Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jcarith.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Developed 1997-2009 by Guido Vollbeding.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains portable arithmetic entropy encoding routines for JPEG
     12  * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81).
     13  *
     14  * Both sequential and progressive modes are supported in this single module.
     15  *
     16  * Suspension is not currently supported in this module.
     17  */
     18 
     19 #define JPEG_INTERNALS
     20 #include "jinclude.h"
     21 #include "jpeglib.h"
     22 
     23 
     24 /* Expanded entropy encoder object for arithmetic encoding. */
     25 
     26 typedef struct {
     27   struct jpeg_entropy_encoder pub; /* public fields */
     28 
     29   JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */
     30   JLONG a;               /* A register, normalized size of coding interval */
     31   JLONG sc;        /* counter for stacked 0xFF values which might overflow */
     32   JLONG zc;          /* counter for pending 0x00 output values which might *
     33                           * be discarded at the end ("Pacman" termination) */
     34   int ct;  /* bit shift counter, determines when next byte will be written */
     35   int buffer;                /* buffer for most recent output byte != 0xFF */
     36 
     37   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     38   int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */
     39 
     40   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
     41   int next_restart_num;         /* next restart number to write (0-7) */
     42 
     43   /* Pointers to statistics areas (these workspaces have image lifespan) */
     44   unsigned char *dc_stats[NUM_ARITH_TBLS];
     45   unsigned char *ac_stats[NUM_ARITH_TBLS];
     46 
     47   /* Statistics bin for coding with fixed probability 0.5 */
     48   unsigned char fixed_bin[4];
     49 } arith_entropy_encoder;
     50 
     51 typedef arith_entropy_encoder *arith_entropy_ptr;
     52 
     53 /* The following two definitions specify the allocation chunk size
     54  * for the statistics area.
     55  * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least
     56  * 49 statistics bins for DC, and 245 statistics bins for AC coding.
     57  *
     58  * We use a compact representation with 1 byte per statistics bin,
     59  * thus the numbers directly represent byte sizes.
     60  * This 1 byte per statistics bin contains the meaning of the MPS
     61  * (more probable symbol) in the highest bit (mask 0x80), and the
     62  * index into the probability estimation state machine table
     63  * in the lower bits (mask 0x7F).
     64  */
     65 
     66 #define DC_STAT_BINS 64
     67 #define AC_STAT_BINS 256
     68 
     69 /* NOTE: Uncomment the following #define if you want to use the
     70  * given formula for calculating the AC conditioning parameter Kx
     71  * for spectral selection progressive coding in section G.1.3.2
     72  * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4).
     73  * Although the spec and P&M authors claim that this "has proven
     74  * to give good results for 8 bit precision samples", I'm not
     75  * convinced yet that this is really beneficial.
     76  * Early tests gave only very marginal compression enhancements
     77  * (a few - around 5 or so - bytes even for very large files),
     78  * which would turn out rather negative if we'd suppress the
     79  * DAC (Define Arithmetic Conditioning) marker segments for
     80  * the default parameters in the future.
     81  * Note that currently the marker writing module emits 12-byte
     82  * DAC segments for a full-component scan in a color image.
     83  * This is not worth worrying about IMHO. However, since the
     84  * spec defines the default values to be used if the tables
     85  * are omitted (unlike Huffman tables, which are required
     86  * anyway), one might optimize this behaviour in the future,
     87  * and then it would be disadvantageous to use custom tables if
     88  * they don't provide sufficient gain to exceed the DAC size.
     89  *
     90  * On the other hand, I'd consider it as a reasonable result
     91  * that the conditioning has no significant influence on the
     92  * compression performance. This means that the basic
     93  * statistical model is already rather stable.
     94  *
     95  * Thus, at the moment, we use the default conditioning values
     96  * anyway, and do not use the custom formula.
     97  *
     98 #define CALCULATE_SPECTRAL_CONDITIONING
     99  */
    100 
    101 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG.
    102  * We assume that int right shift is unsigned if JLONG right shift is,
    103  * which should be safe.
    104  */
    105 
    106 #ifdef RIGHT_SHIFT_IS_UNSIGNED
    107 #define ISHIFT_TEMPS    int ishift_temp;
    108 #define IRIGHT_SHIFT(x,shft)  \
    109         ((ishift_temp = (x)) < 0 ? \
    110          (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
    111          (ishift_temp >> (shft)))
    112 #else
    113 #define ISHIFT_TEMPS
    114 #define IRIGHT_SHIFT(x,shft)    ((x) >> (shft))
    115 #endif
    116 
    117 
    118 LOCAL(void)
    119 emit_byte (int val, j_compress_ptr cinfo)
    120 /* Write next output byte; we do not support suspension in this module. */
    121 {
    122   struct jpeg_destination_mgr *dest = cinfo->dest;
    123 
    124   *dest->next_output_byte++ = (JOCTET) val;
    125   if (--dest->free_in_buffer == 0)
    126     if (! (*dest->empty_output_buffer) (cinfo))
    127       ERREXIT(cinfo, JERR_CANT_SUSPEND);
    128 }
    129 
    130 
    131 /*
    132  * Finish up at the end of an arithmetic-compressed scan.
    133  */
    134 
    135 METHODDEF(void)
    136 finish_pass (j_compress_ptr cinfo)
    137 {
    138   arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    139   JLONG temp;
    140 
    141   /* Section D.1.8: Termination of encoding */
    142 
    143   /* Find the e->c in the coding interval with the largest
    144    * number of trailing zero bits */
    145   if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c)
    146     e->c = temp + 0x8000L;
    147   else
    148     e->c = temp;
    149   /* Send remaining bytes to output */
    150   e->c <<= e->ct;
    151   if (e->c & 0xF8000000L) {
    152     /* One final overflow has to be handled */
    153     if (e->buffer >= 0) {
    154       if (e->zc)
    155         do emit_byte(0x00, cinfo);
    156         while (--e->zc);
    157       emit_byte(e->buffer + 1, cinfo);
    158       if (e->buffer + 1 == 0xFF)
    159         emit_byte(0x00, cinfo);
    160     }
    161     e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
    162     e->sc = 0;
    163   } else {
    164     if (e->buffer == 0)
    165       ++e->zc;
    166     else if (e->buffer >= 0) {
    167       if (e->zc)
    168         do emit_byte(0x00, cinfo);
    169         while (--e->zc);
    170       emit_byte(e->buffer, cinfo);
    171     }
    172     if (e->sc) {
    173       if (e->zc)
    174         do emit_byte(0x00, cinfo);
    175         while (--e->zc);
    176       do {
    177         emit_byte(0xFF, cinfo);
    178         emit_byte(0x00, cinfo);
    179       } while (--e->sc);
    180     }
    181   }
    182   /* Output final bytes only if they are not 0x00 */
    183   if (e->c & 0x7FFF800L) {
    184     if (e->zc)  /* output final pending zero bytes */
    185       do emit_byte(0x00, cinfo);
    186       while (--e->zc);
    187     emit_byte((e->c >> 19) & 0xFF, cinfo);
    188     if (((e->c >> 19) & 0xFF) == 0xFF)
    189       emit_byte(0x00, cinfo);
    190     if (e->c & 0x7F800L) {
    191       emit_byte((e->c >> 11) & 0xFF, cinfo);
    192       if (((e->c >> 11) & 0xFF) == 0xFF)
    193         emit_byte(0x00, cinfo);
    194     }
    195   }
    196 }
    197 
    198 
    199 /*
    200  * The core arithmetic encoding routine (common in JPEG and JBIG).
    201  * This needs to go as fast as possible.
    202  * Machine-dependent optimization facilities
    203  * are not utilized in this portable implementation.
    204  * However, this code should be fairly efficient and
    205  * may be a good base for further optimizations anyway.
    206  *
    207  * Parameter 'val' to be encoded may be 0 or 1 (binary decision).
    208  *
    209  * Note: I've added full "Pacman" termination support to the
    210  * byte output routines, which is equivalent to the optional
    211  * Discard_final_zeros procedure (Figure D.15) in the spec.
    212  * Thus, we always produce the shortest possible output
    213  * stream compliant to the spec (no trailing zero bytes,
    214  * except for FF stuffing).
    215  *
    216  * I've also introduced a new scheme for accessing
    217  * the probability estimation state machine table,
    218  * derived from Markus Kuhn's JBIG implementation.
    219  */
    220 
    221 LOCAL(void)
    222 arith_encode (j_compress_ptr cinfo, unsigned char *st, int val)
    223 {
    224   register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy;
    225   register unsigned char nl, nm;
    226   register JLONG qe, temp;
    227   register int sv;
    228 
    229   /* Fetch values from our compact representation of Table D.2:
    230    * Qe values and probability estimation state machine
    231    */
    232   sv = *st;
    233   qe = jpeg_aritab[sv & 0x7F];  /* => Qe_Value */
    234   nl = qe & 0xFF; qe >>= 8;     /* Next_Index_LPS + Switch_MPS */
    235   nm = qe & 0xFF; qe >>= 8;     /* Next_Index_MPS */
    236 
    237   /* Encode & estimation procedures per sections D.1.4 & D.1.5 */
    238   e->a -= qe;
    239   if (val != (sv >> 7)) {
    240     /* Encode the less probable symbol */
    241     if (e->a >= qe) {
    242       /* If the interval size (qe) for the less probable symbol (LPS)
    243        * is larger than the interval size for the MPS, then exchange
    244        * the two symbols for coding efficiency, otherwise code the LPS
    245        * as usual: */
    246       e->c += e->a;
    247       e->a = qe;
    248     }
    249     *st = (sv & 0x80) ^ nl;     /* Estimate_after_LPS */
    250   } else {
    251     /* Encode the more probable symbol */
    252     if (e->a >= 0x8000L)
    253       return;  /* A >= 0x8000 -> ready, no renormalization required */
    254     if (e->a < qe) {
    255       /* If the interval size (qe) for the less probable symbol (LPS)
    256        * is larger than the interval size for the MPS, then exchange
    257        * the two symbols for coding efficiency: */
    258       e->c += e->a;
    259       e->a = qe;
    260     }
    261     *st = (sv & 0x80) ^ nm;     /* Estimate_after_MPS */
    262   }
    263 
    264   /* Renormalization & data output per section D.1.6 */
    265   do {
    266     e->a <<= 1;
    267     e->c <<= 1;
    268     if (--e->ct == 0) {
    269       /* Another byte is ready for output */
    270       temp = e->c >> 19;
    271       if (temp > 0xFF) {
    272         /* Handle overflow over all stacked 0xFF bytes */
    273         if (e->buffer >= 0) {
    274           if (e->zc)
    275             do emit_byte(0x00, cinfo);
    276             while (--e->zc);
    277           emit_byte(e->buffer + 1, cinfo);
    278           if (e->buffer + 1 == 0xFF)
    279             emit_byte(0x00, cinfo);
    280         }
    281         e->zc += e->sc;  /* carry-over converts stacked 0xFF bytes to 0x00 */
    282         e->sc = 0;
    283         /* Note: The 3 spacer bits in the C register guarantee
    284          * that the new buffer byte can't be 0xFF here
    285          * (see page 160 in the P&M JPEG book). */
    286         e->buffer = temp & 0xFF;  /* new output byte, might overflow later */
    287       } else if (temp == 0xFF) {
    288         ++e->sc;  /* stack 0xFF byte (which might overflow later) */
    289       } else {
    290         /* Output all stacked 0xFF bytes, they will not overflow any more */
    291         if (e->buffer == 0)
    292           ++e->zc;
    293         else if (e->buffer >= 0) {
    294           if (e->zc)
    295             do emit_byte(0x00, cinfo);
    296             while (--e->zc);
    297           emit_byte(e->buffer, cinfo);
    298         }
    299         if (e->sc) {
    300           if (e->zc)
    301             do emit_byte(0x00, cinfo);
    302             while (--e->zc);
    303           do {
    304             emit_byte(0xFF, cinfo);
    305             emit_byte(0x00, cinfo);
    306           } while (--e->sc);
    307         }
    308         e->buffer = temp & 0xFF;  /* new output byte (can still overflow) */
    309       }
    310       e->c &= 0x7FFFFL;
    311       e->ct += 8;
    312     }
    313   } while (e->a < 0x8000L);
    314 }
    315 
    316 
    317 /*
    318  * Emit a restart marker & resynchronize predictions.
    319  */
    320 
    321 LOCAL(void)
    322 emit_restart (j_compress_ptr cinfo, int restart_num)
    323 {
    324   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    325   int ci;
    326   jpeg_component_info *compptr;
    327 
    328   finish_pass(cinfo);
    329 
    330   emit_byte(0xFF, cinfo);
    331   emit_byte(JPEG_RST0 + restart_num, cinfo);
    332 
    333   /* Re-initialize statistics areas */
    334   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    335     compptr = cinfo->cur_comp_info[ci];
    336     /* DC needs no table for refinement scan */
    337     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    338       MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS);
    339       /* Reset DC predictions to 0 */
    340       entropy->last_dc_val[ci] = 0;
    341       entropy->dc_context[ci] = 0;
    342     }
    343     /* AC needs no table when not present */
    344     if (cinfo->progressive_mode == 0 || cinfo->Se) {
    345       MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS);
    346     }
    347   }
    348 
    349   /* Reset arithmetic encoding variables */
    350   entropy->c = 0;
    351   entropy->a = 0x10000L;
    352   entropy->sc = 0;
    353   entropy->zc = 0;
    354   entropy->ct = 11;
    355   entropy->buffer = -1;  /* empty */
    356 }
    357 
    358 
    359 /*
    360  * MCU encoding for DC initial scan (either spectral selection,
    361  * or first pass of successive approximation).
    362  */
    363 
    364 METHODDEF(boolean)
    365 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    366 {
    367   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    368   JBLOCKROW block;
    369   unsigned char *st;
    370   int blkn, ci, tbl;
    371   int v, v2, m;
    372   ISHIFT_TEMPS
    373 
    374   /* Emit restart marker if needed */
    375   if (cinfo->restart_interval) {
    376     if (entropy->restarts_to_go == 0) {
    377       emit_restart(cinfo, entropy->next_restart_num);
    378       entropy->restarts_to_go = cinfo->restart_interval;
    379       entropy->next_restart_num++;
    380       entropy->next_restart_num &= 7;
    381     }
    382     entropy->restarts_to_go--;
    383   }
    384 
    385   /* Encode the MCU data blocks */
    386   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    387     block = MCU_data[blkn];
    388     ci = cinfo->MCU_membership[blkn];
    389     tbl = cinfo->cur_comp_info[ci]->dc_tbl_no;
    390 
    391     /* Compute the DC value after the required point transform by Al.
    392      * This is simply an arithmetic right shift.
    393      */
    394     m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al);
    395 
    396     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
    397 
    398     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    399     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    400 
    401     /* Figure F.4: Encode_DC_DIFF */
    402     if ((v = m - entropy->last_dc_val[ci]) == 0) {
    403       arith_encode(cinfo, st, 0);
    404       entropy->dc_context[ci] = 0;      /* zero diff category */
    405     } else {
    406       entropy->last_dc_val[ci] = m;
    407       arith_encode(cinfo, st, 1);
    408       /* Figure F.6: Encoding nonzero value v */
    409       /* Figure F.7: Encoding the sign of v */
    410       if (v > 0) {
    411         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
    412         st += 2;                        /* Table F.4: SP = S0 + 2 */
    413         entropy->dc_context[ci] = 4;    /* small positive diff category */
    414       } else {
    415         v = -v;
    416         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
    417         st += 3;                        /* Table F.4: SN = S0 + 3 */
    418         entropy->dc_context[ci] = 8;    /* small negative diff category */
    419       }
    420       /* Figure F.8: Encoding the magnitude category of v */
    421       m = 0;
    422       if (v -= 1) {
    423         arith_encode(cinfo, st, 1);
    424         m = 1;
    425         v2 = v;
    426         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
    427         while (v2 >>= 1) {
    428           arith_encode(cinfo, st, 1);
    429           m <<= 1;
    430           st += 1;
    431         }
    432       }
    433       arith_encode(cinfo, st, 0);
    434       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    435       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    436         entropy->dc_context[ci] = 0;    /* zero diff category */
    437       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    438         entropy->dc_context[ci] += 8;   /* large diff category */
    439       /* Figure F.9: Encoding the magnitude bit pattern of v */
    440       st += 14;
    441       while (m >>= 1)
    442         arith_encode(cinfo, st, (m & v) ? 1 : 0);
    443     }
    444   }
    445 
    446   return TRUE;
    447 }
    448 
    449 
    450 /*
    451  * MCU encoding for AC initial scan (either spectral selection,
    452  * or first pass of successive approximation).
    453  */
    454 
    455 METHODDEF(boolean)
    456 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    457 {
    458   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    459   JBLOCKROW block;
    460   unsigned char *st;
    461   int tbl, k, ke;
    462   int v, v2, m;
    463 
    464   /* Emit restart marker if needed */
    465   if (cinfo->restart_interval) {
    466     if (entropy->restarts_to_go == 0) {
    467       emit_restart(cinfo, entropy->next_restart_num);
    468       entropy->restarts_to_go = cinfo->restart_interval;
    469       entropy->next_restart_num++;
    470       entropy->next_restart_num &= 7;
    471     }
    472     entropy->restarts_to_go--;
    473   }
    474 
    475   /* Encode the MCU data block */
    476   block = MCU_data[0];
    477   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    478 
    479   /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
    480 
    481   /* Establish EOB (end-of-block) index */
    482   for (ke = cinfo->Se; ke > 0; ke--)
    483     /* We must apply the point transform by Al.  For AC coefficients this
    484      * is an integer division with rounding towards 0.  To do this portably
    485      * in C, we shift after obtaining the absolute value.
    486      */
    487     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
    488       if (v >>= cinfo->Al) break;
    489     } else {
    490       v = -v;
    491       if (v >>= cinfo->Al) break;
    492     }
    493 
    494   /* Figure F.5: Encode_AC_Coefficients */
    495   for (k = cinfo->Ss; k <= ke; k++) {
    496     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    497     arith_encode(cinfo, st, 0);         /* EOB decision */
    498     for (;;) {
    499       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
    500         if (v >>= cinfo->Al) {
    501           arith_encode(cinfo, st + 1, 1);
    502           arith_encode(cinfo, entropy->fixed_bin, 0);
    503           break;
    504         }
    505       } else {
    506         v = -v;
    507         if (v >>= cinfo->Al) {
    508           arith_encode(cinfo, st + 1, 1);
    509           arith_encode(cinfo, entropy->fixed_bin, 1);
    510           break;
    511         }
    512       }
    513       arith_encode(cinfo, st + 1, 0); st += 3; k++;
    514     }
    515     st += 2;
    516     /* Figure F.8: Encoding the magnitude category of v */
    517     m = 0;
    518     if (v -= 1) {
    519       arith_encode(cinfo, st, 1);
    520       m = 1;
    521       v2 = v;
    522       if (v2 >>= 1) {
    523         arith_encode(cinfo, st, 1);
    524         m <<= 1;
    525         st = entropy->ac_stats[tbl] +
    526              (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    527         while (v2 >>= 1) {
    528           arith_encode(cinfo, st, 1);
    529           m <<= 1;
    530           st += 1;
    531         }
    532       }
    533     }
    534     arith_encode(cinfo, st, 0);
    535     /* Figure F.9: Encoding the magnitude bit pattern of v */
    536     st += 14;
    537     while (m >>= 1)
    538       arith_encode(cinfo, st, (m & v) ? 1 : 0);
    539   }
    540   /* Encode EOB decision only if k <= cinfo->Se */
    541   if (k <= cinfo->Se) {
    542     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    543     arith_encode(cinfo, st, 1);
    544   }
    545 
    546   return TRUE;
    547 }
    548 
    549 
    550 /*
    551  * MCU encoding for DC successive approximation refinement scan.
    552  */
    553 
    554 METHODDEF(boolean)
    555 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    556 {
    557   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    558   unsigned char *st;
    559   int Al, blkn;
    560 
    561   /* Emit restart marker if needed */
    562   if (cinfo->restart_interval) {
    563     if (entropy->restarts_to_go == 0) {
    564       emit_restart(cinfo, entropy->next_restart_num);
    565       entropy->restarts_to_go = cinfo->restart_interval;
    566       entropy->next_restart_num++;
    567       entropy->next_restart_num &= 7;
    568     }
    569     entropy->restarts_to_go--;
    570   }
    571 
    572   st = entropy->fixed_bin;      /* use fixed probability estimation */
    573   Al = cinfo->Al;
    574 
    575   /* Encode the MCU data blocks */
    576   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    577     /* We simply emit the Al'th bit of the DC coefficient value. */
    578     arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1);
    579   }
    580 
    581   return TRUE;
    582 }
    583 
    584 
    585 /*
    586  * MCU encoding for AC successive approximation refinement scan.
    587  */
    588 
    589 METHODDEF(boolean)
    590 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    591 {
    592   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    593   JBLOCKROW block;
    594   unsigned char *st;
    595   int tbl, k, ke, kex;
    596   int v;
    597 
    598   /* Emit restart marker if needed */
    599   if (cinfo->restart_interval) {
    600     if (entropy->restarts_to_go == 0) {
    601       emit_restart(cinfo, entropy->next_restart_num);
    602       entropy->restarts_to_go = cinfo->restart_interval;
    603       entropy->next_restart_num++;
    604       entropy->next_restart_num &= 7;
    605     }
    606     entropy->restarts_to_go--;
    607   }
    608 
    609   /* Encode the MCU data block */
    610   block = MCU_data[0];
    611   tbl = cinfo->cur_comp_info[0]->ac_tbl_no;
    612 
    613   /* Section G.1.3.3: Encoding of AC coefficients */
    614 
    615   /* Establish EOB (end-of-block) index */
    616   for (ke = cinfo->Se; ke > 0; ke--)
    617     /* We must apply the point transform by Al.  For AC coefficients this
    618      * is an integer division with rounding towards 0.  To do this portably
    619      * in C, we shift after obtaining the absolute value.
    620      */
    621     if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) {
    622       if (v >>= cinfo->Al) break;
    623     } else {
    624       v = -v;
    625       if (v >>= cinfo->Al) break;
    626     }
    627 
    628   /* Establish EOBx (previous stage end-of-block) index */
    629   for (kex = ke; kex > 0; kex--)
    630     if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) {
    631       if (v >>= cinfo->Ah) break;
    632     } else {
    633       v = -v;
    634       if (v >>= cinfo->Ah) break;
    635     }
    636 
    637   /* Figure G.10: Encode_AC_Coefficients_SA */
    638   for (k = cinfo->Ss; k <= ke; k++) {
    639     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    640     if (k > kex)
    641       arith_encode(cinfo, st, 0);       /* EOB decision */
    642     for (;;) {
    643       if ((v = (*block)[jpeg_natural_order[k]]) >= 0) {
    644         if (v >>= cinfo->Al) {
    645           if (v >> 1)                   /* previously nonzero coef */
    646             arith_encode(cinfo, st + 2, (v & 1));
    647           else {                        /* newly nonzero coef */
    648             arith_encode(cinfo, st + 1, 1);
    649             arith_encode(cinfo, entropy->fixed_bin, 0);
    650           }
    651           break;
    652         }
    653       } else {
    654         v = -v;
    655         if (v >>= cinfo->Al) {
    656           if (v >> 1)                   /* previously nonzero coef */
    657             arith_encode(cinfo, st + 2, (v & 1));
    658           else {                        /* newly nonzero coef */
    659             arith_encode(cinfo, st + 1, 1);
    660             arith_encode(cinfo, entropy->fixed_bin, 1);
    661           }
    662           break;
    663         }
    664       }
    665       arith_encode(cinfo, st + 1, 0); st += 3; k++;
    666     }
    667   }
    668   /* Encode EOB decision only if k <= cinfo->Se */
    669   if (k <= cinfo->Se) {
    670     st = entropy->ac_stats[tbl] + 3 * (k - 1);
    671     arith_encode(cinfo, st, 1);
    672   }
    673 
    674   return TRUE;
    675 }
    676 
    677 
    678 /*
    679  * Encode and output one MCU's worth of arithmetic-compressed coefficients.
    680  */
    681 
    682 METHODDEF(boolean)
    683 encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    684 {
    685   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    686   jpeg_component_info *compptr;
    687   JBLOCKROW block;
    688   unsigned char *st;
    689   int blkn, ci, tbl, k, ke;
    690   int v, v2, m;
    691 
    692   /* Emit restart marker if needed */
    693   if (cinfo->restart_interval) {
    694     if (entropy->restarts_to_go == 0) {
    695       emit_restart(cinfo, entropy->next_restart_num);
    696       entropy->restarts_to_go = cinfo->restart_interval;
    697       entropy->next_restart_num++;
    698       entropy->next_restart_num &= 7;
    699     }
    700     entropy->restarts_to_go--;
    701   }
    702 
    703   /* Encode the MCU data blocks */
    704   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    705     block = MCU_data[blkn];
    706     ci = cinfo->MCU_membership[blkn];
    707     compptr = cinfo->cur_comp_info[ci];
    708 
    709     /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */
    710 
    711     tbl = compptr->dc_tbl_no;
    712 
    713     /* Table F.4: Point to statistics bin S0 for DC coefficient coding */
    714     st = entropy->dc_stats[tbl] + entropy->dc_context[ci];
    715 
    716     /* Figure F.4: Encode_DC_DIFF */
    717     if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) {
    718       arith_encode(cinfo, st, 0);
    719       entropy->dc_context[ci] = 0;      /* zero diff category */
    720     } else {
    721       entropy->last_dc_val[ci] = (*block)[0];
    722       arith_encode(cinfo, st, 1);
    723       /* Figure F.6: Encoding nonzero value v */
    724       /* Figure F.7: Encoding the sign of v */
    725       if (v > 0) {
    726         arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */
    727         st += 2;                        /* Table F.4: SP = S0 + 2 */
    728         entropy->dc_context[ci] = 4;    /* small positive diff category */
    729       } else {
    730         v = -v;
    731         arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */
    732         st += 3;                        /* Table F.4: SN = S0 + 3 */
    733         entropy->dc_context[ci] = 8;    /* small negative diff category */
    734       }
    735       /* Figure F.8: Encoding the magnitude category of v */
    736       m = 0;
    737       if (v -= 1) {
    738         arith_encode(cinfo, st, 1);
    739         m = 1;
    740         v2 = v;
    741         st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */
    742         while (v2 >>= 1) {
    743           arith_encode(cinfo, st, 1);
    744           m <<= 1;
    745           st += 1;
    746         }
    747       }
    748       arith_encode(cinfo, st, 0);
    749       /* Section F.1.4.4.1.2: Establish dc_context conditioning category */
    750       if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1))
    751         entropy->dc_context[ci] = 0;    /* zero diff category */
    752       else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1))
    753         entropy->dc_context[ci] += 8;   /* large diff category */
    754       /* Figure F.9: Encoding the magnitude bit pattern of v */
    755       st += 14;
    756       while (m >>= 1)
    757         arith_encode(cinfo, st, (m & v) ? 1 : 0);
    758     }
    759 
    760     /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */
    761 
    762     tbl = compptr->ac_tbl_no;
    763 
    764     /* Establish EOB (end-of-block) index */
    765     for (ke = DCTSIZE2 - 1; ke > 0; ke--)
    766       if ((*block)[jpeg_natural_order[ke]]) break;
    767 
    768     /* Figure F.5: Encode_AC_Coefficients */
    769     for (k = 1; k <= ke; k++) {
    770       st = entropy->ac_stats[tbl] + 3 * (k - 1);
    771       arith_encode(cinfo, st, 0);       /* EOB decision */
    772       while ((v = (*block)[jpeg_natural_order[k]]) == 0) {
    773         arith_encode(cinfo, st + 1, 0); st += 3; k++;
    774       }
    775       arith_encode(cinfo, st + 1, 1);
    776       /* Figure F.6: Encoding nonzero value v */
    777       /* Figure F.7: Encoding the sign of v */
    778       if (v > 0) {
    779         arith_encode(cinfo, entropy->fixed_bin, 0);
    780       } else {
    781         v = -v;
    782         arith_encode(cinfo, entropy->fixed_bin, 1);
    783       }
    784       st += 2;
    785       /* Figure F.8: Encoding the magnitude category of v */
    786       m = 0;
    787       if (v -= 1) {
    788         arith_encode(cinfo, st, 1);
    789         m = 1;
    790         v2 = v;
    791         if (v2 >>= 1) {
    792           arith_encode(cinfo, st, 1);
    793           m <<= 1;
    794           st = entropy->ac_stats[tbl] +
    795                (k <= cinfo->arith_ac_K[tbl] ? 189 : 217);
    796           while (v2 >>= 1) {
    797             arith_encode(cinfo, st, 1);
    798             m <<= 1;
    799             st += 1;
    800           }
    801         }
    802       }
    803       arith_encode(cinfo, st, 0);
    804       /* Figure F.9: Encoding the magnitude bit pattern of v */
    805       st += 14;
    806       while (m >>= 1)
    807         arith_encode(cinfo, st, (m & v) ? 1 : 0);
    808     }
    809     /* Encode EOB decision only if k <= DCTSIZE2 - 1 */
    810     if (k <= DCTSIZE2 - 1) {
    811       st = entropy->ac_stats[tbl] + 3 * (k - 1);
    812       arith_encode(cinfo, st, 1);
    813     }
    814   }
    815 
    816   return TRUE;
    817 }
    818 
    819 
    820 /*
    821  * Initialize for an arithmetic-compressed scan.
    822  */
    823 
    824 METHODDEF(void)
    825 start_pass (j_compress_ptr cinfo, boolean gather_statistics)
    826 {
    827   arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy;
    828   int ci, tbl;
    829   jpeg_component_info *compptr;
    830 
    831   if (gather_statistics)
    832     /* Make sure to avoid that in the master control logic!
    833      * We are fully adaptive here and need no extra
    834      * statistics gathering pass!
    835      */
    836     ERREXIT(cinfo, JERR_NOT_COMPILED);
    837 
    838   /* We assume jcmaster.c already validated the progressive scan parameters. */
    839 
    840   /* Select execution routines */
    841   if (cinfo->progressive_mode) {
    842     if (cinfo->Ah == 0) {
    843       if (cinfo->Ss == 0)
    844         entropy->pub.encode_mcu = encode_mcu_DC_first;
    845       else
    846         entropy->pub.encode_mcu = encode_mcu_AC_first;
    847     } else {
    848       if (cinfo->Ss == 0)
    849         entropy->pub.encode_mcu = encode_mcu_DC_refine;
    850       else
    851         entropy->pub.encode_mcu = encode_mcu_AC_refine;
    852     }
    853   } else
    854     entropy->pub.encode_mcu = encode_mcu;
    855 
    856   /* Allocate & initialize requested statistics areas */
    857   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    858     compptr = cinfo->cur_comp_info[ci];
    859     /* DC needs no table for refinement scan */
    860     if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) {
    861       tbl = compptr->dc_tbl_no;
    862       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    863         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    864       if (entropy->dc_stats[tbl] == NULL)
    865         entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    866           ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS);
    867       MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS);
    868       /* Initialize DC predictions to 0 */
    869       entropy->last_dc_val[ci] = 0;
    870       entropy->dc_context[ci] = 0;
    871     }
    872     /* AC needs no table when not present */
    873     if (cinfo->progressive_mode == 0 || cinfo->Se) {
    874       tbl = compptr->ac_tbl_no;
    875       if (tbl < 0 || tbl >= NUM_ARITH_TBLS)
    876         ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl);
    877       if (entropy->ac_stats[tbl] == NULL)
    878         entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small)
    879           ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS);
    880       MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS);
    881 #ifdef CALCULATE_SPECTRAL_CONDITIONING
    882       if (cinfo->progressive_mode)
    883         /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */
    884         cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4);
    885 #endif
    886     }
    887   }
    888 
    889   /* Initialize arithmetic encoding variables */
    890   entropy->c = 0;
    891   entropy->a = 0x10000L;
    892   entropy->sc = 0;
    893   entropy->zc = 0;
    894   entropy->ct = 11;
    895   entropy->buffer = -1;  /* empty */
    896 
    897   /* Initialize restart stuff */
    898   entropy->restarts_to_go = cinfo->restart_interval;
    899   entropy->next_restart_num = 0;
    900 }
    901 
    902 
    903 /*
    904  * Module initialization routine for arithmetic entropy encoding.
    905  */
    906 
    907 GLOBAL(void)
    908 jinit_arith_encoder (j_compress_ptr cinfo)
    909 {
    910   arith_entropy_ptr entropy;
    911   int i;
    912 
    913   entropy = (arith_entropy_ptr)
    914     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    915                                 sizeof(arith_entropy_encoder));
    916   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
    917   entropy->pub.start_pass = start_pass;
    918   entropy->pub.finish_pass = finish_pass;
    919 
    920   /* Mark tables unallocated */
    921   for (i = 0; i < NUM_ARITH_TBLS; i++) {
    922     entropy->dc_stats[i] = NULL;
    923     entropy->ac_stats[i] = NULL;
    924   }
    925 
    926   /* Initialize index for fixed probability estimation */
    927   entropy->fixed_bin[0] = 113;
    928 }
    929