets from a given base. 1525 1526 Chunks of memory are maintained using a `boundary tag' method as 1527 originally described by Knuth. (See the paper by Paul Wilson 1528 ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such 1529 techniques.) Sizes of free chunks are stored both in the front of 1530 each chunk and at the end. This makes consolidating fragmented 1531 chunks into bigger chunks fast. The head fields also hold bits 1532 representing whether chunks are free or in use. 1533 1534 Here are some pictures to make it clearer. They are "exploded" to 1535 show that the state of a chunk can be thought of as extending from 1536 the high 31 bits of the head field of its header through the 1537 prev_foot and PINUSE_BIT bit of the following chunk header. 1538 1539 A chunk that's in use looks like: 1540 1541 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1542 | Size of previous chunk (if P = 1) | 1543 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| 1545 | Size of this chunk 1| +-+ 1546 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1547 | | 1548 +- -+ 1549 | | 1550 +- -+ 1551 | : 1552 +- size - sizeof(size_t) available payload bytes -+ 1553 : | 1554 chunk-> +- -+ 1555 | | 1556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1557 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| 1558 | Size of next chunk (may or may not be in use) | +-+ 1559 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1560 1561 And if it's free, it looks like this: 1562 1563 chunk-> +- -+ 1564 | User payload (must be in use, or we would have merged!) | 1565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| 1567 | Size of this chunk 0| +-+ 1568 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1569 | Next pointer | 1570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1571 | Prev pointer | 1572 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1573 | : 1574 +- size - sizeof(struct chunk) unused bytes -+ 1575 : | 1576 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1577 | Size of this chunk | 1578 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| 1580 | Size of next chunk (must be in use, or we would have merged)| +-+ 1581 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1582 | : 1583 +- User payload -+ 1584 : | 1585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1586 |0| 1587 +-+ 1588 Note that since we always merge adjacent free chunks, the chunks 1589 adjacent to a free chunk must be in use. 1590 1591 Given a pointer to a chunk (which can be derived trivially from the 1592 payload pointer) we can, in O(1) time, find out whether the adjacent 1593 chunks are free, and if so, unlink them from the lists that they 1594 are on and merge them with the current chunk. 1595 1596 Chunks always begin on even word boundaries, so the mem portion 1597 (which is returned to the user) is also on an even word boundary, and 1598 thus at least double-word aligned. 1599 1600 The P (PINUSE_BIT) bit, stored in the unused low-order bit of the 1601 chunk size (which is always a multiple of two words), is an in-use 1602 bit for the *previous* chunk. If that bit is *clear*, then the 1603 word before the current chunk size contains the previous chunk 1604 size, and can be used to find the front of the previous chunk. 1605 The very first chunk allocated always has this bit set, preventing 1606 access to non-existent (or non-owned) memory. If pinuse is set for 1607 any given chunk, then you CANNOT determine the size of the 1608 previous chunk, and might even get a memory addressing fault when 1609 trying to do so. 1610 1611 The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of 1612 the chunk size redundantly records whether the current chunk is 1613 inuse. This redundancy enables usage checks within free and realloc, 1614 and reduces indirection when freeing and consolidating chunks. 1615 1616 Each freshly allocated chunk must have both cinuse and pinuse set. 1617 That is, each allocated chunk borders either a previously allocated 1618 and still in-use chunk, or the base of its memory arena. This is 1619 ensured by making all allocations from the the `lowest' part of any 1620 found chunk. Further, no free chunk physically borders another one, 1621 so each free chunk is known to be preceded and followed by either 1622 inuse chunks or the ends of memory. 1623 1624 Note that the `foot' of the current chunk is actually represented 1625 as the prev_foot of the NEXT chunk. This makes it easier to 1626 deal with alignments etc but can be very confusing when trying 1627 to extend or adapt this code. 1628 1629 The exceptions to all this are 1630 1631 1. The special chunk `top' is the top-most available chunk (i.e., 1632 the one bordering the end of available memory). It is treated 1633 specially. Top is never included in any bin, is used only if 1634 no other chunk is available, and is released back to the 1635 system if it is very large (see M_TRIM_THRESHOLD). In effect, 1636 the top chunk is treated as larger (and thus less well 1637 fitting) than any other available chunk. The top chunk 1638 doesn't update its trailing size field since there is no next 1639 contiguous chunk that would have to index off it. However, 1640 space is still allocated for it (TOP_FOOT_SIZE) to enable 1641 separation or merging when space is extended. 1642 1643 3. Chunks allocated via mmap, which have the lowest-order bit 1644 (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set 1645 PINUSE_BIT in their head fields. Because they are allocated 1646 one-by-one, each must carry its own prev_foot field, which is 1647 also used to hold the offset this chunk has within its mmapped 1648 region, which is needed to preserve alignment. Each mmapped 1649 chunk is trailed by the first two fields of a fake next-chunk 1650 for sake of usage checks. 1651 1652 */ 1653 1654 struct malloc_chunk { 1655 size_t prev_foot; /* Size of previous chunk (if free). */ 1656 size_t head; /* Size and inuse bits. */ 1657 struct malloc_chunk* fd; /* double links -- used only if free. */ 1658 struct malloc_chunk* bk; 1659 }; 1660 1661 typedef struct malloc_chunk mchunk; 1662 typedef struct malloc_chunk* mchunkptr; 1663 typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ 1664 typedef size_t bindex_t; /* Described below */ 1665 typedef unsigned int binmap_t; /* Described below */ 1666 typedef unsigned int flag_t; /* The type of various bit flag sets */ 1667 1668 /* ------------------- Chunks sizes and alignments ----------------------- */ 1669 1670 #define MCHUNK_SIZE (sizeof(mchunk)) 1671 1672 #if FOOTERS 1673 #define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) 1674 #else /* FOOTERS */ 1675 #define CHUNK_OVERHEAD (SIZE_T_SIZE) 1676 #endif /* FOOTERS */ 1677 1678 /* MMapped chunks need a second word of overhead ... */ 1679 #define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) 1680 /* ... and additional padding for fake next-chunk at foot */ 1681 #define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) 1682 1683 /* The smallest size we can malloc is an aligned minimal chunk */ 1684 #define MIN_CHUNK_SIZE\ 1685 ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) 1686 1687 /* conversion from malloc headers to user pointers, and back */ 1688 #define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) 1689 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) 1690 /* chunk associated with aligned address A */ 1691 #define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) 1692 1693 /* Bounds on request (not chunk) sizes. */ 1694 #define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) 1695 #define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) 1696 1697 /* pad request bytes into a usable size */ 1698 #define pad_request(req) \ 1699 (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) 1700 1701 /* pad request, checking for minimum (but not maximum) */ 1702 #define request2size(req) \ 1703 (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) 1704 1705 1706 /* ------------------ Operations on head and foot fields ----------------- */ 1707 1708 /* 1709 The head field of a chunk is or'ed with PINUSE_BIT when previous 1710 adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in 1711 use. If the chunk was obtained with mmap, the prev_foot field has 1712 IS_MMAPPED_BIT set, otherwise holding the offset of the base of the 1713 mmapped region to the base of the chunk. 1714 */ 1715 1716 #define PINUSE_BIT (SIZE_T_ONE) 1717 #define CINUSE_BIT (SIZE_T_TWO) 1718 #define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) 1719 1720 /* Head value for fenceposts */ 1721 #define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) 1722 1723 /* extraction of fields from head words */ 1724 #define cinuse(p) ((p)->head & CINUSE_BIT) 1725 #define pinuse(p) ((p)->head & PINUSE_BIT) 1726 #define chunksize(p) ((p)->head & ~(INUSE_BITS)) 1727 1728 #define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) 1729 #define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) 1730 1731 /* Treat space at ptr +/- offset as a chunk */ 1732 #define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) 1733 #define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) 1734 1735 /* Ptr to next or previous physical malloc_chunk. */ 1736 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS))) 1737 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) 1738 1739 /* extract next chunk's pinuse bit */ 1740 #define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) 1741 1742 /* Get/set size at footer */ 1743 #define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) 1744 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) 1745 1746 /* Set size, pinuse bit, and foot */ 1747 #define set_size_and_pinuse_of_free_chunk(p, s)\ 1748 ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) 1749 1750 /* Set size, pinuse bit, foot, and clear next pinuse */ 1751 #define set_free_with_pinuse(p, s, n)\ 1752 (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) 1753 1754 #define is_mmapped(p)\ 1755 (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) 1756 1757 /* Get the internal overhead associated with chunk p */ 1758 #define overhead_for(p)\ 1759 (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) 1760 1761 /* Return true if malloced space is not necessarily cleared */ 1762 #if MMAP_CLEARS 1763 #define calloc_must_clear(p) (!is_mmapped(p)) 1764 #else /* MMAP_CLEARS */ 1765 #define calloc_must_clear(p) (1) 1766 #endif /* MMAP_CLEARS */ 1767 1768 /* ---------------------- Overlaid data structures ----------------------- */ 1769 1770 /* 1771 When chunks are not in use, they are treated as nodes of either 1772 lists or trees. 1773 1774 "Small" chunks are stored in circular doubly-linked lists, and look 1775 like this: 1776 1777 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1778 | Size of previous chunk | 1779 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1780 `head:' | Size of chunk, in bytes |P| 1781 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1782 | Forward pointer to next chunk in list | 1783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1784 | Back pointer to previous chunk in list | 1785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1786 | Unused space (may be 0 bytes long) . 1787 . . 1788 . | 1789 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1790 `foot:' | Size of chunk, in bytes | 1791 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1792 1793 Larger chunks are kept in a form of bitwise digital trees (aka 1794 tries) keyed on chunksizes. Because malloc_tree_chunks are only for 1795 free chunks greater than 256 bytes, their size doesn't impose any 1796 constraints on user chunk sizes. Each node looks like: 1797 1798 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1799 | Size of previous chunk | 1800 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1801 `head:' | Size of chunk, in bytes |P| 1802 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1803 | Forward pointer to next chunk of same size | 1804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1805 | Back pointer to previous chunk of same size | 1806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1807 | Pointer to left child (child[0]) | 1808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1809 | Pointer to right child (child[1]) | 1810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1811 | Pointer to parent | 1812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1813 | bin index of this chunk | 1814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1815 | Unused space . 1816 . | 1817 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1818 `foot:' | Size of chunk, in bytes | 1819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1820 1821 Each tree holding treenodes is a tree of unique chunk sizes. Chunks 1822 of the same size are arranged in a circularly-linked list, with only 1823 the oldest chunk (the next to be used, in our FIFO ordering) 1824 actually in the tree. (Tree members are distinguished by a non-null 1825 parent pointer.) If a chunk with the same size an an existing node 1826 is inserted, it is linked off the existing node using pointers that 1827 work in the same way as fd/bk pointers of small chunks. 1828 1829 Each tree contains a power of 2 sized range of chunk sizes (the 1830 smallest is 0x100 <= x < 0x180), which is is divided in half at each 1831 tree level, with the chunks in the smaller half of the range (0x100 1832 <= x < 0x140 for the top nose) in the left subtree and the larger 1833 half (0x140 <= x < 0x180) in the right subtree. This is, of course, 1834 done by inspecting individual bits. 1835 1836 Using these rules, each node's left subtree contains all smaller 1837 sizes than its right subtree. However, the node at the root of each 1838 subtree has no particular ordering relationship to either. (The 1839 dividing line between the subtree sizes is based on trie relation.) 1840 If we remove the last chunk of a given size from the interior of the 1841 tree, we need to replace it with a leaf node. The tree ordering 1842 rules permit a node to be replaced by any leaf below it. 1843 1844 The smallest chunk in a tree (a common operation in a best-fit 1845 allocator) can be found by walking a path to the leftmost leaf in 1846 the tree. Unlike a usual binary tree, where we follow left child 1847 pointers until we reach a null, here we follow the right child 1848 pointer any time the left one is null, until we reach a leaf with 1849 both child pointers null. The smallest chunk in the tree will be 1850 somewhere along that path. 1851 1852 The worst case number of steps to add, find, or remove a node is 1853 bounded by the number of bits differentiating chunks within 1854 bins. Under current bin calculations, this ranges from 6 up to 21 1855 (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case 1856 is of course much better. 1857 */ 1858 1859 struct malloc_tree_chunk { 1860 /* The first four fields must be compatible with malloc_chunk */ 1861 size_t prev_foot; 1862 size_t head; 1863 struct malloc_tree_chunk* fd; 1864 struct malloc_tree_chunk* bk; 1865 1866 struct malloc_tree_chunk* child[2]; 1867 struct malloc_tree_chunk* parent; 1868 bindex_t index; 1869 }; 1870 1871 typedef struct malloc_tree_chunk tchunk; 1872 typedef struct malloc_tree_chunk* tchunkptr; 1873 typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ 1874 1875 /* A little helper macro for trees */ 1876 #define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) 1877 1878 /* ----------------------------- Segments -------------------------------- */ 1879 1880 /* 1881 Each malloc space may include non-contiguous segments, held in a 1882 list headed by an embedded malloc_segment record representing the 1883 top-most space. Segments also include flags holding properties of 1884 the space. Large chunks that are directly allocated by mmap are not 1885 included in this list. They are instead independently created and 1886 destroyed without otherwise keeping track of them. 1887 1888 Segment management mainly comes into play for spaces allocated by 1889 MMAP. Any call to MMAP might or might not return memory that is 1890 adjacent to an existing segment. MORECORE normally contiguously 1891 extends the current space, so this space is almost always adjacent, 1892 which is simpler and faster to deal with. (This is why MORECORE is 1893 used preferentially to MMAP when both are available -- see 1894 sys_alloc.) When allocating using MMAP, we don't use any of the 1895 hinting mechanisms (inconsistently) supported in various 1896 implementations of unix mmap, or distinguish reserving from 1897 committing memory. Instead, we just ask for space, and exploit 1898 contiguity when we get it. It is probably possible to do 1899 better than this on some systems, but no general scheme seems 1900 to be significantly better. 1901 1902 Management entails a simpler variant of the consolidation scheme 1903 used for chunks to reduce fragmentation -- new adjacent memory is 1904 normally prepended or appended to an existing segment. However, 1905 there are limitations compared to chunk consolidation that mostly 1906 reflect the fact that segment processing is relatively infrequent 1907 (occurring only when getting memory from system) and that we 1908 don't expect to have huge numbers of segments: 1909 1910 * Segments are not indexed, so traversal requires linear scans. (It 1911 would be possible to index these, but is not worth the extra 1912 overhead and complexity for most programs on most platforms.) 1913 * New segments are only appended to old ones when holding top-most 1914 memory; if they cannot be prepended to others, they are held in 1915 different segments. 1916 1917 Except for the top-most segment of an mstate, each segment record 1918 is kept at the tail of its segment. Segments are added by pushing 1919 segment records onto the list headed by &mstate.seg for the 1920 containing mstate. 1921 1922 Segment flags control allocation/merge/deallocation policies: 1923 * If EXTERN_BIT set, then we did not allocate this segment, 1924 and so should not try to deallocate or merge with others. 1925 (This currently holds only for the initial segment passed 1926 into create_mspace_with_base.) 1927 * If IS_MMAPPED_BIT set, the segment may be merged with 1928 other surrounding mmapped segments and trimmed/de-allocated 1929 using munmap. 1930 * If neither bit is set, then the segment was obtained using 1931 MORECORE so can be merged with surrounding MORECORE'd segments 1932 and deallocated/trimmed using MORECORE with negative arguments. 1933 */ 1934 1935 struct malloc_segment { 1936 char* base; /* base address */ 1937 size_t size; /* allocated size */ 1938 struct malloc_segment* next; /* ptr to next segment */ 1939 #if FFI_MMAP_EXEC_WRIT 1940 /* The mmap magic is supposed to store the address of the executable 1941 segment at the very end of the requested block. */ 1942 1943 # define mmap_exec_offset(b,s) (*(ptrdiff_t*)((b)+(s)-sizeof(ptrdiff_t))) 1944 1945 /* We can only merge segments if their corresponding executable 1946 segments are at identical offsets. */ 1947 # define check_segment_merge(S,b,s) \ 1948 (mmap_exec_offset((b),(s)) == (S)->exec_offset) 1949 1950 # define add_segment_exec_offset(p,S) ((char*)(p) + (S)->exec_offset) 1951 # define sub_segment_exec_offset(p,S) ((char*)(p) - (S)->exec_offset) 1952 1953 /* The removal of sflags only works with HAVE_MORECORE == 0. */ 1954 1955 # define get_segment_flags(S) (IS_MMAPPED_BIT) 1956 # define set_segment_flags(S,v) \ 1957 (((v) != IS_MMAPPED_BIT) ? (ABORT, (v)) : \ 1958 (((S)->exec_offset = \ 1959 mmap_exec_offset((S)->base, (S)->size)), \ 1960 (mmap_exec_offset((S)->base + (S)->exec_offset, (S)->size) != \ 1961 (S)->exec_offset) ? (ABORT, (v)) : \ 1962 (mmap_exec_offset((S)->base, (S)->size) = 0), (v))) 1963 1964 /* We use an offset here, instead of a pointer, because then, when 1965 base changes, we don't have to modify this. On architectures 1966 with segmented addresses, this might not work. */ 1967 ptrdiff_t exec_offset; 1968 #else 1969 1970 # define get_segment_flags(S) ((S)->sflags) 1971 # define set_segment_flags(S,v) ((S)->sflags = (v)) 1972 # define check_segment_merge(S,b,s) (1) 1973 1974 flag_t sflags; /* mmap and extern flag */ 1975 #endif 1976 }; 1977 1978 #define is_mmapped_segment(S) (get_segment_flags(S) & IS_MMAPPED_BIT) 1979 #define is_extern_segment(S) (get_segment_flags(S) & EXTERN_BIT) 1980 1981 typedef struct malloc_segment msegment; 1982 typedef struct malloc_segment* msegmentptr; 1983 1984 /* ---------------------------- malloc_state ----------------------------- */ 1985 1986 /* 1987 A malloc_state holds all of the bookkeeping for a space. 1988 The main fields are: 1989 1990 Top 1991 The topmost chunk of the currently active segment. Its size is 1992 cached in topsize. The actual size of topmost space is 1993 topsize+TOP_FOOT_SIZE, which includes space reserved for adding 1994 fenceposts and segment records if necessary when getting more 1995 space from the system. The size at which to autotrim top is 1996 cached from mparams in trim_check, except that it is disabled if 1997 an autotrim fails. 1998 1999 Designated victim (dv) 2000 This is the preferred chunk for servicing small requests that 2001 don't have exact fits. It is normally the chunk split off most 2002 recently to service another small request. Its size is cached in 2003 dvsize. The link fields of this chunk are not maintained since it 2004 is not kept in a bin. 2005 2006 SmallBins 2007 An array of bin headers for free chunks. These bins hold chunks 2008 with sizes less than MIN_LARGE_SIZE bytes. Each bin contains 2009 chunks of all the same size, spaced 8 bytes apart. To simplify 2010 use in double-linked lists, each bin header acts as a malloc_chunk 2011 pointing to the real first node, if it exists (else pointing to 2012 itself). This avoids special-casing for headers. But to avoid 2013 waste, we allocate only the fd/bk pointers of bins, and then use 2014 repositioning tricks to treat these as the fields of a chunk. 2015 2016 TreeBins 2017 Treebins are pointers to the roots of trees holding a range of 2018 sizes. There are 2 equally spaced treebins for each power of two 2019 from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything 2020 larger. 2021 2022 Bin maps 2023 There is one bit map for small bins ("smallmap") and one for 2024 treebins ("treemap). Each bin sets its bit when non-empty, and 2025 clears the bit when empty. Bit operations are then used to avoid 2026 bin-by-bin searching -- nearly all "search" is done without ever 2027 looking at bins that won't be selected. The bit maps 2028 conservatively use 32 bits per map word, even if on 64bit system. 2029 For a good description of some of the bit-based techniques used 2030 here, see Henry S. Warren Jr's book "Hacker's Delight" (and 2031 supplement at http://hackersdelight.org/). Many of these are 2032 intended to reduce the branchiness of paths through malloc etc, as 2033 well as to reduce the number of memory locations read or written. 2034 2035 Segments 2036 A list of segments headed by an embedded malloc_segment record 2037 representing the initial space. 2038 2039 Address check support 2040 The least_addr field is the least address ever obtained from 2041 MORECORE or MMAP. Attempted frees and reallocs of any address less 2042 than this are trapped (unless INSECURE is defined). 2043 2044 Magic tag 2045 A cross-check field that should always hold same value as mparams.magic. 2046 2047 Flags 2048 Bits recording whether to use MMAP, locks, or contiguous MORECORE 2049 2050 Statistics 2051 Each space keeps track of current and maximum system memory 2052 obtained via MORECORE or MMAP. 2053 2054 Locking 2055 If USE_LOCKS is defined, the "mutex" lock is acquired and released 2056 around every public call using this mspace. 2057 */ 2058 2059 /* Bin types, widths and sizes */ 2060 #define NSMALLBINS (32U) 2061 #define NTREEBINS (32U) 2062 #define SMALLBIN_SHIFT (3U) 2063 #define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) 2064 #define TREEBIN_SHIFT (8U) 2065 #define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) 2066 #define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) 2067 #define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) 2068 2069 struct malloc_state { 2070 binmap_t smallmap; 2071 binmap_t treemap; 2072 size_t dvsize; 2073 size_t topsize; 2074 char* least_addr; 2075 mchunkptr dv; 2076 mchunkptr top; 2077 size_t trim_check; 2078 size_t magic; 2079 mchunkptr smallbins[(NSMALLBINS+1)*2]; 2080 tbinptr treebins[NTREEBINS]; 2081 size_t footprint; 2082 size_t max_footprint; 2083 flag_t mflags; 2084 #if USE_LOCKS 2085 MLOCK_T mutex; /* locate lock among fields that rarely change */ 2086 #endif /* USE_LOCKS */ 2087 msegment seg; 2088 }; 2089 2090 typedef struct malloc_state* mstate; 2091 2092 /* ------------- Global malloc_state and malloc_params ------------------- */ 2093 2094 /* 2095 malloc_params holds global properties, including those that can be 2096 dynamically set using mallopt. There is a single instance, mparams, 2097 initialized in init_mparams. 2098 */ 2099 2100 struct malloc_params { 2101 size_t magic; 2102 size_t page_size; 2103 size_t granularity; 2104 size_t mmap_threshold; 2105 size_t trim_threshold; 2106 flag_t default_mflags; 2107 }; 2108 2109 static struct malloc_params mparams; 2110 2111 /* The global malloc_state used for all non-"mspace" calls */ 2112 static struct malloc_state _gm_; 2113 #define gm (&_gm_) 2114 #define is_global(M) ((M) == &_gm_) 2115 #define is_initialized(M) ((M)->top != 0) 2116 2117 /* -------------------------- system alloc setup ------------------------- */ 2118 2119 /* Operations on mflags */ 2120 2121 #define use_lock(M) ((M)->mflags & USE_LOCK_BIT) 2122 #define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) 2123 #define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) 2124 2125 #define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) 2126 #define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) 2127 #define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) 2128 2129 #define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) 2130 #define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) 2131 2132 #define set_lock(M,L)\ 2133 ((M)->mflags = (L)?\ 2134 ((M)->mflags | USE_LOCK_BIT) :\ 2135 ((M)->mflags & ~USE_LOCK_BIT)) 2136 2137 /* page-align a size */ 2138 #define page_align(S)\ 2139 (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE)) 2140 2141 /* granularity-align a size */ 2142 #define granularity_align(S)\ 2143 (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE)) 2144 2145 #define is_page_aligned(S)\ 2146 (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) 2147 #define is_granularity_aligned(S)\ 2148 (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) 2149 2150 /* True if segment S holds address A */ 2151 #define segment_holds(S, A)\ 2152 ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) 2153 2154 /* Return segment holding given address */ 2155 static msegmentptr segment_holding(mstate m, char* addr) { 2156 msegmentptr sp = &m->seg; 2157 for (;;) { 2158 if (addr >= sp->base && addr < sp->base + sp->size) 2159 return sp; 2160 if ((sp = sp->next) == 0) 2161 return 0; 2162 } 2163 } 2164 2165 /* Return true if segment contains a segment link */ 2166 static int has_segment_link(mstate m, msegmentptr ss) { 2167 msegmentptr sp = &m->seg; 2168 for (;;) { 2169 if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) 2170 return 1; 2171 if ((sp = sp->next) == 0) 2172 return 0; 2173 } 2174 } 2175 2176 #ifndef MORECORE_CANNOT_TRIM 2177 #define should_trim(M,s) ((s) > (M)->trim_check) 2178 #else /* MORECORE_CANNOT_TRIM */ 2179 #define should_trim(M,s) (0) 2180 #endif /* MORECORE_CANNOT_TRIM */ 2181 2182 /* 2183 TOP_FOOT_SIZE is padding at the end of a segment, including space 2184 that may be needed to place segment records and fenceposts when new 2185 noncontiguous segments are added. 2186 */ 2187 #define TOP_FOOT_SIZE\ 2188 (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) 2189 2190 2191 /* ------------------------------- Hooks -------------------------------- */ 2192 2193 /* 2194 PREACTION should be defined to return 0 on success, and nonzero on 2195 failure. If you are not using locking, you can redefine these to do 2196 anything you like. 2197 */ 2198 2199 #if USE_LOCKS 2200 2201 /* Ensure locks are initialized */ 2202 #define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams()) 2203 2204 #define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) 2205 #define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } 2206 #else /* USE_LOCKS */ 2207 2208 #ifndef PREACTION 2209 #define PREACTION(M) (0) 2210 #endif /* PREACTION */ 2211 2212 #ifndef POSTACTION 2213 #define POSTACTION(M) 2214 #endif /* POSTACTION */ 2215 2216 #endif /* USE_LOCKS */ 2217 2218 /* 2219 CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. 2220 USAGE_ERROR_ACTION is triggered on detected bad frees and 2221 reallocs. The argument p is an address that might have triggered the 2222 fault. It is ignored by the two predefined actions, but might be 2223 useful in custom actions that try to help diagnose errors. 2224 */ 2225 2226 #if PROCEED_ON_ERROR 2227 2228 /* A count of the number of corruption errors causing resets */ 2229 int malloc_corruption_error_count; 2230 2231 /* default corruption action */ 2232 static void reset_on_error(mstate m); 2233 2234 #define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) 2235 #define USAGE_ERROR_ACTION(m, p) 2236 2237 #else /* PROCEED_ON_ERROR */ 2238 2239 #ifndef CORRUPTION_ERROR_ACTION 2240 #define CORRUPTION_ERROR_ACTION(m) ABORT 2241 #endif /* CORRUPTION_ERROR_ACTION */ 2242 2243 #ifndef USAGE_ERROR_ACTION 2244 #define USAGE_ERROR_ACTION(m,p) ABORT 2245 #endif /* USAGE_ERROR_ACTION */ 2246 2247 #endif /* PROCEED_ON_ERROR */ 2248 2249 /* -------------------------- Debugging setup ---------------------------- */ 2250 2251 #if ! DEBUG 2252 2253 #define check_free_chunk(M,P) 2254 #define check_inuse_chunk(M,P) 2255 #define check_malloced_chunk(M,P,N) 2256 #define check_mmapped_chunk(M,P) 2257 #define check_malloc_state(M) 2258 #define check_top_chunk(M,P) 2259 2260 #else /* DEBUG */ 2261 #define check_free_chunk(M,P) do_check_free_chunk(M,P) 2262 #define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) 2263 #define check_top_chunk(M,P) do_check_top_chunk(M,P) 2264 #define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) 2265 #define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) 2266 #define check_malloc_state(M) do_check_malloc_state(M) 2267 2268 static void do_check_any_chunk(mstate m, mchunkptr p); 2269 static void do_check_top_chunk(mstate m, mchunkptr p); 2270 static void do_check_mmapped_chunk(mstate m, mchunkptr p); 2271 static void do_check_inuse_chunk(mstate m, mchunkptr p); 2272 static void do_check_free_chunk(mstate m, mchunkptr p); 2273 static void do_check_malloced_chunk(mstate m, void* mem, size_t s); 2274 static void do_check_tree(mstate m, tchunkptr t); 2275 static void do_check_treebin(mstate m, bindex_t i); 2276 static void do_check_smallbin(mstate m, bindex_t i); 2277 static void do_check_malloc_state(mstate m); 2278 static int bin_find(mstate m, mchunkptr x); 2279 static size_t traverse_and_check(mstate m); 2280 #endif /* DEBUG */ 2281 2282 /* ---------------------------- Indexing Bins ---------------------------- */ 2283 2284 #define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) 2285 #define small_index(s) ((s) >> SMALLBIN_SHIFT) 2286 #define small_index2size(i) ((i) << SMALLBIN_SHIFT) 2287 #define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) 2288 2289 /* addressing by index. See above about smallbin repositioning */ 2290 #define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) 2291 #define treebin_at(M,i) (&((M)->treebins[i])) 2292 2293 /* assign tree index for size S to variable I */ 2294 #if defined(__GNUC__) && defined(i386) 2295 #define compute_tree_index(S, I)\ 2296 {\ 2297 size_t X = S >> TREEBIN_SHIFT;\ 2298 if (X == 0)\ 2299 I = 0;\ 2300 else if (X > 0xFFFF)\ 2301 I = NTREEBINS-1;\ 2302 else {\ 2303 unsigned int K;\ 2304 __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\ 2305 I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ 2306 }\ 2307 } 2308 #else /* GNUC */ 2309 #define compute_tree_index(S, I)\ 2310 {\ 2311 size_t X = S >> TREEBIN_SHIFT;\ 2312 if (X == 0)\ 2313 I = 0;\ 2314 else if (X > 0xFFFF)\ 2315 I = NTREEBINS-1;\ 2316 else {\ 2317 unsigned int Y = (unsigned int)X;\ 2318 unsigned int N = ((Y - 0x100) >> 16) & 8;\ 2319 unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ 2320 N += K;\ 2321 N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ 2322 K = 14 - N + ((Y <<= K) >> 15);\ 2323 I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ 2324 }\ 2325 } 2326 #endif /* GNUC */ 2327 2328 /* Bit representing maximum resolved size in a treebin at i */ 2329 #define bit_for_tree_index(i) \ 2330 (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) 2331 2332 /* Shift placing maximum resolved bit in a treebin at i as sign bit */ 2333 #define leftshift_for_tree_index(i) \ 2334 ((i == NTREEBINS-1)? 0 : \ 2335 ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) 2336 2337 /* The size of the smallest chunk held in bin with index i */ 2338 #define minsize_for_tree_index(i) \ 2339 ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ 2340 (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) 2341 2342 2343 /* ------------------------ Operations on bin maps ----------------------- */ 2344 2345 /* bit corresponding to given index */ 2346 #define idx2bit(i) ((binmap_t)(1) << (i)) 2347 2348 /* Mark/Clear bits with given index */ 2349 #define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) 2350 #define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) 2351 #define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) 2352 2353 #define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) 2354 #define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) 2355 #define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) 2356 2357 /* index corresponding to given bit */ 2358 2359 #if defined(__GNUC__) && defined(i386) 2360 #define compute_bit2idx(X, I)\ 2361 {\ 2362 unsigned int J;\ 2363 __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\ 2364 I = (bindex_t)J;\ 2365 } 2366 2367 #else /* GNUC */ 2368 #if USE_BUILTIN_FFS 2369 #define compute_bit2idx(X, I) I = ffs(X)-1 2370 2371 #else /* USE_BUILTIN_FFS */ 2372 #define compute_bit2idx(X, I)\ 2373 {\ 2374 unsigned int Y = X - 1;\ 2375 unsigned int K = Y >> (16-4) & 16;\ 2376 unsigned int N = K; Y >>= K;\ 2377 N += K = Y >> (8-3) & 8; Y >>= K;\ 2378 N += K = Y >> (4-2) & 4; Y >>= K;\ 2379 N += K = Y >> (2-1) & 2; Y >>= K;\ 2380 N += K = Y >> (1-0) & 1; Y >>= K;\ 2381 I = (bindex_t)(N + Y);\ 2382 } 2383 #endif /* USE_BUILTIN_FFS */ 2384 #endif /* GNUC */ 2385 2386 /* isolate the least set bit of a bitmap */ 2387 #define least_bit(x) ((x) & -(x)) 2388 2389 /* mask with all bits to left of least bit of x on */ 2390 #define left_bits(x) ((x<<1) | -(x<<1)) 2391 2392 /* mask with all bits to left of or equal to least bit of x on */ 2393 #define same_or_left_bits(x) ((x) | -(x)) 2394 2395 2396 /* ----------------------- Runtime Check Support ------------------------- */ 2397 2398 /* 2399 For security, the main invariant is that malloc/free/etc never 2400 writes to a static address other than malloc_state, unless static 2401 malloc_state itself has been corrupted, which cannot occur via 2402 malloc (because of these checks). In essence this means that we 2403 believe all pointers, sizes, maps etc held in malloc_state, but 2404 check all of those linked or offsetted from other embedded data 2405 structures. These checks are interspersed with main code in a way 2406 that tends to minimize their run-time cost. 2407 2408 When FOOTERS is defined, in addition to range checking, we also 2409 verify footer fields of inuse chunks, which can be used guarantee 2410 that the mstate controlling malloc/free is intact. This is a 2411 streamlined version of the approach described by William Robertson 2412 et al in "Run-time Detection of Heap-based Overflows" LISA'03 2413 http://www.usenix.org/events/lisa03/tech/robertson.html The footer 2414 of an inuse chunk holds the xor of its mstate and a random seed, 2415 that is checked upon calls to free() and realloc(). This is 2416 (probablistically) unguessable from outside the program, but can be 2417 computed by any code successfully malloc'ing any chunk, so does not 2418 itself provide protection against code that has already broken 2419 security through some other means. Unlike Robertson et al, we 2420 always dynamically check addresses of all offset chunks (previous, 2421 next, etc). This turns out to be cheaper than relying on hashes. 2422 */ 2423 2424 #if !INSECURE 2425 /* Check if address a is at least as high as any from MORECORE or MMAP */ 2426 #define ok_address(M, a) ((char*)(a) >= (M)->least_addr) 2427 /* Check if address of next chunk n is higher than base chunk p */ 2428 #define ok_next(p, n) ((char*)(p) < (char*)(n)) 2429 /* Check if p has its cinuse bit on */ 2430 #define ok_cinuse(p) cinuse(p) 2431 /* Check if p has its pinuse bit on */ 2432 #define ok_pinuse(p) pinuse(p) 2433 2434 #else /* !INSECURE */ 2435 #define ok_address(M, a) (1) 2436 #define ok_next(b, n) (1) 2437 #define ok_cinuse(p) (1) 2438 #define ok_pinuse(p) (1) 2439 #endif /* !INSECURE */ 2440 2441 #if (FOOTERS && !INSECURE) 2442 /* Check if (alleged) mstate m has expected magic field */ 2443 #define ok_magic(M) ((M)->magic == mparams.magic) 2444 #else /* (FOOTERS && !INSECURE) */ 2445 #define ok_magic(M) (1) 2446 #endif /* (FOOTERS && !INSECURE) */ 2447 2448 2449 /* In gcc, use __builtin_expect to minimize impact of checks */ 2450 #if !INSECURE 2451 #if defined(__GNUC__) && __GNUC__ >= 3 2452 #define RTCHECK(e) __builtin_expect(e, 1) 2453 #else /* GNUC */ 2454 #define RTCHECK(e) (e) 2455 #endif /* GNUC */ 2456 #else /* !INSECURE */ 2457 #define RTCHECK(e) (1) 2458 #endif /* !INSECURE */ 2459 2460 /* macros to set up inuse chunks with or without footers */ 2461 2462 #if !FOOTERS 2463 2464 #define mark_inuse_foot(M,p,s) 2465 2466 /* Set cinuse bit and pinuse bit of next chunk */ 2467 #define set_inuse(M,p,s)\ 2468 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ 2469 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) 2470 2471 /* Set cinuse and pinuse of this chunk and pinuse of next chunk */ 2472 #define set_inuse_and_pinuse(M,p,s)\ 2473 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ 2474 ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) 2475 2476 /* Set size, cinuse and pinuse bit of this chunk */ 2477 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ 2478 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) 2479 2480 #else /* FOOTERS */ 2481 2482 /* Set foot of inuse chunk to be xor of mstate and seed */ 2483 #define mark_inuse_foot(M,p,s)\ 2484 (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) 2485 2486 #define get_mstate_for(p)\ 2487 ((mstate)(((mchunkptr)((char*)(p) +\ 2488 (chunksize(p))))->prev_foot ^ mparams.magic)) 2489 2490 #define set_inuse(M,p,s)\ 2491 ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ 2492 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ 2493 mark_inuse_foot(M,p,s)) 2494 2495 #define set_inuse_and_pinuse(M,p,s)\ 2496 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ 2497 (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ 2498 mark_inuse_foot(M,p,s)) 2499 2500 #define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ 2501 ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ 2502 mark_inuse_foot(M, p, s)) 2503 2504 #endif /* !FOOTERS */ 2505 2506 /* ---------------------------- setting mparams -------------------------- */ 2507 2508 /* Initialize mparams */ 2509 static int init_mparams(void) { 2510 if (mparams.page_size == 0) { 2511 size_t s; 2512 2513 mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; 2514 mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; 2515 #if MORECORE_CONTIGUOUS 2516 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; 2517 #else /* MORECORE_CONTIGUOUS */ 2518 mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; 2519 #endif /* MORECORE_CONTIGUOUS */ 2520 2521 #if (FOOTERS && !INSECURE) 2522 { 2523 #if USE_DEV_RANDOM 2524 int fd; 2525 unsigned char buf[sizeof(size_t)]; 2526 /* Try to use /dev/urandom, else fall back on using time */ 2527 if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && 2528 read(fd, buf, sizeof(buf)) == sizeof(buf)) { 2529 s = *((size_t *) buf); 2530 close(fd); 2531 } 2532 else 2533 #endif /* USE_DEV_RANDOM */ 2534 s = (size_t)(time(0) ^ (size_t)0x55555555U); 2535 2536 s |= (size_t)8U; /* ensure nonzero */ 2537 s &= ~(size_t)7U; /* improve chances of fault for bad values */ 2538 2539 } 2540 #else /* (FOOTERS && !INSECURE) */ 2541 s = (size_t)0x58585858U; 2542 #endif /* (FOOTERS && !INSECURE) */ 2543 ACQUIRE_MAGIC_INIT_LOCK(); 2544 if (mparams.magic == 0) { 2545 mparams.magic = s; 2546 /* Set up lock for main malloc area */ 2547 INITIAL_LOCK(&gm->mutex); 2548 gm->mflags = mparams.default_mflags; 2549 } 2550 RELEASE_MAGIC_INIT_LOCK(); 2551 2552 #if !defined(WIN32) && !defined(__OS2__) 2553 mparams.page_size = malloc_getpagesize; 2554 mparams.granularity = ((DEFAULT_GRANULARITY != 0)? 2555 DEFAULT_GRANULARITY : mparams.page_size); 2556 #elif defined (__OS2__) 2557 /* if low-memory is used, os2munmap() would break 2558 if it were anything other than 64k */ 2559 mparams.page_size = 4096u; 2560 mparams.granularity = 65536u; 2561 #else /* WIN32 */ 2562 { 2563 SYSTEM_INFO system_info; 2564 GetSystemInfo(&system_info); 2565 mparams.page_size = system_info.dwPageSize; 2566 mparams.granularity = system_info.dwAllocationGranularity; 2567 } 2568 #endif /* WIN32 */ 2569 2570 /* Sanity-check configuration: 2571 size_t must be unsigned and as wide as pointer type. 2572 ints must be at least 4 bytes. 2573 alignment must be at least 8. 2574 Alignment, min chunk size, and page size must all be powers of 2. 2575 */ 2576 if ((sizeof(size_t) != sizeof(char*)) || 2577 (MAX_SIZE_T < MIN_CHUNK_SIZE) || 2578 (sizeof(int) < 4) || 2579 (MALLOC_ALIGNMENT < (size_t)8U) || 2580 ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || 2581 ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || 2582 ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) || 2583 ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0)) 2584 ABORT; 2585 } 2586 return 0; 2587 } 2588 2589 /* support for mallopt */ 2590 static int change_mparam(int param_number, int value) { 2591 size_t val = (size_t)value; 2592 init_mparams(); 2593 switch(param_number) { 2594 case M_TRIM_THRESHOLD: 2595 mparams.trim_threshold = val; 2596 return 1; 2597 case M_GRANULARITY: 2598 if (val >= mparams.page_size && ((val & (val-1)) == 0)) { 2599 mparams.granularity = val; 2600 return 1; 2601 } 2602 else 2603 return 0; 2604 case M_MMAP_THRESHOLD: 2605 mparams.mmap_threshold = val; 2606 return 1; 2607 default: 2608 return 0; 2609 } 2610 } 2611 2612 #if DEBUG 2613 /* ------------------------- Debugging Support --------------------------- */ 2614 2615 /* Check properties of any chunk, whether free, inuse, mmapped etc */ 2616 static void do_check_any_chunk(mstate m, mchunkptr p) { 2617 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); 2618 assert(ok_address(m, p)); 2619 } 2620 2621 /* Check properties of top chunk */ 2622 static void do_check_top_chunk(mstate m, mchunkptr p) { 2623 msegmentptr sp = segment_holding(m, (char*)p); 2624 size_t sz = chunksize(p); 2625 assert(sp != 0); 2626 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); 2627 assert(ok_address(m, p)); 2628 assert(sz == m->topsize); 2629 assert(sz > 0); 2630 assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); 2631 assert(pinuse(p)); 2632 assert(!next_pinuse(p)); 2633 } 2634 2635 /* Check properties of (inuse) mmapped chunks */ 2636 static void do_check_mmapped_chunk(mstate m, mchunkptr p) { 2637 size_t sz = chunksize(p); 2638 size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD); 2639 assert(is_mmapped(p)); 2640 assert(use_mmap(m)); 2641 assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); 2642 assert(ok_address(m, p)); 2643 assert(!is_small(sz)); 2644 assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); 2645 assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); 2646 assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); 2647 } 2648 2649 /* Check properties of inuse chunks */ 2650 static void do_check_inuse_chunk(mstate m, mchunkptr p) { 2651 do_check_any_chunk(m, p); 2652 assert(cinuse(p)); 2653 assert(next_pinuse(p)); 2654 /* If not pinuse and not mmapped, previous chunk has OK offset */ 2655 assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); 2656 if (is_mmapped(p)) 2657 do_check_mmapped_chunk(m, p); 2658 } 2659 2660 /* Check properties of free chunks */ 2661 static void do_check_free_chunk(mstate m, mchunkptr p) { 2662 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); 2663 mchunkptr next = chunk_plus_offset(p, sz); 2664 do_check_any_chunk(m, p); 2665 assert(!cinuse(p)); 2666 assert(!next_pinuse(p)); 2667 assert (!is_mmapped(p)); 2668 if (p != m->dv && p != m->top) { 2669 if (sz >= MIN_CHUNK_SIZE) { 2670 assert((sz & CHUNK_ALIGN_MASK) == 0); 2671 assert(is_aligned(chunk2mem(p))); 2672 assert(next->prev_foot == sz); 2673 assert(pinuse(p)); 2674 assert (next == m->top || cinuse(next)); 2675 assert(p->fd->bk == p); 2676 assert(p->bk->fd == p); 2677 } 2678 else /* markers are always of size SIZE_T_SIZE */ 2679 assert(sz == SIZE_T_SIZE); 2680 } 2681 } 2682 2683 /* Check properties of malloced chunks at the point they are malloced */ 2684 static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { 2685 if (mem != 0) { 2686 mchunkptr p = mem2chunk(mem); 2687 size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); 2688 do_check_inuse_chunk(m, p); 2689 assert((sz & CHUNK_ALIGN_MASK) == 0); 2690 assert(sz >= MIN_CHUNK_SIZE); 2691 assert(sz >= s); 2692 /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ 2693 assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); 2694 } 2695 } 2696 2697 /* Check a tree and its subtrees. */ 2698 static void do_check_tree(mstate m, tchunkptr t) { 2699 tchunkptr head = 0; 2700 tchunkptr u = t; 2701 bindex_t tindex = t->index; 2702 size_t tsize = chunksize(t); 2703 bindex_t idx; 2704 compute_tree_index(tsize, idx); 2705 assert(tindex == idx); 2706 assert(tsize >= MIN_LARGE_SIZE); 2707 assert(tsize >= minsize_for_tree_index(idx)); 2708 assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); 2709 2710 do { /* traverse through chain of same-sized nodes */ 2711 do_check_any_chunk(m, ((mchunkptr)u)); 2712 assert(u->index == tindex); 2713 assert(chunksize(u) == tsize); 2714 assert(!cinuse(u)); 2715 assert(!next_pinuse(u)); 2716 assert(u->fd->bk == u); 2717 assert(u->bk->fd == u); 2718 if (u->parent == 0) { 2719 assert(u->child[0] == 0); 2720 assert(u->child[1] == 0); 2721 } 2722 else { 2723 assert(head == 0); /* only one node on chain has parent */ 2724 head = u; 2725 assert(u->parent != u); 2726 assert (u->parent->child[0] == u || 2727 u->parent->child[1] == u || 2728 *((tbinptr*)(u->parent)) == u); 2729 if (u->child[0] != 0) { 2730 assert(u->child[0]->parent == u); 2731 assert(u->child[0] != u); 2732 do_check_tree(m, u->child[0]); 2733 } 2734 if (u->child[1] != 0) { 2735 assert(u->child[1]->parent == u); 2736 assert(u->child[1] != u); 2737 do_check_tree(m, u->child[1]); 2738 } 2739 if (u->child[0] != 0 && u->child[1] != 0) { 2740 assert(chunksize(u->child[0]) < chunksize(u->child[1])); 2741 } 2742 } 2743 u = u->fd; 2744 } while (u != t); 2745 assert(head != 0); 2746 } 2747 2748 /* Check all the chunks in a treebin. */ 2749 static void do_check_treebin(mstate m, bindex_t i) { 2750 tbinptr* tb = treebin_at(m, i); 2751 tchunkptr t = *tb; 2752 int empty = (m->treemap & (1U << i)) == 0; 2753 if (t == 0) 2754 assert(empty); 2755 if (!empty) 2756 do_check_tree(m, t); 2757 } 2758 2759 /* Check all the chunks in a smallbin. */ 2760 static void do_check_smallbin(mstate m, bindex_t i) { 2761 sbinptr b = smallbin_at(m, i); 2762 mchunkptr p = b->bk; 2763 unsigned int empty = (m->smallmap & (1U << i)) == 0; 2764 if (p == b) 2765 assert(empty); 2766 if (!empty) { 2767 for (; p != b; p = p->bk) { 2768 size_t size = chunksize(p); 2769 mchunkptr q; 2770 /* each chunk claims to be free */ 2771 do_check_free_chunk(m, p); 2772 /* chunk belongs in bin */ 2773 assert(small_index(size) == i); 2774 assert(p->bk == b || chunksize(p->bk) == chunksize(p)); 2775 /* chunk is followed by an inuse chunk */ 2776 q = next_chunk(p); 2777 if (q->head != FENCEPOST_HEAD) 2778 do_check_inuse_chunk(m, q); 2779 } 2780 } 2781 } 2782 2783 /* Find x in a bin. Used in other check functions. */ 2784 static int bin_find(mstate m, mchunkptr x) { 2785 size_t size = chunksize(x); 2786 if (is_small(size)) { 2787 bindex_t sidx = small_index(size); 2788 sbinptr b = smallbin_at(m, sidx); 2789 if (smallmap_is_marked(m, sidx)) { 2790 mchunkptr p = b; 2791 do { 2792 if (p == x) 2793 return 1; 2794 } while ((p = p->fd) != b); 2795 } 2796 } 2797 else { 2798 bindex_t tidx; 2799 compute_tree_index(size, tidx); 2800 if (treemap_is_marked(m, tidx)) { 2801 tchunkptr t = *treebin_at(m, tidx); 2802 size_t sizebits = size << leftshift_for_tree_index(tidx); 2803 while (t != 0 && chunksize(t) != size) { 2804 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; 2805 sizebits <<= 1; 2806 } 2807 if (t != 0) { 2808 tchunkptr u = t; 2809 do { 2810 if (u == (tchunkptr)x) 2811 return 1; 2812 } while ((u = u->fd) != t); 2813 } 2814 } 2815 } 2816 return 0; 2817 } 2818 2819 /* Traverse each chunk and check it; return total */ 2820 static size_t traverse_and_check(mstate m) { 2821 size_t sum = 0; 2822 if (is_initialized(m)) { 2823 msegmentptr s = &m->seg; 2824 sum += m->topsize + TOP_FOOT_SIZE; 2825 while (s != 0) { 2826 mchunkptr q = align_as_chunk(s->base); 2827 mchunkptr lastq = 0; 2828 assert(pinuse(q)); 2829 while (segment_holds(s, q) && 2830 q != m->top && q->head != FENCEPOST_HEAD) { 2831 sum += chunksize(q); 2832 if (cinuse(q)) { 2833 assert(!bin_find(m, q)); 2834 do_check_inuse_chunk(m, q); 2835 } 2836 else { 2837 assert(q == m->dv || bin_find(m, q)); 2838 assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */ 2839 do_check_free_chunk(m, q); 2840 } 2841 lastq = q; 2842 q = next_chunk(q); 2843 } 2844 s = s->next; 2845 } 2846 } 2847 return sum; 2848 } 2849 2850 /* Check all properties of malloc_state. */ 2851 static void do_check_malloc_state(mstate m) { 2852 bindex_t i; 2853 size_t total; 2854 /* check bins */ 2855 for (i = 0; i < NSMALLBINS; ++i) 2856 do_check_smallbin(m, i); 2857 for (i = 0; i < NTREEBINS; ++i) 2858 do_check_treebin(m, i); 2859 2860 if (m->dvsize != 0) { /* check dv chunk */ 2861 do_check_any_chunk(m, m->dv); 2862 assert(m->dvsize == chunksize(m->dv)); 2863 assert(m->dvsize >= MIN_CHUNK_SIZE); 2864 assert(bin_find(m, m->dv) == 0); 2865 } 2866 2867 if (m->top != 0) { /* check top chunk */ 2868 do_check_top_chunk(m, m->top); 2869 assert(m->topsize == chunksize(m->top)); 2870 assert(m->topsize > 0); 2871 assert(bin_find(m, m->top) == 0); 2872 } 2873 2874 total = traverse_and_check(m); 2875 assert(total <= m->footprint); 2876 assert(m->footprint <= m->max_footprint); 2877 } 2878 #endif /* DEBUG */ 2879 2880 /* ----------------------------- statistics ------------------------------ */ 2881 2882 #if !NO_MALLINFO 2883 static struct mallinfo internal_mallinfo(mstate m) { 2884 struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; 2885 if (!PREACTION(m)) { 2886 check_malloc_state(m); 2887 if (is_initialized(m)) { 2888 size_t nfree = SIZE_T_ONE; /* top always free */ 2889 size_t mfree = m->topsize + TOP_FOOT_SIZE; 2890 size_t sum = mfree; 2891 msegmentptr s = &m->seg; 2892 while (s != 0) { 2893 mchunkptr q = align_as_chunk(s->base); 2894 while (segment_holds(s, q) && 2895 q != m->top && q->head != FENCEPOST_HEAD) { 2896 size_t sz = chunksize(q); 2897 sum += sz; 2898 if (!cinuse(q)) { 2899 mfree += sz; 2900 ++nfree; 2901 } 2902 q = next_chunk(q); 2903 } 2904 s = s->next; 2905 } 2906 2907 nm.arena = sum; 2908 nm.ordblks = nfree; 2909 nm.hblkhd = m->footprint - sum; 2910 nm.usmblks = m->max_footprint; 2911 nm.uordblks = m->footprint - mfree; 2912 nm.fordblks = mfree; 2913 nm.keepcost = m->topsize; 2914 } 2915 2916 POSTACTION(m); 2917 } 2918 return nm; 2919 } 2920 #endif /* !NO_MALLINFO */ 2921 2922 static void internal_malloc_stats(mstate m) { 2923 if (!PREACTION(m)) { 2924 size_t maxfp = 0; 2925 size_t fp = 0; 2926 size_t used = 0; 2927 check_malloc_state(m); 2928 if (is_initialized(m)) { 2929 msegmentptr s = &m->seg; 2930 maxfp = m->max_footprint; 2931 fp = m->footprint; 2932 used = fp - (m->topsize + TOP_FOOT_SIZE); 2933 2934 while (s != 0) { 2935 mchunkptr q = align_as_chunk(s->base); 2936 while (segment_holds(s, q) && 2937 q != m->top && q->head != FENCEPOST_HEAD) { 2938 if (!cinuse(q)) 2939 used -= chunksize(q); 2940 q = next_chunk(q); 2941 } 2942 s = s->next; 2943 } 2944 } 2945 2946 fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); 2947 fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); 2948 fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); 2949 2950 POSTACTION(m); 2951 } 2952 } 2953 2954 /* ----------------------- Operations on smallbins ----------------------- */ 2955 2956 /* 2957 Various forms of linking and unlinking are defined as macros. Even 2958 the ones for trees, which are very long but have very short typical 2959 paths. This is ugly but reduces reliance on inlining support of 2960 compilers. 2961 */ 2962 2963 /* Link a free chunk into a smallbin */ 2964 #define insert_small_chunk(M, P, S) {\ 2965 bindex_t I = small_index(S);\ 2966 mchunkptr B = smallbin_at(M, I);\ 2967 mchunkptr F = B;\ 2968 assert(S >= MIN_CHUNK_SIZE);\ 2969 if (!smallmap_is_marked(M, I))\ 2970 mark_smallmap(M, I);\ 2971 else if (RTCHECK(ok_address(M, B->fd)))\ 2972 F = B->fd;\ 2973 else {\ 2974 CORRUPTION_ERROR_ACTION(M);\ 2975 }\ 2976 B->fd = P;\ 2977 F->bk = P;\ 2978 P->fd = F;\ 2979 P->bk = B;\ 2980 } 2981 2982 /* Unlink a chunk from a smallbin */ 2983 #define unlink_small_chunk(M, P, S) {\ 2984 mchunkptr F = P->fd;\ 2985 mchunkptr B = P->bk;\ 2986 bindex_t I = small_index(S);\ 2987 assert(P != B);\ 2988 assert(P != F);\ 2989 assert(chunksize(P) == small_index2size(I));\ 2990 if (F == B)\ 2991 clear_smallmap(M, I);\ 2992 else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ 2993 (B == smallbin_at(M,I) || ok_address(M, B)))) {\ 2994 F->bk = B;\ 2995 B->fd = F;\ 2996 }\ 2997 else {\ 2998 CORRUPTION_ERROR_ACTION(M);\ 2999 }\ 3000 } 3001 3002 /* Unlink the first chunk from a smallbin */ 3003 #define unlink_first_small_chunk(M, B, P, I) {\ 3004 mchunkptr F = P->fd;\ 3005 assert(P != B);\ 3006 assert(P != F);\ 3007 assert(chunksize(P) == small_index2size(I));\ 3008 if (B == F)\ 3009 clear_smallmap(M, I);\ 3010 else if (RTCHECK(ok_address(M, F))) {\ 3011 B->fd = F;\ 3012 F->bk = B;\ 3013 }\ 3014 else {\ 3015 CORRUPTION_ERROR_ACTION(M);\ 3016 }\ 3017 } 3018 3019 /* Replace dv node, binning the old one */ 3020 /* Used only when dvsize known to be small */ 3021 #define replace_dv(M, P, S) {\ 3022 size_t DVS = M->dvsize;\ 3023 if (DVS != 0) {\ 3024 mchunkptr DV = M->dv;\ 3025 assert(is_small(DVS));\ 3026 insert_small_chunk(M, DV, DVS);\ 3027 }\ 3028 M->dvsize = S;\ 3029 M->dv = P;\ 3030 } 3031 3032 /* ------------------------- Operations on trees ------------------------- */ 3033 3034 /* Insert chunk into tree */ 3035 #define insert_large_chunk(M, X, S) {\ 3036 tbinptr* H;\ 3037 bindex_t I;\ 3038 compute_tree_index(S, I);\ 3039 H = treebin_at(M, I);\ 3040 X->index = I;\ 3041 X->child[0] = X->child[1] = 0;\ 3042 if (!treemap_is_marked(M, I)) {\ 3043 mark_treemap(M, I);\ 3044 *H = X;\ 3045 X->parent = (tchunkptr)H;\ 3046 X->fd = X->bk = X;\ 3047 }\ 3048 else {\ 3049 tchunkptr T = *H;\ 3050 size_t K = S << leftshift_for_tree_index(I);\ 3051 for (;;) {\ 3052 if (chunksize(T) != S) {\ 3053 tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ 3054 K <<= 1;\ 3055 if (*C != 0)\ 3056 T = *C;\ 3057 else if (RTCHECK(ok_address(M, C))) {\ 3058 *C = X;\ 3059 X->parent = T;\ 3060 X->fd = X->bk = X;\ 3061 break;\ 3062 }\ 3063 else {\ 3064 CORRUPTION_ERROR_ACTION(M);\ 3065 break;\ 3066 }\ 3067 }\ 3068 else {\ 3069 tchunkptr F = T->fd;\ 3070 if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ 3071 T->fd = F->bk = X;\ 3072 X->fd = F;\ 3073 X->bk = T;\ 3074 X->parent = 0;\ 3075 break;\ 3076 }\ 3077 else {\ 3078 CORRUPTION_ERROR_ACTION(M);\ 3079 break;\ 3080 }\ 3081 }\ 3082 }\ 3083 }\ 3084 } 3085 3086 /* 3087 Unlink steps: 3088 3089 1. If x is a chained node, unlink it from its same-sized fd/bk links 3090 and choose its bk node as its replacement. 3091 2. If x was the last node of its size, but not a leaf node, it must 3092 be replaced with a leaf node (not merely one with an open left or 3093 right), to make sure that lefts and rights of descendants 3094 correspond properly to bit masks. We use the rightmost descendant 3095 of x. We could use any other leaf, but this is easy to locate and 3096 tends to counteract removal of leftmosts elsewhere, and so keeps 3097 paths shorter than minimally guaranteed. This doesn't loop much 3098 because on average a node in a tree is near the bottom. 3099 3. If x is the base of a chain (i.e., has parent links) relink 3100 x's parent and children to x's replacement (or null if none). 3101 */ 3102 3103 #define unlink_large_chunk(M, X) {\ 3104 tchunkptr XP = X->parent;\ 3105 tchunkptr R;\ 3106 if (X->bk != X) {\ 3107 tchunkptr F = X->fd;\ 3108 R = X->bk;\ 3109 if (RTCHECK(ok_address(M, F))) {\ 3110 F->bk = R;\ 3111 R->fd = F;\ 3112 }\ 3113 else {\ 3114 CORRUPTION_ERROR_ACTION(M);\ 3115 }\ 3116 }\ 3117 else {\ 3118 tchunkptr* RP;\ 3119 if (((R = *(RP = &(X->child[1]))) != 0) ||\ 3120 ((R = *(RP = &(X->child[0]))) != 0)) {\ 3121 tchunkptr* CP;\ 3122 while ((*(CP = &(R->child[1])) != 0) ||\ 3123 (*(CP = &(R->child[0])) != 0)) {\ 3124 R = *(RP = CP);\ 3125 }\ 3126 if (RTCHECK(ok_address(M, RP)))\ 3127 *RP = 0;\ 3128 else {\ 3129 CORRUPTION_ERROR_ACTION(M);\ 3130 }\ 3131 }\ 3132 }\ 3133 if (XP != 0) {\ 3134 tbinptr* H = treebin_at(M, X->index);\ 3135 if (X == *H) {\ 3136 if ((*H = R) == 0) \ 3137 clear_treemap(M, X->index);\ 3138 }\ 3139 else if (RTCHECK(ok_address(M, XP))) {\ 3140 if (XP->child[0] == X) \ 3141 XP->child[0] = R;\ 3142 else \ 3143 XP->child[1] = R;\ 3144 }\ 3145 else\ 3146 CORRUPTION_ERROR_ACTION(M);\ 3147 if (R != 0) {\ 3148 if (RTCHECK(ok_address(M, R))) {\ 3149 tchunkptr C0, C1;\ 3150 R->parent = XP;\ 3151 if ((C0 = X->child[0]) != 0) {\ 3152 if (RTCHECK(ok_address(M, C0))) {\ 3153 R->child[0] = C0;\ 3154 C0->parent = R;\ 3155 }\ 3156 else\ 3157 CORRUPTION_ERROR_ACTION(M);\ 3158 }\ 3159 if ((C1 = X->child[1]) != 0) {\ 3160 if (RTCHECK(ok_address(M, C1))) {\ 3161 R->child[1] = C1;\ 3162 C1->parent = R;\ 3163 }\ 3164 else\ 3165 CORRUPTION_ERROR_ACTION(M);\ 3166 }\ 3167 }\ 3168 else\ 3169 CORRUPTION_ERROR_ACTION(M);\ 3170 }\ 3171 }\ 3172 } 3173 3174 /* Relays to large vs small bin operations */ 3175 3176 #define insert_chunk(M, P, S)\ 3177 if (is_small(S)) insert_small_chunk(M, P, S)\ 3178 else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } 3179 3180 #define unlink_chunk(M, P, S)\ 3181 if (is_small(S)) unlink_small_chunk(M, P, S)\ 3182 else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } 3183 3184 3185 /* Relays to internal calls to malloc/free from realloc, memalign etc */ 3186 3187 #if ONLY_MSPACES 3188 #define internal_malloc(m, b) mspace_malloc(m, b) 3189 #define internal_free(m, mem) mspace_free(m,mem); 3190 #else /* ONLY_MSPACES */ 3191 #if MSPACES 3192 #define internal_malloc(m, b)\ 3193 (m == gm)? dlmalloc(b) : mspace_malloc(m, b) 3194 #define internal_free(m, mem)\ 3195 if (m == gm) dlfree(mem); else mspace_free(m,mem); 3196 #else /* MSPACES */ 3197 #define internal_malloc(m, b) dlmalloc(b) 3198 #define internal_free(m, mem) dlfree(mem) 3199 #endif /* MSPACES */ 3200 #endif /* ONLY_MSPACES */ 3201 3202 /* ----------------------- Direct-mmapping chunks ----------------------- */ 3203 3204 /* 3205 Directly mmapped chunks are set up with an offset to the start of 3206 the mmapped region stored in the prev_foot field of the chunk. This 3207 allows reconstruction of the required argument to MUNMAP when freed, 3208 and also allows adjustment of the returned chunk to meet alignment 3209 requirements (especially in memalign). There is also enough space 3210 allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain 3211 the PINUSE bit so frees can be checked. 3212 */ 3213 3214 /* Malloc using mmap */ 3215 static void* mmap_alloc(mstate m, size_t nb) { 3216 size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); 3217 if (mmsize > nb) { /* Check for wrap around 0 */ 3218 char* mm = (char*)(DIRECT_MMAP(mmsize)); 3219 if (mm != CMFAIL) { 3220 size_t offset = align_offset(chunk2mem(mm)); 3221 size_t psize = mmsize - offset - MMAP_FOOT_PAD; 3222 mchunkptr p = (mchunkptr)(mm + offset); 3223 p->prev_foot = offset | IS_MMAPPED_BIT; 3224 (p)->head = (psize|CINUSE_BIT); 3225 mark_inuse_foot(m, p, psize); 3226 chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; 3227 chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; 3228 3229 if (mm < m->least_addr) 3230 m->least_addr = mm; 3231 if ((m->footprint += mmsize) > m->max_footprint) 3232 m->max_footprint = m->footprint; 3233 assert(is_aligned(chunk2mem(p))); 3234 check_mmapped_chunk(m, p); 3235 return chunk2mem(p); 3236 } 3237 } 3238 return 0; 3239 } 3240 3241 /* Realloc using mmap */ 3242 static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { 3243 size_t oldsize = chunksize(oldp); 3244 if (is_small(nb)) /* Can't shrink mmap regions below small size */ 3245 return 0; 3246 /* Keep old chunk if big enough but not too big */ 3247 if (oldsize >= nb + SIZE_T_SIZE && 3248 (oldsize - nb) <= (mparams.granularity << 1)) 3249 return oldp; 3250 else { 3251 size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT; 3252 size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; 3253 size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES + 3254 CHUNK_ALIGN_MASK); 3255 char* cp = (char*)CALL_MREMAP((char*)oldp - offset, 3256 oldmmsize, newmmsize, 1); 3257 if (cp != CMFAIL) { 3258 mchunkptr newp = (mchunkptr)(cp + offset); 3259 size_t psize = newmmsize - offset - MMAP_FOOT_PAD; 3260 newp->head = (psize|CINUSE_BIT); 3261 mark_inuse_foot(m, newp, psize); 3262 chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; 3263 chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; 3264 3265 if (cp < m->least_addr) 3266 m->least_addr = cp; 3267 if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) 3268 m->max_footprint = m->footprint; 3269 check_mmapped_chunk(m, newp); 3270 return newp; 3271 } 3272 } 3273 return 0; 3274 } 3275 3276 /* -------------------------- mspace management -------------------------- */ 3277 3278 /* Initialize top chunk and its size */ 3279 static void init_top(mstate m, mchunkptr p, size_t psize) { 3280 /* Ensure alignment */ 3281 size_t offset = align_offset(chunk2mem(p)); 3282 p = (mchunkptr)((char*)p + offset); 3283 psize -= offset; 3284 3285 m->top = p; 3286 m->topsize = psize; 3287 p->head = psize | PINUSE_BIT; 3288 /* set size of fake trailing chunk holding overhead space only once */ 3289 chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; 3290 m->trim_check = mparams.trim_threshold; /* reset on each update */ 3291 } 3292 3293 /* Initialize bins for a new mstate that is otherwise zeroed out */ 3294 static void init_bins(mstate m) { 3295 /* Establish circular links for smallbins */ 3296 bindex_t i; 3297 for (i = 0; i < NSMALLBINS; ++i) { 3298 sbinptr bin = smallbin_at(m,i); 3299 bin->fd = bin->bk = bin; 3300 } 3301 } 3302 3303 #if PROCEED_ON_ERROR 3304 3305 /* default corruption action */ 3306 static void reset_on_error(mstate m) { 3307 int i; 3308 ++malloc_corruption_error_count; 3309 /* Reinitialize fields to forget about all memory */ 3310 m->smallbins = m->treebins = 0; 3311 m->dvsize = m->topsize = 0; 3312 m->seg.base = 0; 3313 m->seg.size = 0; 3314 m->seg.next = 0; 3315 m->top = m->dv = 0; 3316 for (i = 0; i < NTREEBINS; ++i) 3317 *treebin_at(m, i) = 0; 3318 init_bins(m); 3319 } 3320 #endif /* PROCEED_ON_ERROR */ 3321 3322 /* Allocate chunk and prepend remainder with chunk in successor base. */ 3323 static void* prepend_alloc(mstate m, char* newbase, char* oldbase, 3324 size_t nb) { 3325 mchunkptr p = align_as_chunk(newbase); 3326 mchunkptr oldfirst = align_as_chunk(oldbase); 3327 size_t psize = (char*)oldfirst - (char*)p; 3328 mchunkptr q = chunk_plus_offset(p, nb); 3329 size_t qsize = psize - nb; 3330 set_size_and_pinuse_of_inuse_chunk(m, p, nb); 3331 3332 assert((char*)oldfirst > (char*)q); 3333 assert(pinuse(oldfirst)); 3334 assert(qsize >= MIN_CHUNK_SIZE); 3335 3336 /* consolidate remainder with first chunk of old base */ 3337 if (oldfirst == m->top) { 3338 size_t tsize = m->topsize += qsize; 3339 m->top = q; 3340 q->head = tsize | PINUSE_BIT; 3341 check_top_chunk(m, q); 3342 } 3343 else if (oldfirst == m->dv) { 3344 size_t dsize = m->dvsize += qsize; 3345 m->dv = q; 3346 set_size_and_pinuse_of_free_chunk(q, dsize); 3347 } 3348 else { 3349 if (!cinuse(oldfirst)) { 3350 size_t nsize = chunksize(oldfirst); 3351 unlink_chunk(m, oldfirst, nsize); 3352 oldfirst = chunk_plus_offset(oldfirst, nsize); 3353 qsize += nsize; 3354 } 3355 set_free_with_pinuse(q, qsize, oldfirst); 3356 insert_chunk(m, q, qsize); 3357 check_free_chunk(m, q); 3358 } 3359 3360 check_malloced_chunk(m, chunk2mem(p), nb); 3361 return chunk2mem(p); 3362 } 3363 3364 3365 /* Add a segment to hold a new noncontiguous region */ 3366 static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { 3367 /* Determine locations and sizes of segment, fenceposts, old top */ 3368 char* old_top = (char*)m->top; 3369 msegmentptr oldsp = segment_holding(m, old_top); 3370 char* old_end = oldsp->base + oldsp->size; 3371 size_t ssize = pad_request(sizeof(struct malloc_segment)); 3372 char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); 3373 size_t offset = align_offset(chunk2mem(rawsp)); 3374 char* asp = rawsp + offset; 3375 char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; 3376 mchunkptr sp = (mchunkptr)csp; 3377 msegmentptr ss = (msegmentptr)(chunk2mem(sp)); 3378 mchunkptr tnext = chunk_plus_offset(sp, ssize); 3379 mchunkptr p = tnext; 3380 int nfences = 0; 3381 3382 /* reset top to new space */ 3383 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); 3384 3385 /* Set up segment record */ 3386 assert(is_aligned(ss)); 3387 set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); 3388 *ss = m->seg; /* Push current record */ 3389 m->seg.base = tbase; 3390 m->seg.size = tsize; 3391 (void)set_segment_flags(&m->seg, mmapped); 3392 m->seg.next = ss; 3393 3394 /* Insert trailing fenceposts */ 3395 for (;;) { 3396 mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); 3397 p->head = FENCEPOST_HEAD; 3398 ++nfences; 3399 if ((char*)(&(nextp->head)) < old_end) 3400 p = nextp; 3401 else 3402 break; 3403 } 3404 assert(nfences >= 2); 3405 3406 /* Insert the rest of old top into a bin as an ordinary free chunk */ 3407 if (csp != old_top) { 3408 mchunkptr q = (mchunkptr)old_top; 3409 size_t psize = csp - old_top; 3410 mchunkptr tn = chunk_plus_offset(q, psize); 3411 set_free_with_pinuse(q, psize, tn); 3412 insert_chunk(m, q, psize); 3413 } 3414 3415 check_top_chunk(m, m->top); 3416 } 3417 3418 /* -------------------------- System allocation -------------------------- */ 3419 3420 /* Get memory from system using MORECORE or MMAP */ 3421 static void* sys_alloc(mstate m, size_t nb) { 3422 char* tbase = CMFAIL; 3423 size_t tsize = 0; 3424 flag_t mmap_flag = 0; 3425 3426 init_mparams(); 3427 3428 /* Directly map large chunks */ 3429 if (use_mmap(m) && nb >= mparams.mmap_threshold) { 3430 void* mem = mmap_alloc(m, nb); 3431 if (mem != 0) 3432 return mem; 3433 } 3434 3435 /* 3436 Try getting memory in any of three ways (in most-preferred to 3437 least-preferred order): 3438 1. A call to MORECORE that can normally contiguously extend memory. 3439 (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or 3440 or main space is mmapped or a previous contiguous call failed) 3441 2. A call to MMAP new space (disabled if not HAVE_MMAP). 3442 Note that under the default settings, if MORECORE is unable to 3443 fulfill a request, and HAVE_MMAP is true, then mmap is 3444 used as a noncontiguous system allocator. This is a useful backup 3445 strategy for systems with holes in address spaces -- in this case 3446 sbrk cannot contiguously expand the heap, but mmap may be able to 3447 find space. 3448 3. A call to MORECORE that cannot usually contiguously extend memory. 3449 (disabled if not HAVE_MORECORE) 3450 */ 3451 3452 if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { 3453 char* br = CMFAIL; 3454 msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); 3455 size_t asize = 0; 3456 ACQUIRE_MORECORE_LOCK(); 3457 3458 if (ss == 0) { /* First time through or recovery */ 3459 char* base = (char*)CALL_MORECORE(0); 3460 if (base != CMFAIL) { 3461 asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); 3462 /* Adjust to end on a page boundary */ 3463 if (!is_page_aligned(base)) 3464 asize += (page_align((size_t)base) - (size_t)base); 3465 /* Can't call MORECORE if size is negative when treated as signed */ 3466 if (asize < HALF_MAX_SIZE_T && 3467 (br = (char*)(CALL_MORECORE(asize))) == base) { 3468 tbase = base; 3469 tsize = asize; 3470 } 3471 } 3472 } 3473 else { 3474 /* Subtract out existing available top space from MORECORE request. */ 3475 asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE); 3476 /* Use mem here only if it did continuously extend old space */ 3477 if (asize < HALF_MAX_SIZE_T && 3478 (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { 3479 tbase = br; 3480 tsize = asize; 3481 } 3482 } 3483 3484 if (tbase == CMFAIL) { /* Cope with partial failure */ 3485 if (br != CMFAIL) { /* Try to use/extend the space we did get */ 3486 if (asize < HALF_MAX_SIZE_T && 3487 asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) { 3488 size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize); 3489 if (esize < HALF_MAX_SIZE_T) { 3490 char* end = (char*)CALL_MORECORE(esize); 3491 if (end != CMFAIL) 3492 asize += esize; 3493 else { /* Can't use; try to release */ 3494 (void)CALL_MORECORE(-asize); 3495 br = CMFAIL; 3496 } 3497 } 3498 } 3499 } 3500 if (br != CMFAIL) { /* Use the space we did get */ 3501 tbase = br; 3502 tsize = asize; 3503 } 3504 else 3505 disable_contiguous(m); /* Don't try contiguous path in the future */ 3506 } 3507 3508 RELEASE_MORECORE_LOCK(); 3509 } 3510 3511 if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ 3512 size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE; 3513 size_t rsize = granularity_align(req); 3514 if (rsize > nb) { /* Fail if wraps around zero */ 3515 char* mp = (char*)(CALL_MMAP(rsize)); 3516 if (mp != CMFAIL) { 3517 tbase = mp; 3518 tsize = rsize; 3519 mmap_flag = IS_MMAPPED_BIT; 3520 } 3521 } 3522 } 3523 3524 if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ 3525 size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); 3526 if (asize < HALF_MAX_SIZE_T) { 3527 char* br = CMFAIL; 3528 char* end = CMFAIL; 3529 ACQUIRE_MORECORE_LOCK(); 3530 br = (char*)(CALL_MORECORE(asize)); 3531 end = (char*)(CALL_MORECORE(0)); 3532 RELEASE_MORECORE_LOCK(); 3533 if (br != CMFAIL && end != CMFAIL && br < end) { 3534 size_t ssize = end - br; 3535 if (ssize > nb + TOP_FOOT_SIZE) { 3536 tbase = br; 3537 tsize = ssize; 3538 } 3539 } 3540 } 3541 } 3542 3543 if (tbase != CMFAIL) { 3544 3545 if ((m->footprint += tsize) > m->max_footprint) 3546 m->max_footprint = m->footprint; 3547 3548 if (!is_initialized(m)) { /* first-time initialization */ 3549 m->seg.base = m->least_addr = tbase; 3550 m->seg.size = tsize; 3551 (void)set_segment_flags(&m->seg, mmap_flag); 3552 m->magic = mparams.magic; 3553 init_bins(m); 3554 if (is_global(m)) 3555 init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); 3556 else { 3557 /* Offset top by embedded malloc_state */ 3558 mchunkptr mn = next_chunk(mem2chunk(m)); 3559 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); 3560 } 3561 } 3562 3563 else { 3564 /* Try to merge with an existing segment */ 3565 msegmentptr sp = &m->seg; 3566 while (sp != 0 && tbase != sp->base + sp->size) 3567 sp = sp->next; 3568 if (sp != 0 && 3569 !is_extern_segment(sp) && 3570 check_segment_merge(sp, tbase, tsize) && 3571 (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag && 3572 segment_holds(sp, m->top)) { /* append */ 3573 sp->size += tsize; 3574 init_top(m, m->top, m->topsize + tsize); 3575 } 3576 else { 3577 if (tbase < m->least_addr) 3578 m->least_addr = tbase; 3579 sp = &m->seg; 3580 while (sp != 0 && sp->base != tbase + tsize) 3581 sp = sp->next; 3582 if (sp != 0 && 3583 !is_extern_segment(sp) && 3584 check_segment_merge(sp, tbase, tsize) && 3585 (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag) { 3586 char* oldbase = sp->base; 3587 sp->base = tbase; 3588 sp->size += tsize; 3589 return prepend_alloc(m, tbase, oldbase, nb); 3590 } 3591 else 3592 add_segment(m, tbase, tsize, mmap_flag); 3593 } 3594 } 3595 3596 if (nb < m->topsize) { /* Allocate from new or extended top space */ 3597 size_t rsize = m->topsize -= nb; 3598 mchunkptr p = m->top; 3599 mchunkptr r = m->top = chunk_plus_offset(p, nb); 3600 r->head = rsize | PINUSE_BIT; 3601 set_size_and_pinuse_of_inuse_chunk(m, p, nb); 3602 check_top_chunk(m, m->top); 3603 check_malloced_chunk(m, chunk2mem(p), nb); 3604 return chunk2mem(p); 3605 } 3606 } 3607 3608 MALLOC_FAILURE_ACTION; 3609 return 0; 3610 } 3611 3612 /* ----------------------- system deallocation -------------------------- */ 3613 3614 /* Unmap and unlink any mmapped segments that don't contain used chunks */ 3615 static size_t release_unused_segments(mstate m) { 3616 size_t released = 0; 3617 msegmentptr pred = &m->seg; 3618 msegmentptr sp = pred->next; 3619 while (sp != 0) { 3620 char* base = sp->base; 3621 size_t size = sp->size; 3622 msegmentptr next = sp->next; 3623 if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { 3624 mchunkptr p = align_as_chunk(base); 3625 size_t psize = chunksize(p); 3626 /* Can unmap if first chunk holds entire segment and not pinned */ 3627 if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { 3628 tchunkptr tp = (tchunkptr)p; 3629 assert(segment_holds(sp, (char*)sp)); 3630 if (p == m->dv) { 3631 m->dv = 0; 3632 m->dvsize = 0; 3633 } 3634 else { 3635 unlink_large_chunk(m, tp); 3636 } 3637 if (CALL_MUNMAP(base, size) == 0) { 3638 released += size; 3639 m->footprint -= size; 3640 /* unlink obsoleted record */ 3641 sp = pred; 3642 sp->next = next; 3643 } 3644 else { /* back out if cannot unmap */ 3645 insert_large_chunk(m, tp, psize); 3646 } 3647 } 3648 } 3649 pred = sp; 3650 sp = next; 3651 } 3652 return released; 3653 } 3654 3655 static int sys_trim(mstate m, size_t pad) { 3656 size_t released = 0; 3657 if (pad < MAX_REQUEST && is_initialized(m)) { 3658 pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ 3659 3660 if (m->topsize > pad) { 3661 /* Shrink top space in granularity-size units, keeping at least one */ 3662 size_t unit = mparams.granularity; 3663 size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - 3664 SIZE_T_ONE) * unit; 3665 msegmentptr sp = segment_holding(m, (char*)m->top); 3666 3667 if (!is_extern_segment(sp)) { 3668 if (is_mmapped_segment(sp)) { 3669 if (HAVE_MMAP && 3670 sp->size >= extra && 3671 !has_segment_link(m, sp)) { /* can't shrink if pinned */ 3672 size_t newsize = sp->size - extra; 3673 /* Prefer mremap, fall back to munmap */ 3674 if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || 3675 (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { 3676 released = extra; 3677 } 3678 } 3679 } 3680 else if (HAVE_MORECORE) { 3681 if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ 3682 extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; 3683 ACQUIRE_MORECORE_LOCK(); 3684 { 3685 /* Make sure end of memory is where we last set it. */ 3686 char* old_br = (char*)(CALL_MORECORE(0)); 3687 if (old_br == sp->base + sp->size) { 3688 char* rel_br = (char*)(CALL_MORECORE(-extra)); 3689 char* new_br = (char*)(CALL_MORECORE(0)); 3690 if (rel_br != CMFAIL && new_br < old_br) 3691 released = old_br - new_br; 3692 } 3693 } 3694 RELEASE_MORECORE_LOCK(); 3695 } 3696 } 3697 3698 if (released != 0) { 3699 sp->size -= released; 3700 m->footprint -= released; 3701 init_top(m, m->top, m->topsize - released); 3702 check_top_chunk(m, m->top); 3703 } 3704 } 3705 3706 /* Unmap any unused mmapped segments */ 3707 if (HAVE_MMAP) 3708 released += release_unused_segments(m); 3709 3710 /* On failure, disable autotrim to avoid repeated failed future calls */ 3711 if (released == 0) 3712 m->trim_check = MAX_SIZE_T; 3713 } 3714 3715 return (released != 0)? 1 : 0; 3716 } 3717 3718 /* ---------------------------- malloc support --------------------------- */ 3719 3720 /* allocate a large request from the best fitting chunk in a treebin */ 3721 static void* tmalloc_large(mstate m, size_t nb) { 3722 tchunkptr v = 0; 3723 size_t rsize = -nb; /* Unsigned negation */ 3724 tchunkptr t; 3725 bindex_t idx; 3726 compute_tree_index(nb, idx); 3727 3728 if ((t = *treebin_at(m, idx)) != 0) { 3729 /* Traverse tree for this bin looking for node with size == nb */ 3730 size_t sizebits = nb << leftshift_for_tree_index(idx); 3731 tchunkptr rst = 0; /* The deepest untaken right subtree */ 3732 for (;;) { 3733 tchunkptr rt; 3734 size_t trem = chunksize(t) - nb; 3735 if (trem < rsize) { 3736 v = t; 3737 if ((rsize = trem) == 0) 3738 break; 3739 } 3740 rt = t->child[1]; 3741 t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; 3742 if (rt != 0 && rt != t) 3743 rst = rt; 3744 if (t == 0) { 3745 t = rst; /* set t to least subtree holding sizes > nb */ 3746 break; 3747 } 3748 sizebits <<= 1; 3749 } 3750 } 3751 3752 if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ 3753 binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; 3754 if (leftbits != 0) { 3755 bindex_t i; 3756 binmap_t leastbit = least_bit(leftbits); 3757 compute_bit2idx(leastbit, i); 3758 t = *treebin_at(m, i); 3759 } 3760 } 3761 3762 while (t != 0) { /* find smallest of tree or subtree */ 3763 size_t trem = chunksize(t) - nb; 3764 if (trem < rsize) { 3765 rsize = trem; 3766 v = t; 3767 } 3768 t = leftmost_child(t); 3769 } 3770 3771 /* If dv is a better fit, return 0 so malloc will use it */ 3772 if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { 3773 if (RTCHECK(ok_address(m, v))) { /* split */ 3774 mchunkptr r = chunk_plus_offset(v, nb); 3775 assert(chunksize(v) == rsize + nb); 3776 if (RTCHECK(ok_next(v, r))) { 3777 unlink_large_chunk(m, v); 3778 if (rsize < MIN_CHUNK_SIZE) 3779 set_inuse_and_pinuse(m, v, (rsize + nb)); 3780 else { 3781 set_size_and_pinuse_of_inuse_chunk(m, v, nb); 3782 set_size_and_pinuse_of_free_chunk(r, rsize); 3783 insert_chunk(m, r, rsize); 3784 } 3785 return chunk2mem(v); 3786 } 3787 } 3788 CORRUPTION_ERROR_ACTION(m); 3789 } 3790 return 0; 3791 } 3792 3793 /* allocate a small request from the best fitting chunk in a treebin */ 3794 static void* tmalloc_small(mstate m, size_t nb) { 3795 tchunkptr t, v; 3796 size_t rsize; 3797 bindex_t i; 3798 binmap_t leastbit = least_bit(m->treemap); 3799 compute_bit2idx(leastbit, i); 3800 3801 v = t = *treebin_at(m, i); 3802 rsize = chunksize(t) - nb; 3803 3804 while ((t = leftmost_child(t)) != 0) { 3805 size_t trem = chunksize(t) - nb; 3806 if (trem < rsize) { 3807 rsize = trem; 3808 v = t; 3809 } 3810 } 3811 3812 if (RTCHECK(ok_address(m, v))) { 3813 mchunkptr r = chunk_plus_offset(v, nb); 3814 assert(chunksize(v) == rsize + nb); 3815 if (RTCHECK(ok_next(v, r))) { 3816 unlink_large_chunk(m, v); 3817 if (rsize < MIN_CHUNK_SIZE) 3818 set_inuse_and_pinuse(m, v, (rsize + nb)); 3819 else { 3820 set_size_and_pinuse_of_inuse_chunk(m, v, nb); 3821 set_size_and_pinuse_of_free_chunk(r, rsize); 3822 replace_dv(m, r, rsize); 3823 } 3824 return chunk2mem(v); 3825 } 3826 } 3827 3828 CORRUPTION_ERROR_ACTION(m); 3829 return 0; 3830 } 3831 3832 /* --------------------------- realloc support --------------------------- */ 3833 3834 static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { 3835 if (bytes >= MAX_REQUEST) { 3836 MALLOC_FAILURE_ACTION; 3837 return 0; 3838 } 3839 if (!PREACTION(m)) { 3840 mchunkptr oldp = mem2chunk(oldmem); 3841 size_t oldsize = chunksize(oldp); 3842 mchunkptr next = chunk_plus_offset(oldp, oldsize); 3843 mchunkptr newp = 0; 3844 void* extra = 0; 3845 3846 /* Try to either shrink or extend into top. Else malloc-copy-free */ 3847 3848 if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) && 3849 ok_next(oldp, next) && ok_pinuse(next))) { 3850 size_t nb = request2size(bytes); 3851 if (is_mmapped(oldp)) 3852 newp = mmap_resize(m, oldp, nb); 3853 else if (oldsize >= nb) { /* already big enough */ 3854 size_t rsize = oldsize - nb; 3855 newp = oldp; 3856 if (rsize >= MIN_CHUNK_SIZE) { 3857 mchunkptr remainder = chunk_plus_offset(newp, nb); 3858 set_inuse(m, newp, nb); 3859 set_inuse(m, remainder, rsize); 3860 extra = chunk2mem(remainder); 3861 } 3862 } 3863 else if (next == m->top && oldsize + m->topsize > nb) { 3864 /* Expand into top */ 3865 size_t newsize = oldsize + m->topsize; 3866 size_t newtopsize = newsize - nb; 3867 mchunkptr newtop = chunk_plus_offset(oldp, nb); 3868 set_inuse(m, oldp, nb); 3869 newtop->head = newtopsize |PINUSE_BIT; 3870 m->top = newtop; 3871 m->topsize = newtopsize; 3872 newp = oldp; 3873 } 3874 } 3875 else { 3876 USAGE_ERROR_ACTION(m, oldmem); 3877 POSTACTION(m); 3878 return 0; 3879 } 3880 3881 POSTACTION(m); 3882 3883 if (newp != 0) { 3884 if (extra != 0) { 3885 internal_free(m, extra); 3886 } 3887 check_inuse_chunk(m, newp); 3888 return chunk2mem(newp); 3889 } 3890 else { 3891 void* newmem = internal_malloc(m, bytes); 3892 if (newmem != 0) { 3893 size_t oc = oldsize - overhead_for(oldp); 3894 memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); 3895 internal_free(m, oldmem); 3896 } 3897 return newmem; 3898 } 3899 } 3900 return 0; 3901 } 3902 3903 /* --------------------------- memalign support -------------------------- */ 3904 3905 static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { 3906 if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ 3907 return internal_malloc(m, bytes); 3908 if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ 3909 alignment = MIN_CHUNK_SIZE; 3910 if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ 3911 size_t a = MALLOC_ALIGNMENT << 1; 3912 while (a < alignment) a <<= 1; 3913 alignment = a; 3914 } 3915 3916 if (bytes >= MAX_REQUEST - alignment) { 3917 if (m != 0) { /* Test isn't needed but avoids compiler warning */ 3918 MALLOC_FAILURE_ACTION; 3919 } 3920 } 3921 else { 3922 size_t nb = request2size(bytes); 3923 size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; 3924 char* mem = (char*)internal_malloc(m, req); 3925 if (mem != 0) { 3926 void* leader = 0; 3927 void* trailer = 0; 3928 mchunkptr p = mem2chunk(mem); 3929 3930 if (PREACTION(m)) return 0; 3931 if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ 3932 /* 3933 Find an aligned spot inside chunk. Since we need to give 3934 back leading space in a chunk of at least MIN_CHUNK_SIZE, if 3935 the first calculation places us at a spot with less than 3936 MIN_CHUNK_SIZE leader, we can move to the next aligned spot. 3937 We've allocated enough total room so that this is always 3938 possible. 3939 */ 3940 char* br = (char*)mem2chunk((size_t)(((size_t)(mem + 3941 alignment - 3942 SIZE_T_ONE)) & 3943 -alignment)); 3944 char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? 3945 br : br+alignment; 3946 mchunkptr newp = (mchunkptr)pos; 3947 size_t leadsize = pos - (char*)(p); 3948 size_t newsize = chunksize(p) - leadsize; 3949 3950 if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ 3951 newp->prev_foot = p->prev_foot + leadsize; 3952 newp->head = (newsize|CINUSE_BIT); 3953 } 3954 else { /* Otherwise, give back leader, use the rest */ 3955 set_inuse(m, newp, newsize); 3956 set_inuse(m, p, leadsize); 3957 leader = chunk2mem(p); 3958 } 3959 p = newp; 3960 } 3961 3962 /* Give back spare room at the end */ 3963 if (!is_mmapped(p)) { 3964 size_t size = chunksize(p); 3965 if (size > nb + MIN_CHUNK_SIZE) { 3966 size_t remainder_size = size - nb; 3967 mchunkptr remainder = chunk_plus_offset(p, nb); 3968 set_inuse(m, p, nb); 3969 set_inuse(m, remainder, remainder_size); 3970 trailer = chunk2mem(remainder); 3971 } 3972 } 3973 3974 assert (chunksize(p) >= nb); 3975 assert((((size_t)(chunk2mem(p))) % alignment) == 0); 3976 check_inuse_chunk(m, p); 3977 POSTACTION(m); 3978 if (leader != 0) { 3979 internal_free(m, leader); 3980 } 3981 if (trailer != 0) { 3982 internal_free(m, trailer); 3983 } 3984 return chunk2mem(p); 3985 } 3986 } 3987 return 0; 3988 } 3989 3990 /* ------------------------ comalloc/coalloc support --------------------- */ 3991 3992 static void** ialloc(mstate m, 3993 size_t n_elements, 3994 size_t* sizes, 3995 int opts, 3996 void* chunks[]) { 3997 /* 3998 This provides common support for independent_X routines, handling 3999 all of the combinations that can result. 4000 4001 The opts arg has: 4002 bit 0 set if all elements are same size (using sizes[0]) 4003 bit 1 set if elements should be zeroed 4004 */ 4005 4006 size_t element_size; /* chunksize of each element, if all same */ 4007 size_t contents_size; /* total size of elements */ 4008 size_t array_size; /* request size of pointer array */ 4009 void* mem; /* malloced aggregate space */ 4010 mchunkptr p; /* corresponding chunk */ 4011 size_t remainder_size; /* remaining bytes while splitting */ 4012 void** marray; /* either "chunks" or malloced ptr array */ 4013 mchunkptr array_chunk; /* chunk for malloced ptr array */ 4014 flag_t was_enabled; /* to disable mmap */ 4015 size_t size; 4016 size_t i; 4017 4018 /* compute array length, if needed */ 4019 if (chunks != 0) { 4020 if (n_elements == 0) 4021 return chunks; /* nothing to do */ 4022 marray = chunks; 4023 array_size = 0; 4024 } 4025 else { 4026 /* if empty req, must still return chunk representing empty array */ 4027 if (n_elements == 0) 4028 return (void**)internal_malloc(m, 0); 4029 marray = 0; 4030 array_size = request2size(n_elements * (sizeof(void*))); 4031 } 4032 4033 /* compute total element size */ 4034 if (opts & 0x1) { /* all-same-size */ 4035 element_size = request2size(*sizes); 4036 contents_size = n_elements * element_size; 4037 } 4038 else { /* add up all the sizes */ 4039 element_size = 0; 4040 contents_size = 0; 4041 for (i = 0; i != n_elements; ++i) 4042 contents_size += request2size(sizes[i]); 4043 } 4044 4045 size = contents_size + array_size; 4046 4047 /* 4048 Allocate the aggregate chunk. First disable direct-mmapping so 4049 malloc won't use it, since we would not be able to later 4050 free/realloc space internal to a segregated mmap region. 4051 */ 4052 was_enabled = use_mmap(m); 4053 disable_mmap(m); 4054 mem = internal_malloc(m, size - CHUNK_OVERHEAD); 4055 if (was_enabled) 4056 enable_mmap(m); 4057 if (mem == 0) 4058 return 0; 4059 4060 if (PREACTION(m)) return 0; 4061 p = mem2chunk(mem); 4062 remainder_size = chunksize(p); 4063 4064 assert(!is_mmapped(p)); 4065 4066 if (opts & 0x2) { /* optionally clear the elements */ 4067 memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); 4068 } 4069 4070 /* If not provided, allocate the pointer array as final part of chunk */ 4071 if (marray == 0) { 4072 size_t array_chunk_size; 4073 array_chunk = chunk_plus_offset(p, contents_size); 4074 array_chunk_size = remainder_size - contents_size; 4075 marray = (void**) (chunk2mem(array_chunk)); 4076 set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); 4077 remainder_size = contents_size; 4078 } 4079 4080 /* split out elements */ 4081 for (i = 0; ; ++i) { 4082 marray[i] = chunk2mem(p); 4083 if (i != n_elements-1) { 4084 if (element_size != 0) 4085 size = element_size; 4086 else 4087 size = request2size(sizes[i]); 4088 remainder_size -= size; 4089 set_size_and_pinuse_of_inuse_chunk(m, p, size); 4090 p = chunk_plus_offset(p, size); 4091 } 4092 else { /* the final element absorbs any overallocation slop */ 4093 set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); 4094 break; 4095 } 4096 } 4097 4098 #if DEBUG 4099 if (marray != chunks) { 4100 /* final element must have exactly exhausted chunk */ 4101 if (element_size != 0) { 4102 assert(remainder_size == element_size); 4103 } 4104 else { 4105 assert(remainder_size == request2size(sizes[i])); 4106 } 4107 check_inuse_chunk(m, mem2chunk(marray)); 4108 } 4109 for (i = 0; i != n_elements; ++i) 4110 check_inuse_chunk(m, mem2chunk(marray[i])); 4111 4112 #endif /* DEBUG */ 4113 4114 POSTACTION(m); 4115 return marray; 4116 } 4117 4118 4119 /* -------------------------- public routines ---------------------------- */ 4120 4121 #if !ONLY_MSPACES 4122 4123 void* dlmalloc(size_t bytes) { 4124 /* 4125 Basic algorithm: 4126 If a small request (< 256 bytes minus per-chunk overhead): 4127 1. If one exists, use a remainderless chunk in associated smallbin. 4128 (Remainderless means that there are too few excess bytes to 4129 represent as a chunk.) 4130 2. If it is big enough, use the dv chunk, which is normally the 4131 chunk adjacent to the one used for the most recent small request. 4132 3. If one exists, split the smallest available chunk in a bin, 4133 saving remainder in dv. 4134 4. If it is big enough, use the top chunk. 4135 5. If available, get memory from system and use it 4136 Otherwise, for a large request: 4137 1. Find the smallest available binned chunk that fits, and use it 4138 if it is better fitting than dv chunk, splitting if necessary. 4139 2. If better fitting than any binned chunk, use the dv chunk. 4140 3. If it is big enough, use the top chunk. 4141 4. If request size >= mmap threshold, try to directly mmap this chunk. 4142 5. If available, get memory from system and use it 4143 4144 The ugly goto's here ensure that postaction occurs along all paths. 4145 */ 4146 4147 if (!PREACTION(gm)) { 4148 void* mem; 4149 size_t nb; 4150 if (bytes <= MAX_SMALL_REQUEST) { 4151 bindex_t idx; 4152 binmap_t smallbits; 4153 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); 4154 idx = small_index(nb); 4155 smallbits = gm->smallmap >> idx; 4156 4157 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ 4158 mchunkptr b, p; 4159 idx += ~smallbits & 1; /* Uses next bin if idx empty */ 4160 b = smallbin_at(gm, idx); 4161 p = b->fd; 4162 assert(chunksize(p) == small_index2size(idx)); 4163 unlink_first_small_chunk(gm, b, p, idx); 4164 set_inuse_and_pinuse(gm, p, small_index2size(idx)); 4165 mem = chunk2mem(p); 4166 check_malloced_chunk(gm, mem, nb); 4167 goto postaction; 4168 } 4169 4170 else if (nb > gm->dvsize) { 4171 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ 4172 mchunkptr b, p, r; 4173 size_t rsize; 4174 bindex_t i; 4175 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); 4176 binmap_t leastbit = least_bit(leftbits); 4177 compute_bit2idx(leastbit, i); 4178 b = smallbin_at(gm, i); 4179 p = b->fd; 4180 assert(chunksize(p) == small_index2size(i)); 4181 unlink_first_small_chunk(gm, b, p, i); 4182 rsize = small_index2size(i) - nb; 4183 /* Fit here cannot be remainderless if 4byte sizes */ 4184 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) 4185 set_inuse_and_pinuse(gm, p, small_index2size(i)); 4186 else { 4187 set_size_and_pinuse_of_inuse_chunk(gm, p, nb); 4188 r = chunk_plus_offset(p, nb); 4189 set_size_and_pinuse_of_free_chunk(r, rsize); 4190 replace_dv(gm, r, rsize); 4191 } 4192 mem = chunk2mem(p); 4193 check_malloced_chunk(gm, mem, nb); 4194 goto postaction; 4195 } 4196 4197 else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { 4198 check_malloced_chunk(gm, mem, nb); 4199 goto postaction; 4200 } 4201 } 4202 } 4203 else if (bytes >= MAX_REQUEST) 4204 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ 4205 else { 4206 nb = pad_request(bytes); 4207 if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { 4208 check_malloced_chunk(gm, mem, nb); 4209 goto postaction; 4210 } 4211 } 4212 4213 if (nb <= gm->dvsize) { 4214 size_t rsize = gm->dvsize - nb; 4215 mchunkptr p = gm->dv; 4216 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ 4217 mchunkptr r = gm->dv = chunk_plus_offset(p, nb); 4218 gm->dvsize = rsize; 4219 set_size_and_pinuse_of_free_chunk(r, rsize); 4220 set_size_and_pinuse_of_inuse_chunk(gm, p, nb); 4221 } 4222 else { /* exhaust dv */ 4223 size_t dvs = gm->dvsize; 4224 gm->dvsize = 0; 4225 gm->dv = 0; 4226 set_inuse_and_pinuse(gm, p, dvs); 4227 } 4228 mem = chunk2mem(p); 4229 check_malloced_chunk(gm, mem, nb); 4230 goto postaction; 4231 } 4232 4233 else if (nb < gm->topsize) { /* Split top */ 4234 size_t rsize = gm->topsize -= nb; 4235 mchunkptr p = gm->top; 4236 mchunkptr r = gm->top = chunk_plus_offset(p, nb); 4237 r->head = rsize | PINUSE_BIT; 4238 set_size_and_pinuse_of_inuse_chunk(gm, p, nb); 4239 mem = chunk2mem(p); 4240 check_top_chunk(gm, gm->top); 4241 check_malloced_chunk(gm, mem, nb); 4242 goto postaction; 4243 } 4244 4245 mem = sys_alloc(gm, nb); 4246 4247 postaction: 4248 POSTACTION(gm); 4249 return mem; 4250 } 4251 4252 return 0; 4253 } 4254 4255 void dlfree(void* mem) { 4256 /* 4257 Consolidate freed chunks with preceding or succeeding bordering 4258 free chunks, if they exist, and then place in a bin. Intermixed 4259 with special cases for top, dv, mmapped chunks, and usage errors. 4260 */ 4261 4262 if (mem != 0) { 4263 mchunkptr p = mem2chunk(mem); 4264 #if FOOTERS 4265 mstate fm = get_mstate_for(p); 4266 if (!ok_magic(fm)) { 4267 USAGE_ERROR_ACTION(fm, p); 4268 return; 4269 } 4270 #else /* FOOTERS */ 4271 #define fm gm 4272 #endif /* FOOTERS */ 4273 if (!PREACTION(fm)) { 4274 check_inuse_chunk(fm, p); 4275 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { 4276 size_t psize = chunksize(p); 4277 mchunkptr next = chunk_plus_offset(p, psize); 4278 if (!pinuse(p)) { 4279 size_t prevsize = p->prev_foot; 4280 if ((prevsize & IS_MMAPPED_BIT) != 0) { 4281 prevsize &= ~IS_MMAPPED_BIT; 4282 psize += prevsize + MMAP_FOOT_PAD; 4283 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) 4284 fm->footprint -= psize; 4285 goto postaction; 4286 } 4287 else { 4288 mchunkptr prev = chunk_minus_offset(p, prevsize); 4289 psize += prevsize; 4290 p = prev; 4291 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ 4292 if (p != fm->dv) { 4293 unlink_chunk(fm, p, prevsize); 4294 } 4295 else if ((next->head & INUSE_BITS) == INUSE_BITS) { 4296 fm->dvsize = psize; 4297 set_free_with_pinuse(p, psize, next); 4298 goto postaction; 4299 } 4300 } 4301 else 4302 goto erroraction; 4303 } 4304 } 4305 4306 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { 4307 if (!cinuse(next)) { /* consolidate forward */ 4308 if (next == fm->top) { 4309 size_t tsize = fm->topsize += psize; 4310 fm->top = p; 4311 p->head = tsize | PINUSE_BIT; 4312 if (p == fm->dv) { 4313 fm->dv = 0; 4314 fm->dvsize = 0; 4315 } 4316 if (should_trim(fm, tsize)) 4317 sys_trim(fm, 0); 4318 goto postaction; 4319 } 4320 else if (next == fm->dv) { 4321 size_t dsize = fm->dvsize += psize; 4322 fm->dv = p; 4323 set_size_and_pinuse_of_free_chunk(p, dsize); 4324 goto postaction; 4325 } 4326 else { 4327 size_t nsize = chunksize(next); 4328 psize += nsize; 4329 unlink_chunk(fm, next, nsize); 4330 set_size_and_pinuse_of_free_chunk(p, psize); 4331 if (p == fm->dv) { 4332 fm->dvsize = psize; 4333 goto postaction; 4334 } 4335 } 4336 } 4337 else 4338 set_free_with_pinuse(p, psize, next); 4339 insert_chunk(fm, p, psize); 4340 check_free_chunk(fm, p); 4341 goto postaction; 4342 } 4343 } 4344 erroraction: 4345 USAGE_ERROR_ACTION(fm, p); 4346 postaction: 4347 POSTACTION(fm); 4348 } 4349 } 4350 #if !FOOTERS 4351 #undef fm 4352 #endif /* FOOTERS */ 4353 } 4354 4355 void* dlcalloc(size_t n_elements, size_t elem_size) { 4356 void* mem; 4357 size_t req = 0; 4358 if (n_elements != 0) { 4359 req = n_elements * elem_size; 4360 if (((n_elements | elem_size) & ~(size_t)0xffff) && 4361 (req / n_elements != elem_size)) 4362 req = MAX_SIZE_T; /* force downstream failure on overflow */ 4363 } 4364 mem = dlmalloc(req); 4365 if (mem != 0 && calloc_must_clear(mem2chunk(mem))) 4366 memset(mem, 0, req); 4367 return mem; 4368 } 4369 4370 void* dlrealloc(void* oldmem, size_t bytes) { 4371 if (oldmem == 0) 4372 return dlmalloc(bytes); 4373 #ifdef REALLOC_ZERO_BYTES_FREES 4374 if (bytes == 0) { 4375 dlfree(oldmem); 4376 return 0; 4377 } 4378 #endif /* REALLOC_ZERO_BYTES_FREES */ 4379 else { 4380 #if ! FOOTERS 4381 mstate m = gm; 4382 #else /* FOOTERS */ 4383 mstate m = get_mstate_for(mem2chunk(oldmem)); 4384 if (!ok_magic(m)) { 4385 USAGE_ERROR_ACTION(m, oldmem); 4386 return 0; 4387 } 4388 #endif /* FOOTERS */ 4389 return internal_realloc(m, oldmem, bytes); 4390 } 4391 } 4392 4393 void* dlmemalign(size_t alignment, size_t bytes) { 4394 return internal_memalign(gm, alignment, bytes); 4395 } 4396 4397 void** dlindependent_calloc(size_t n_elements, size_t elem_size, 4398 void* chunks[]) { 4399 size_t sz = elem_size; /* serves as 1-element array */ 4400 return ialloc(gm, n_elements, &sz, 3, chunks); 4401 } 4402 4403 void** dlindependent_comalloc(size_t n_elements, size_t sizes[], 4404 void* chunks[]) { 4405 return ialloc(gm, n_elements, sizes, 0, chunks); 4406 } 4407 4408 void* dlvalloc(size_t bytes) { 4409 size_t pagesz; 4410 init_mparams(); 4411 pagesz = mparams.page_size; 4412 return dlmemalign(pagesz, bytes); 4413 } 4414 4415 void* dlpvalloc(size_t bytes) { 4416 size_t pagesz; 4417 init_mparams(); 4418 pagesz = mparams.page_size; 4419 return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); 4420 } 4421 4422 int dlmalloc_trim(size_t pad) { 4423 int result = 0; 4424 if (!PREACTION(gm)) { 4425 result = sys_trim(gm, pad); 4426 POSTACTION(gm); 4427 } 4428 return result; 4429 } 4430 4431 size_t dlmalloc_footprint(void) { 4432 return gm->footprint; 4433 } 4434 4435 size_t dlmalloc_max_footprint(void) { 4436 return gm->max_footprint; 4437 } 4438 4439 #if !NO_MALLINFO 4440 struct mallinfo dlmallinfo(void) { 4441 return internal_mallinfo(gm); 4442 } 4443 #endif /* NO_MALLINFO */ 4444 4445 void dlmalloc_stats() { 4446 internal_malloc_stats(gm); 4447 } 4448 4449 size_t dlmalloc_usable_size(void* mem) { 4450 if (mem != 0) { 4451 mchunkptr p = mem2chunk(mem); 4452 if (cinuse(p)) 4453 return chunksize(p) - overhead_for(p); 4454 } 4455 return 0; 4456 } 4457 4458 int dlmallopt(int param_number, int value) { 4459 return change_mparam(param_number, value); 4460 } 4461 4462 #endif /* !ONLY_MSPACES */ 4463 4464 /* ----------------------------- user mspaces ---------------------------- */ 4465 4466 #if MSPACES 4467 4468 static mstate init_user_mstate(char* tbase, size_t tsize) { 4469 size_t msize = pad_request(sizeof(struct malloc_state)); 4470 mchunkptr mn; 4471 mchunkptr msp = align_as_chunk(tbase); 4472 mstate m = (mstate)(chunk2mem(msp)); 4473 memset(m, 0, msize); 4474 INITIAL_LOCK(&m->mutex); 4475 msp->head = (msize|PINUSE_BIT|CINUSE_BIT); 4476 m->seg.base = m->least_addr = tbase; 4477 m->seg.size = m->footprint = m->max_footprint = tsize; 4478 m->magic = mparams.magic; 4479 m->mflags = mparams.default_mflags; 4480 disable_contiguous(m); 4481 init_bins(m); 4482 mn = next_chunk(mem2chunk(m)); 4483 init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); 4484 check_top_chunk(m, m->top); 4485 return m; 4486 } 4487 4488 mspace create_mspace(size_t capacity, int locked) { 4489 mstate m = 0; 4490 size_t msize = pad_request(sizeof(struct malloc_state)); 4491 init_mparams(); /* Ensure pagesize etc initialized */ 4492 4493 if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { 4494 size_t rs = ((capacity == 0)? mparams.granularity : 4495 (capacity + TOP_FOOT_SIZE + msize)); 4496 size_t tsize = granularity_align(rs); 4497 char* tbase = (char*)(CALL_MMAP(tsize)); 4498 if (tbase != CMFAIL) { 4499 m = init_user_mstate(tbase, tsize); 4500 set_segment_flags(&m->seg, IS_MMAPPED_BIT); 4501 set_lock(m, locked); 4502 } 4503 } 4504 return (mspace)m; 4505 } 4506 4507 mspace create_mspace_with_base(void* base, size_t capacity, int locked) { 4508 mstate m = 0; 4509 size_t msize = pad_request(sizeof(struct malloc_state)); 4510 init_mparams(); /* Ensure pagesize etc initialized */ 4511 4512 if (capacity > msize + TOP_FOOT_SIZE && 4513 capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { 4514 m = init_user_mstate((char*)base, capacity); 4515 set_segment_flags(&m->seg, EXTERN_BIT); 4516 set_lock(m, locked); 4517 } 4518 return (mspace)m; 4519 } 4520 4521 size_t destroy_mspace(mspace msp) { 4522 size_t freed = 0; 4523 mstate ms = (mstate)msp; 4524 if (ok_magic(ms)) { 4525 msegmentptr sp = &ms->seg; 4526 while (sp != 0) { 4527 char* base = sp->base; 4528 size_t size = sp->size; 4529 flag_t flag = get_segment_flags(sp); 4530 sp = sp->next; 4531 if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) && 4532 CALL_MUNMAP(base, size) == 0) 4533 freed += size; 4534 } 4535 } 4536 else { 4537 USAGE_ERROR_ACTION(ms,ms); 4538 } 4539 return freed; 4540 } 4541 4542 /* 4543 mspace versions of routines are near-clones of the global 4544 versions. This is not so nice but better than the alternatives. 4545 */ 4546 4547 4548 void* mspace_malloc(mspace msp, size_t bytes) { 4549 mstate ms = (mstate)msp; 4550 if (!ok_magic(ms)) { 4551 USAGE_ERROR_ACTION(ms,ms); 4552 return 0; 4553 } 4554 if (!PREACTION(ms)) { 4555 void* mem; 4556 size_t nb; 4557 if (bytes <= MAX_SMALL_REQUEST) { 4558 bindex_t idx; 4559 binmap_t smallbits; 4560 nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); 4561 idx = small_index(nb); 4562 smallbits = ms->smallmap >> idx; 4563 4564 if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ 4565 mchunkptr b, p; 4566 idx += ~smallbits & 1; /* Uses next bin if idx empty */ 4567 b = smallbin_at(ms, idx); 4568 p = b->fd; 4569 assert(chunksize(p) == small_index2size(idx)); 4570 unlink_first_small_chunk(ms, b, p, idx); 4571 set_inuse_and_pinuse(ms, p, small_index2size(idx)); 4572 mem = chunk2mem(p); 4573 check_malloced_chunk(ms, mem, nb); 4574 goto postaction; 4575 } 4576 4577 else if (nb > ms->dvsize) { 4578 if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ 4579 mchunkptr b, p, r; 4580 size_t rsize; 4581 bindex_t i; 4582 binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); 4583 binmap_t leastbit = least_bit(leftbits); 4584 compute_bit2idx(leastbit, i); 4585 b = smallbin_at(ms, i); 4586 p = b->fd; 4587 assert(chunksize(p) == small_index2size(i)); 4588 unlink_first_small_chunk(ms, b, p, i); 4589 rsize = small_index2size(i) - nb; 4590 /* Fit here cannot be remainderless if 4byte sizes */ 4591 if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) 4592 set_inuse_and_pinuse(ms, p, small_index2size(i)); 4593 else { 4594 set_size_and_pinuse_of_inuse_chunk(ms, p, nb); 4595 r = chunk_plus_offset(p, nb); 4596 set_size_and_pinuse_of_free_chunk(r, rsize); 4597 replace_dv(ms, r, rsize); 4598 } 4599 mem = chunk2mem(p); 4600 check_malloced_chunk(ms, mem, nb); 4601 goto postaction; 4602 } 4603 4604 else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { 4605 check_malloced_chunk(ms, mem, nb); 4606 goto postaction; 4607 } 4608 } 4609 } 4610 else if (bytes >= MAX_REQUEST) 4611 nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ 4612 else { 4613 nb = pad_request(bytes); 4614 if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { 4615 check_malloced_chunk(ms, mem, nb); 4616 goto postaction; 4617 } 4618 } 4619 4620 if (nb <= ms->dvsize) { 4621 size_t rsize = ms->dvsize - nb; 4622 mchunkptr p = ms->dv; 4623 if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ 4624 mchunkptr r = ms->dv = chunk_plus_offset(p, nb); 4625 ms->dvsize = rsize; 4626 set_size_and_pinuse_of_free_chunk(r, rsize); 4627 set_size_and_pinuse_of_inuse_chunk(ms, p, nb); 4628 } 4629 else { /* exhaust dv */ 4630 size_t dvs = ms->dvsize; 4631 ms->dvsize = 0; 4632 ms->dv = 0; 4633 set_inuse_and_pinuse(ms, p, dvs); 4634 } 4635 mem = chunk2mem(p); 4636 check_malloced_chunk(ms, mem, nb); 4637 goto postaction; 4638 } 4639 4640 else if (nb < ms->topsize) { /* Split top */ 4641 size_t rsize = ms->topsize -= nb; 4642 mchunkptr p = ms->top; 4643 mchunkptr r = ms->top = chunk_plus_offset(p, nb); 4644 r->head = rsize | PINUSE_BIT; 4645 set_size_and_pinuse_of_inuse_chunk(ms, p, nb); 4646 mem = chunk2mem(p); 4647 check_top_chunk(ms, ms->top); 4648 check_malloced_chunk(ms, mem, nb); 4649 goto postaction; 4650 } 4651 4652 mem = sys_alloc(ms, nb); 4653 4654 postaction: 4655 POSTACTION(ms); 4656 return mem; 4657 } 4658 4659 return 0; 4660 } 4661 4662 void mspace_free(mspace msp, void* mem) { 4663 if (mem != 0) { 4664 mchunkptr p = mem2chunk(mem); 4665 #if FOOTERS 4666 mstate fm = get_mstate_for(p); 4667 #else /* FOOTERS */ 4668 mstate fm = (mstate)msp; 4669 #endif /* FOOTERS */ 4670 if (!ok_magic(fm)) { 4671 USAGE_ERROR_ACTION(fm, p); 4672 return; 4673 } 4674 if (!PREACTION(fm)) { 4675 check_inuse_chunk(fm, p); 4676 if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { 4677 size_t psize = chunksize(p); 4678 mchunkptr next = chunk_plus_offset(p, psize); 4679 if (!pinuse(p)) { 4680 size_t prevsize = p->prev_foot; 4681 if ((prevsize & IS_MMAPPED_BIT) != 0) { 4682 prevsize &= ~IS_MMAPPED_BIT; 4683 psize += prevsize + MMAP_FOOT_PAD; 4684 if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) 4685 fm->footprint -= psize; 4686 goto postaction; 4687 } 4688 else { 4689 mchunkptr prev = chunk_minus_offset(p, prevsize); 4690 psize += prevsize; 4691 p = prev; 4692 if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ 4693 if (p != fm->dv) { 4694 unlink_chunk(fm, p, prevsize); 4695 } 4696 else if ((next->head & INUSE_BITS) == INUSE_BITS) { 4697 fm->dvsize = psize; 4698 set_free_with_pinuse(p, psize, next); 4699 goto postaction; 4700 } 4701 } 4702 else 4703 goto erroraction; 4704 } 4705 } 4706 4707 if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { 4708 if (!cinuse(next)) { /* consolidate forward */ 4709 if (next == fm->top) { 4710 size_t tsize = fm->topsize += psize; 4711 fm->top = p; 4712 p->head = tsize | PINUSE_BIT; 4713 if (p == fm->dv) { 4714 fm->dv = 0; 4715 fm->dvsize = 0; 4716 } 4717 if (should_trim(fm, tsize)) 4718 sys_trim(fm, 0); 4719 goto postaction; 4720 } 4721 else if (next == fm->dv) { 4722 size_t dsize = fm->dvsize += psize; 4723 fm->dv = p; 4724 set_size_and_pinuse_of_free_chunk(p, dsize); 4725 goto postaction; 4726 } 4727 else { 4728 size_t nsize = chunksize(next); 4729 psize += nsize; 4730 unlink_chunk(fm, next, nsize); 4731 set_size_and_pinuse_of_free_chunk(p, psize); 4732 if (p == fm->dv) { 4733 fm->dvsize = psize; 4734 goto postaction; 4735 } 4736 } 4737 } 4738 else 4739 set_free_with_pinuse(p, psize, next); 4740 insert_chunk(fm, p, psize); 4741 check_free_chunk(fm, p); 4742 goto postaction; 4743 } 4744 } 4745 erroraction: 4746 USAGE_ERROR_ACTION(fm, p); 4747 postaction: 4748 POSTACTION(fm); 4749 } 4750 } 4751 } 4752 4753 void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { 4754 void* mem; 4755 size_t req = 0; 4756 mstate ms = (mstate)msp; 4757 if (!ok_magic(ms)) { 4758 USAGE_ERROR_ACTION(ms,ms); 4759 return 0; 4760 } 4761 if (n_elements != 0) { 4762 req = n_elements * elem_size; 4763 if (((n_elements | elem_size) & ~(size_t)0xffff) && 4764 (req / n_elements != elem_size)) 4765 req = MAX_SIZE_T; /* force downstream failure on overflow */ 4766 } 4767 mem = internal_malloc(ms, req); 4768 if (mem != 0 && calloc_must_clear(mem2chunk(mem))) 4769 memset(mem, 0, req); 4770 return mem; 4771 } 4772 4773 void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { 4774 if (oldmem == 0) 4775 return mspace_malloc(msp, bytes); 4776 #ifdef REALLOC_ZERO_BYTES_FREES 4777 if (bytes == 0) { 4778 mspace_free(msp, oldmem); 4779 return 0; 4780 } 4781 #endif /* REALLOC_ZERO_BYTES_FREES */ 4782 else { 4783 #if FOOTERS 4784 mchunkptr p = mem2chunk(oldmem); 4785 mstate ms = get_mstate_for(p); 4786 #else /* FOOTERS */ 4787 mstate ms = (mstate)msp; 4788 #endif /* FOOTERS */ 4789 if (!ok_magic(ms)) { 4790 USAGE_ERROR_ACTION(ms,ms); 4791 return 0; 4792 } 4793 return internal_realloc(ms, oldmem, bytes); 4794 } 4795 } 4796 4797 void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { 4798 mstate ms = (mstate)msp; 4799 if (!ok_magic(ms)) { 4800 USAGE_ERROR_ACTION(ms,ms); 4801 return 0; 4802 } 4803 return internal_memalign(ms, alignment, bytes); 4804 } 4805 4806 void** mspace_independent_calloc(mspace msp, size_t n_elements, 4807 size_t elem_size, void* chunks[]) { 4808 size_t sz = elem_size; /* serves as 1-element array */ 4809 mstate ms = (mstate)msp; 4810 if (!ok_magic(ms)) { 4811 USAGE_ERROR_ACTION(ms,ms); 4812 return 0; 4813 } 4814 return ialloc(ms, n_elements, &sz, 3, chunks); 4815 } 4816 4817 void** mspace_independent_comalloc(mspace msp, size_t n_elements, 4818 size_t sizes[], void* chunks[]) { 4819 mstate ms = (mstate)msp; 4820 if (!ok_magic(ms)) { 4821 USAGE_ERROR_ACTION(ms,ms); 4822 return 0; 4823 } 4824 return ialloc(ms, n_elements, sizes, 0, chunks); 4825 } 4826 4827 int mspace_trim(mspace msp, size_t pad) { 4828 int result = 0; 4829 mstate ms = (mstate)msp; 4830 if (ok_magic(ms)) { 4831 if (!PREACTION(ms)) { 4832 result = sys_trim(ms, pad); 4833 POSTACTION(ms); 4834 } 4835 } 4836 else { 4837 USAGE_ERROR_ACTION(ms,ms); 4838 } 4839 return result; 4840 } 4841 4842 void mspace_malloc_stats(mspace msp) { 4843 mstate ms = (mstate)msp; 4844 if (ok_magic(ms)) { 4845 internal_malloc_stats(ms); 4846 } 4847 else { 4848 USAGE_ERROR_ACTION(ms,ms); 4849 } 4850 } 4851 4852 size_t mspace_footprint(mspace msp) { 4853 size_t result; 4854 mstate ms = (mstate)msp; 4855 if (ok_magic(ms)) { 4856 result = ms->footprint; 4857 } 4858 USAGE_ERROR_ACTION(ms,ms); 4859 return result; 4860 } 4861 4862 4863 size_t mspace_max_footprint(mspace msp) { 4864 size_t result; 4865 mstate ms = (mstate)msp; 4866 if (ok_magic(ms)) { 4867 result = ms->max_footprint; 4868 } 4869 USAGE_ERROR_ACTION(ms,ms); 4870 return result; 4871 } 4872 4873 4874 #if !NO_MALLINFO 4875 struct mallinfo mspace_mallinfo(mspace msp) { 4876 mstate ms = (mstate)msp; 4877 if (!ok_magic(ms)) { 4878 USAGE_ERROR_ACTION(ms,ms); 4879 } 4880 return internal_mallinfo(ms); 4881 } 4882 #endif /* NO_MALLINFO */ 4883 4884 int mspace_mallopt(int param_number, int value) { 4885 return change_mparam(param_number, value); 4886 } 4887 4888 #endif /* MSPACES */ 4889 4890 /* -------------------- Alternative MORECORE functions ------------------- */ 4891 4892 /* 4893 Guidelines for creating a custom version of MORECORE: 4894 4895 * For best performance, MORECORE should allocate in multiples of pagesize. 4896 * MORECORE may allocate more memory than requested. (Or even less, 4897 but this will usually result in a malloc failure.) 4898 * MORECORE must not allocate memory when given argument zero, but 4899 instead return one past the end address of memory from previous 4900 nonzero call. 4901 * For best performance, consecutive calls to MORECORE with positive 4902 arguments should return increasing addresses, indicating that 4903 space has been contiguously extended. 4904 * Even though consecutive calls to MORECORE need not return contiguous 4905 addresses, it must be OK for malloc'ed chunks to span multiple 4906 regions in those cases where they do happen to be contiguous. 4907 * MORECORE need not handle negative arguments -- it may instead 4908 just return MFAIL when given negative arguments. 4909 Negative arguments are always multiples of pagesize. MORECORE 4910 must not misinterpret negative args as large positive unsigned 4911 args. You can suppress all such calls from even occurring by defining 4912 MORECORE_CANNOT_TRIM, 4913 4914 As an example alternative MORECORE, here is a custom allocator 4915 kindly contributed for pre-OSX macOS. It uses virtually but not 4916 necessarily physically contiguous non-paged memory (locked in, 4917 present and won't get swapped out). You can use it by uncommenting 4918 this section, adding some #includes, and setting up the appropriate 4919 defines above: 4920 4921 #define MORECORE osMoreCore 4922 4923 There is also a shutdown routine that should somehow be called for 4924 cleanup upon program exit. 4925 4926 #define MAX_POOL_ENTRIES 100 4927 #define MINIMUM_MORECORE_SIZE (64 * 1024U) 4928 static int next_os_pool; 4929 void *our_os_pools[MAX_POOL_ENTRIES]; 4930 4931 void *osMoreCore(int size) 4932 { 4933 void *ptr = 0; 4934 static void *sbrk_top = 0; 4935 4936 if (size > 0) 4937 { 4938 if (size < MINIMUM_MORECORE_SIZE) 4939 size = MINIMUM_MORECORE_SIZE; 4940 if (CurrentExecutionLevel() == kTaskLevel) 4941 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); 4942 if (ptr == 0) 4943 { 4944 return (void *) MFAIL; 4945 } 4946 // save ptrs so they can be freed during cleanup 4947 our_os_pools[next_os_pool] = ptr; 4948 next_os_pool++; 4949 ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); 4950 sbrk_top = (char *) ptr + size; 4951 return ptr; 4952 } 4953 else if (size < 0) 4954 { 4955 // we don't currently support shrink behavior 4956 return (void *) MFAIL; 4957 } 4958 else 4959 { 4960 return sbrk_top; 4961 } 4962 } 4963 4964 // cleanup any allocated memory pools 4965 // called as last thing before shutting down driver 4966 4967 void osCleanupMem(void) 4968 { 4969 void **ptr; 4970 4971 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) 4972 if (*ptr) 4973 { 4974 PoolDeallocate(*ptr); 4975 *ptr = 0; 4976 } 4977 } 4978 4979 */ 4980 4981 4982 /* ----------------------------------------------------------------------- 4983 History: 4984 V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) 4985 * Add max_footprint functions 4986 * Ensure all appropriate literals are size_t 4987 * Fix conditional compilation problem for some #define settings 4988 * Avoid concatenating segments with the one provided 4989 in create_mspace_with_base 4990 * Rename some variables to avoid compiler shadowing warnings 4991 * Use explicit lock initialization. 4992 * Better handling of sbrk interference. 4993 * Simplify and fix segment insertion, trimming and mspace_destroy 4994 * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x 4995 * Thanks especially to Dennis Flanagan for help on these. 4996 4997 V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) 4998 * Fix memalign brace error. 4999 5000 V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) 5001 * Fix improper #endif nesting in C++ 5002 * Add explicit casts needed for C++ 5003 5004 V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) 5005 * Use trees for large bins 5006 * Support mspaces 5007 * Use segments to unify sbrk-based and mmap-based system allocation, 5008 removing need for emulation on most platforms without sbrk. 5009 * Default safety checks 5010 * Optional footer checks. Thanks to William Robertson for the idea. 5011 * Internal code refactoring 5012 * Incorporate suggestions and platform-specific changes. 5013 Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, 5014 Aaron Bachmann, Emery Berger, and others. 5015 * Speed up non-fastbin processing enough to remove fastbins. 5016 * Remove useless cfree() to avoid conflicts with other apps. 5017 * Remove internal memcpy, memset. Compilers handle builtins better. 5018 * Remove some options that no one ever used and rename others. 5019 5020 V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) 5021 * Fix malloc_state bitmap array misdeclaration 5022 5023 V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) 5024 * Allow tuning of FIRST_SORTED_BIN_SIZE 5025 * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. 5026 * Better detection and support for non-contiguousness of MORECORE. 5027 Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger 5028 * Bypass most of malloc if no frees. Thanks To Emery Berger. 5029 * Fix freeing of old top non-contiguous chunk im sysmalloc. 5030 * Raised default trim and map thresholds to 256K. 5031 * Fix mmap-related #defines. Thanks to Lubos Lunak. 5032 * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. 5033 * Branch-free bin calculation 5034 * Default trim and mmap thresholds now 256K. 5035 5036 V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) 5037 * Introduce independent_comalloc and independent_calloc. 5038 Thanks to Michael Pachos for motivation and help. 5039 * Make optional .h file available 5040 * Allow > 2GB requests on 32bit systems. 5041 * new WIN32 sbrk, mmap, munmap, lock code from <Walter (at) GeNeSys-e.de>. 5042 Thanks also to Andreas Mueller <a.mueller at paradatec.de>, 5043 and Anonymous. 5044 * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for 5045 helping test this.) 5046 * memalign: check alignment arg 5047 * realloc: don't try to shift chunks backwards, since this 5048 leads to more fragmentation in some programs and doesn't 5049 seem to help in any others. 5050 * Collect all cases in malloc requiring system memory into sysmalloc 5051 * Use mmap as backup to sbrk 5052 * Place all internal state in malloc_state 5053 * Introduce fastbins (although similar to 2.5.1) 5054 * Many minor tunings and cosmetic improvements 5055 * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK 5056 * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS 5057 Thanks to Tony E. Bennett <tbennett (at) nvidia.com> and others. 5058 * Include errno.h to support default failure action. 5059 5060 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) 5061 * return null for negative arguments 5062 * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> 5063 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' 5064 (e.g. WIN32 platforms) 5065 * Cleanup header file inclusion for WIN32 platforms 5066 * Cleanup code to avoid Microsoft Visual C++ compiler complaints 5067 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing 5068 memory allocation routines 5069 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) 5070 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to 5071 usage of 'assert' in non-WIN32 code 5072 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to 5073 avoid infinite loop 5074 * Always call 'fREe()' rather than 'free()' 5075 5076 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) 5077 * Fixed ordering problem with boundary-stamping 5078 5079 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) 5080 * Added pvalloc, as recommended by H.J. Liu 5081 * Added 64bit pointer support mainly from Wolfram Gloger 5082 * Added anonymously donated WIN32 sbrk emulation 5083 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen 5084 * malloc_extend_top: fix mask error that caused wastage after 5085 foreign sbrks 5086 * Add linux mremap support code from HJ Liu 5087 5088 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) 5089 * Integrated most documentation with the code. 5090 * Add support for mmap, with help from 5091 Wolfram Gloger (Gloger (at) lrz.uni-muenchen.de). 5092 * Use last_remainder in more cases. 5093 * Pack bins using idea from colin (at) nyx10.cs.du.edu 5094 * Use ordered bins instead of best-fit threshold 5095 * Eliminate block-local decls to simplify tracing and debugging. 5096 * Support another case of realloc via move into top 5097 * Fix error occurring when initial sbrk_base not word-aligned. 5098 * Rely on page size for units instead of SBRK_UNIT to 5099 avoid surprises about sbrk alignment conventions. 5100 * Add mallinfo, mallopt. Thanks to Raymond Nijssen 5101 (raymond (at) es.ele.tue.nl) for the suggestion. 5102 * Add `pad' argument to malloc_trim and top_pad mallopt parameter. 5103 * More precautions for cases where other routines call sbrk, 5104 courtesy of Wolfram Gloger (Gloger (at) lrz.uni-muenchen.de). 5105 * Added macros etc., allowing use in linux libc from 5106 H.J. Lu (hjl (at) gnu.ai.mit.edu) 5107 * Inverted this history list 5108 5109 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) 5110 * Re-tuned and fixed to behave more nicely with V2.6.0 changes. 5111 * Removed all preallocation code since under current scheme 5112 the work required to undo bad preallocations exceeds 5113 the work saved in good cases for most test programs. 5114 * No longer use return list or unconsolidated bins since 5115 no scheme using them consistently outperforms those that don't 5116 given above changes. 5117 * Use best fit for very large chunks to prevent some worst-cases. 5118 * Added some support for debugging 5119 5120 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) 5121 * Removed footers when chunks are in use. Thanks to 5122 Paul Wilson (wilson (at) cs.texas.edu) for the suggestion. 5123 5124 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) 5125 * Added malloc_trim, with help from Wolfram Gloger 5126 (wmglo (at) Dent.MED.Uni-Muenchen.DE). 5127 5128 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) 5129 5130 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) 5131 * realloc: try to expand in both directions 5132 * malloc: swap order of clean-bin strategy; 5133 * realloc: only conditionally expand backwards 5134 * Try not to scavenge used bins 5135 * Use bin counts as a guide to preallocation 5136 * Occasionally bin return list chunks in first scan 5137 * Add a few optimizations from colin (at) nyx10.cs.du.edu 5138 5139 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) 5140 * faster bin computation & slightly different binning 5141 * merged all consolidations to one part of malloc proper 5142 (eliminating old malloc_find_space & malloc_clean_bin) 5143 * Scan 2 returns chunks (not just 1) 5144 * Propagate failure in realloc if malloc returns 0 5145 * Add stuff to allow compilation on non-ANSI compilers 5146 from kpv (at) research.att.com 5147 5148 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) 5149 * removed potential for odd address access in prev_chunk 5150 * removed dependency on getpagesize.h 5151 * misc cosmetics and a bit more internal documentation 5152 * anticosmetics: mangled names in macros to evade debugger strangeness 5153 * tested on sparc, hp-700, dec-mips, rs6000 5154 with gcc & native cc (hp, dec only) allowing 5155 Detlefs & Zorn comparison study (in SIGPLAN Notices.) 5156 5157 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) 5158 * Based loosely on libg++-1.2X malloc. (It retains some of the overall 5159 structure of old version, but most details differ.) 5160 5161 */ 5162