Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jchuff.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2009-2011, 2014-2016, D. R. Commander.
      8  * Copyright (C) 2015, Matthieu Darbois.
      9  * For conditions of distribution and use, see the accompanying README.ijg
     10  * file.
     11  *
     12  * This file contains Huffman entropy encoding routines.
     13  *
     14  * Much of the complexity here has to do with supporting output suspension.
     15  * If the data destination module demands suspension, we want to be able to
     16  * back up to the start of the current MCU.  To do this, we copy state
     17  * variables into local working storage, and update them back to the
     18  * permanent JPEG objects only upon successful completion of an MCU.
     19  */
     20 
     21 #define JPEG_INTERNALS
     22 #include "jinclude.h"
     23 #include "jpeglib.h"
     24 #include "jsimd.h"
     25 #include "jconfigint.h"
     26 #include <limits.h>
     27 
     28 /*
     29  * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be
     30  * used for bit counting rather than the lookup table.  This will reduce the
     31  * memory footprint by 64k, which is important for some mobile applications
     32  * that create many isolated instances of libjpeg-turbo (web browsers, for
     33  * instance.)  This may improve performance on some mobile platforms as well.
     34  * This feature is enabled by default only on ARM processors, because some x86
     35  * chips have a slow implementation of bsr, and the use of clz/bsr cannot be
     36  * shown to have a significant performance impact even on the x86 chips that
     37  * have a fast implementation of it.  When building for ARMv6, you can
     38  * explicitly disable the use of clz/bsr by adding -mthumb to the compiler
     39  * flags (this defines __thumb__).
     40  */
     41 
     42 /* NOTE: Both GCC and Clang define __GNUC__ */
     43 #if defined __GNUC__ && (defined __arm__ || defined __aarch64__)
     44 #if !defined __thumb__ || defined __thumb2__
     45 #define USE_CLZ_INTRINSIC
     46 #endif
     47 #endif
     48 
     49 #ifdef USE_CLZ_INTRINSIC
     50 #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x))
     51 #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0)
     52 #else
     53 #include "jpeg_nbits_table.h"
     54 #define JPEG_NBITS(x) (jpeg_nbits_table[x])
     55 #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x)
     56 #endif
     57 
     58 #ifndef min
     59  #define min(a,b) ((a)<(b)?(a):(b))
     60 #endif
     61 
     62 
     63 /* Expanded entropy encoder object for Huffman encoding.
     64  *
     65  * The savable_state subrecord contains fields that change within an MCU,
     66  * but must not be updated permanently until we complete the MCU.
     67  */
     68 
     69 typedef struct {
     70   size_t put_buffer;            /* current bit-accumulation buffer */
     71   int put_bits;                 /* # of bits now in it */
     72   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
     73 } savable_state;
     74 
     75 /* This macro is to work around compilers with missing or broken
     76  * structure assignment.  You'll need to fix this code if you have
     77  * such a compiler and you change MAX_COMPS_IN_SCAN.
     78  */
     79 
     80 #ifndef NO_STRUCT_ASSIGN
     81 #define ASSIGN_STATE(dest,src)  ((dest) = (src))
     82 #else
     83 #if MAX_COMPS_IN_SCAN == 4
     84 #define ASSIGN_STATE(dest,src)  \
     85         ((dest).put_buffer = (src).put_buffer, \
     86          (dest).put_bits = (src).put_bits, \
     87          (dest).last_dc_val[0] = (src).last_dc_val[0], \
     88          (dest).last_dc_val[1] = (src).last_dc_val[1], \
     89          (dest).last_dc_val[2] = (src).last_dc_val[2], \
     90          (dest).last_dc_val[3] = (src).last_dc_val[3])
     91 #endif
     92 #endif
     93 
     94 
     95 typedef struct {
     96   struct jpeg_entropy_encoder pub; /* public fields */
     97 
     98   savable_state saved;          /* Bit buffer & DC state at start of MCU */
     99 
    100   /* These fields are NOT loaded into local working state. */
    101   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
    102   int next_restart_num;         /* next restart number to write (0-7) */
    103 
    104   /* Pointers to derived tables (these workspaces have image lifespan) */
    105   c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
    106   c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
    107 
    108 #ifdef ENTROPY_OPT_SUPPORTED    /* Statistics tables for optimization */
    109   long *dc_count_ptrs[NUM_HUFF_TBLS];
    110   long *ac_count_ptrs[NUM_HUFF_TBLS];
    111 #endif
    112 
    113   int simd;
    114 } huff_entropy_encoder;
    115 
    116 typedef huff_entropy_encoder *huff_entropy_ptr;
    117 
    118 /* Working state while writing an MCU.
    119  * This struct contains all the fields that are needed by subroutines.
    120  */
    121 
    122 typedef struct {
    123   JOCTET *next_output_byte;     /* => next byte to write in buffer */
    124   size_t free_in_buffer;        /* # of byte spaces remaining in buffer */
    125   savable_state cur;            /* Current bit buffer & DC state */
    126   j_compress_ptr cinfo;         /* dump_buffer needs access to this */
    127 } working_state;
    128 
    129 
    130 /* Forward declarations */
    131 METHODDEF(boolean) encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data);
    132 METHODDEF(void) finish_pass_huff (j_compress_ptr cinfo);
    133 #ifdef ENTROPY_OPT_SUPPORTED
    134 METHODDEF(boolean) encode_mcu_gather (j_compress_ptr cinfo,
    135                                       JBLOCKROW *MCU_data);
    136 METHODDEF(void) finish_pass_gather (j_compress_ptr cinfo);
    137 #endif
    138 
    139 
    140 /*
    141  * Initialize for a Huffman-compressed scan.
    142  * If gather_statistics is TRUE, we do not output anything during the scan,
    143  * just count the Huffman symbols used and generate Huffman code tables.
    144  */
    145 
    146 METHODDEF(void)
    147 start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics)
    148 {
    149   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    150   int ci, dctbl, actbl;
    151   jpeg_component_info *compptr;
    152 
    153   if (gather_statistics) {
    154 #ifdef ENTROPY_OPT_SUPPORTED
    155     entropy->pub.encode_mcu = encode_mcu_gather;
    156     entropy->pub.finish_pass = finish_pass_gather;
    157 #else
    158     ERREXIT(cinfo, JERR_NOT_COMPILED);
    159 #endif
    160   } else {
    161     entropy->pub.encode_mcu = encode_mcu_huff;
    162     entropy->pub.finish_pass = finish_pass_huff;
    163   }
    164 
    165   entropy->simd = jsimd_can_huff_encode_one_block();
    166 
    167   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    168     compptr = cinfo->cur_comp_info[ci];
    169     dctbl = compptr->dc_tbl_no;
    170     actbl = compptr->ac_tbl_no;
    171     if (gather_statistics) {
    172 #ifdef ENTROPY_OPT_SUPPORTED
    173       /* Check for invalid table indexes */
    174       /* (make_c_derived_tbl does this in the other path) */
    175       if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS)
    176         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
    177       if (actbl < 0 || actbl >= NUM_HUFF_TBLS)
    178         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
    179       /* Allocate and zero the statistics tables */
    180       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
    181       if (entropy->dc_count_ptrs[dctbl] == NULL)
    182         entropy->dc_count_ptrs[dctbl] = (long *)
    183           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    184                                       257 * sizeof(long));
    185       MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * sizeof(long));
    186       if (entropy->ac_count_ptrs[actbl] == NULL)
    187         entropy->ac_count_ptrs[actbl] = (long *)
    188           (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    189                                       257 * sizeof(long));
    190       MEMZERO(entropy->ac_count_ptrs[actbl], 257 * sizeof(long));
    191 #endif
    192     } else {
    193       /* Compute derived values for Huffman tables */
    194       /* We may do this more than once for a table, but it's not expensive */
    195       jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl,
    196                               & entropy->dc_derived_tbls[dctbl]);
    197       jpeg_make_c_derived_tbl(cinfo, FALSE, actbl,
    198                               & entropy->ac_derived_tbls[actbl]);
    199     }
    200     /* Initialize DC predictions to 0 */
    201     entropy->saved.last_dc_val[ci] = 0;
    202   }
    203 
    204   /* Initialize bit buffer to empty */
    205   entropy->saved.put_buffer = 0;
    206   entropy->saved.put_bits = 0;
    207 
    208   /* Initialize restart stuff */
    209   entropy->restarts_to_go = cinfo->restart_interval;
    210   entropy->next_restart_num = 0;
    211 }
    212 
    213 
    214 /*
    215  * Compute the derived values for a Huffman table.
    216  * This routine also performs some validation checks on the table.
    217  *
    218  * Note this is also used by jcphuff.c.
    219  */
    220 
    221 GLOBAL(void)
    222 jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno,
    223                          c_derived_tbl **pdtbl)
    224 {
    225   JHUFF_TBL *htbl;
    226   c_derived_tbl *dtbl;
    227   int p, i, l, lastp, si, maxsymbol;
    228   char huffsize[257];
    229   unsigned int huffcode[257];
    230   unsigned int code;
    231 
    232   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    233    * paralleling the order of the symbols themselves in htbl->huffval[].
    234    */
    235 
    236   /* Find the input Huffman table */
    237   if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
    238     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    239   htbl =
    240     isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
    241   if (htbl == NULL)
    242     ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
    243 
    244   /* Allocate a workspace if we haven't already done so. */
    245   if (*pdtbl == NULL)
    246     *pdtbl = (c_derived_tbl *)
    247       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    248                                   sizeof(c_derived_tbl));
    249   dtbl = *pdtbl;
    250 
    251   /* Figure C.1: make table of Huffman code length for each symbol */
    252 
    253   p = 0;
    254   for (l = 1; l <= 16; l++) {
    255     i = (int) htbl->bits[l];
    256     if (i < 0 || p + i > 256)   /* protect against table overrun */
    257       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    258     while (i--)
    259       huffsize[p++] = (char) l;
    260   }
    261   huffsize[p] = 0;
    262   lastp = p;
    263 
    264   /* Figure C.2: generate the codes themselves */
    265   /* We also validate that the counts represent a legal Huffman code tree. */
    266 
    267   code = 0;
    268   si = huffsize[0];
    269   p = 0;
    270   while (huffsize[p]) {
    271     while (((int) huffsize[p]) == si) {
    272       huffcode[p++] = code;
    273       code++;
    274     }
    275     /* code is now 1 more than the last code used for codelength si; but
    276      * it must still fit in si bits, since no code is allowed to be all ones.
    277      */
    278     if (((JLONG) code) >= (((JLONG) 1) << si))
    279       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    280     code <<= 1;
    281     si++;
    282   }
    283 
    284   /* Figure C.3: generate encoding tables */
    285   /* These are code and size indexed by symbol value */
    286 
    287   /* Set all codeless symbols to have code length 0;
    288    * this lets us detect duplicate VAL entries here, and later
    289    * allows emit_bits to detect any attempt to emit such symbols.
    290    */
    291   MEMZERO(dtbl->ehufsi, sizeof(dtbl->ehufsi));
    292 
    293   /* This is also a convenient place to check for out-of-range
    294    * and duplicated VAL entries.  We allow 0..255 for AC symbols
    295    * but only 0..15 for DC.  (We could constrain them further
    296    * based on data depth and mode, but this seems enough.)
    297    */
    298   maxsymbol = isDC ? 15 : 255;
    299 
    300   for (p = 0; p < lastp; p++) {
    301     i = htbl->huffval[p];
    302     if (i < 0 || i > maxsymbol || dtbl->ehufsi[i])
    303       ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
    304     dtbl->ehufco[i] = huffcode[p];
    305     dtbl->ehufsi[i] = huffsize[p];
    306   }
    307 }
    308 
    309 
    310 /* Outputting bytes to the file */
    311 
    312 /* Emit a byte, taking 'action' if must suspend. */
    313 #define emit_byte(state,val,action)  \
    314         { *(state)->next_output_byte++ = (JOCTET) (val);  \
    315           if (--(state)->free_in_buffer == 0)  \
    316             if (! dump_buffer(state))  \
    317               { action; } }
    318 
    319 
    320 LOCAL(boolean)
    321 dump_buffer (working_state *state)
    322 /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */
    323 {
    324   struct jpeg_destination_mgr *dest = state->cinfo->dest;
    325 
    326   if (! (*dest->empty_output_buffer) (state->cinfo))
    327     return FALSE;
    328   /* After a successful buffer dump, must reset buffer pointers */
    329   state->next_output_byte = dest->next_output_byte;
    330   state->free_in_buffer = dest->free_in_buffer;
    331   return TRUE;
    332 }
    333 
    334 
    335 /* Outputting bits to the file */
    336 
    337 /* These macros perform the same task as the emit_bits() function in the
    338  * original libjpeg code.  In addition to reducing overhead by explicitly
    339  * inlining the code, additional performance is achieved by taking into
    340  * account the size of the bit buffer and waiting until it is almost full
    341  * before emptying it.  This mostly benefits 64-bit platforms, since 6
    342  * bytes can be stored in a 64-bit bit buffer before it has to be emptied.
    343  */
    344 
    345 #define EMIT_BYTE() { \
    346   JOCTET c; \
    347   put_bits -= 8; \
    348   c = (JOCTET)GETJOCTET(put_buffer >> put_bits); \
    349   *buffer++ = c; \
    350   if (c == 0xFF)  /* need to stuff a zero byte? */ \
    351     *buffer++ = 0; \
    352  }
    353 
    354 #define PUT_BITS(code, size) { \
    355   put_bits += size; \
    356   put_buffer = (put_buffer << size) | code; \
    357 }
    358 
    359 #define CHECKBUF15() { \
    360   if (put_bits > 15) { \
    361     EMIT_BYTE() \
    362     EMIT_BYTE() \
    363   } \
    364 }
    365 
    366 #define CHECKBUF31() { \
    367   if (put_bits > 31) { \
    368     EMIT_BYTE() \
    369     EMIT_BYTE() \
    370     EMIT_BYTE() \
    371     EMIT_BYTE() \
    372   } \
    373 }
    374 
    375 #define CHECKBUF47() { \
    376   if (put_bits > 47) { \
    377     EMIT_BYTE() \
    378     EMIT_BYTE() \
    379     EMIT_BYTE() \
    380     EMIT_BYTE() \
    381     EMIT_BYTE() \
    382     EMIT_BYTE() \
    383   } \
    384 }
    385 
    386 #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T)
    387 #error Cannot determine word size
    388 #endif
    389 
    390 #if SIZEOF_SIZE_T==8 || defined(_WIN64)
    391 
    392 #define EMIT_BITS(code, size) { \
    393   CHECKBUF47() \
    394   PUT_BITS(code, size) \
    395 }
    396 
    397 #define EMIT_CODE(code, size) { \
    398   temp2 &= (((JLONG) 1)<<nbits) - 1; \
    399   CHECKBUF31() \
    400   PUT_BITS(code, size) \
    401   PUT_BITS(temp2, nbits) \
    402  }
    403 
    404 #else
    405 
    406 #define EMIT_BITS(code, size) { \
    407   PUT_BITS(code, size) \
    408   CHECKBUF15() \
    409 }
    410 
    411 #define EMIT_CODE(code, size) { \
    412   temp2 &= (((JLONG) 1)<<nbits) - 1; \
    413   PUT_BITS(code, size) \
    414   CHECKBUF15() \
    415   PUT_BITS(temp2, nbits) \
    416   CHECKBUF15() \
    417  }
    418 
    419 #endif
    420 
    421 
    422 /* Although it is exceedingly rare, it is possible for a Huffman-encoded
    423  * coefficient block to be larger than the 128-byte unencoded block.  For each
    424  * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can
    425  * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per
    426  * encoded block.)  If, for instance, one artificially sets the AC
    427  * coefficients to alternating values of 32767 and -32768 (using the JPEG
    428  * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block
    429  * larger than 200 bytes.
    430  */
    431 #define BUFSIZE (DCTSIZE2 * 4)
    432 
    433 #define LOAD_BUFFER() { \
    434   if (state->free_in_buffer < BUFSIZE) { \
    435     localbuf = 1; \
    436     buffer = _buffer; \
    437   } \
    438   else buffer = state->next_output_byte; \
    439  }
    440 
    441 #define STORE_BUFFER() { \
    442   if (localbuf) { \
    443     bytes = buffer - _buffer; \
    444     buffer = _buffer; \
    445     while (bytes > 0) { \
    446       bytestocopy = min(bytes, state->free_in_buffer); \
    447       MEMCOPY(state->next_output_byte, buffer, bytestocopy); \
    448       state->next_output_byte += bytestocopy; \
    449       buffer += bytestocopy; \
    450       state->free_in_buffer -= bytestocopy; \
    451       if (state->free_in_buffer == 0) \
    452         if (! dump_buffer(state)) return FALSE; \
    453       bytes -= bytestocopy; \
    454     } \
    455   } \
    456   else { \
    457     state->free_in_buffer -= (buffer - state->next_output_byte); \
    458     state->next_output_byte = buffer; \
    459   } \
    460  }
    461 
    462 
    463 LOCAL(boolean)
    464 flush_bits (working_state *state)
    465 {
    466   JOCTET _buffer[BUFSIZE], *buffer;
    467   size_t put_buffer;  int put_bits;
    468   size_t bytes, bytestocopy;  int localbuf = 0;
    469 
    470   put_buffer = state->cur.put_buffer;
    471   put_bits = state->cur.put_bits;
    472   LOAD_BUFFER()
    473 
    474   /* fill any partial byte with ones */
    475   PUT_BITS(0x7F, 7)
    476   while (put_bits >= 8) EMIT_BYTE()
    477 
    478   state->cur.put_buffer = 0;    /* and reset bit-buffer to empty */
    479   state->cur.put_bits = 0;
    480   STORE_BUFFER()
    481 
    482   return TRUE;
    483 }
    484 
    485 
    486 /* Encode a single block's worth of coefficients */
    487 
    488 LOCAL(boolean)
    489 encode_one_block_simd (working_state *state, JCOEFPTR block, int last_dc_val,
    490                        c_derived_tbl *dctbl, c_derived_tbl *actbl)
    491 {
    492   JOCTET _buffer[BUFSIZE], *buffer;
    493   size_t bytes, bytestocopy;  int localbuf = 0;
    494 
    495   LOAD_BUFFER()
    496 
    497   buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val,
    498                                        dctbl, actbl);
    499 
    500   STORE_BUFFER()
    501 
    502   return TRUE;
    503 }
    504 
    505 LOCAL(boolean)
    506 encode_one_block (working_state *state, JCOEFPTR block, int last_dc_val,
    507                   c_derived_tbl *dctbl, c_derived_tbl *actbl)
    508 {
    509   int temp, temp2, temp3;
    510   int nbits;
    511   int r, code, size;
    512   JOCTET _buffer[BUFSIZE], *buffer;
    513   size_t put_buffer;  int put_bits;
    514   int code_0xf0 = actbl->ehufco[0xf0], size_0xf0 = actbl->ehufsi[0xf0];
    515   size_t bytes, bytestocopy;  int localbuf = 0;
    516 
    517   put_buffer = state->cur.put_buffer;
    518   put_bits = state->cur.put_bits;
    519   LOAD_BUFFER()
    520 
    521   /* Encode the DC coefficient difference per section F.1.2.1 */
    522 
    523   temp = temp2 = block[0] - last_dc_val;
    524 
    525  /* This is a well-known technique for obtaining the absolute value without a
    526   * branch.  It is derived from an assembly language technique presented in
    527   * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by
    528   * Agner Fog.
    529   */
    530   temp3 = temp >> (CHAR_BIT * sizeof(int) - 1);
    531   temp ^= temp3;
    532   temp -= temp3;
    533 
    534   /* For a negative input, want temp2 = bitwise complement of abs(input) */
    535   /* This code assumes we are on a two's complement machine */
    536   temp2 += temp3;
    537 
    538   /* Find the number of bits needed for the magnitude of the coefficient */
    539   nbits = JPEG_NBITS(temp);
    540 
    541   /* Emit the Huffman-coded symbol for the number of bits */
    542   code = dctbl->ehufco[nbits];
    543   size = dctbl->ehufsi[nbits];
    544   EMIT_BITS(code, size)
    545 
    546   /* Mask off any extra bits in code */
    547   temp2 &= (((JLONG) 1)<<nbits) - 1;
    548 
    549   /* Emit that number of bits of the value, if positive, */
    550   /* or the complement of its magnitude, if negative. */
    551   EMIT_BITS(temp2, nbits)
    552 
    553   /* Encode the AC coefficients per section F.1.2.2 */
    554 
    555   r = 0;                        /* r = run length of zeros */
    556 
    557 /* Manually unroll the k loop to eliminate the counter variable.  This
    558  * improves performance greatly on systems with a limited number of
    559  * registers (such as x86.)
    560  */
    561 #define kloop(jpeg_natural_order_of_k) {  \
    562   if ((temp = block[jpeg_natural_order_of_k]) == 0) { \
    563     r++; \
    564   } else { \
    565     temp2 = temp; \
    566     /* Branch-less absolute value, bitwise complement, etc., same as above */ \
    567     temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); \
    568     temp ^= temp3; \
    569     temp -= temp3; \
    570     temp2 += temp3; \
    571     nbits = JPEG_NBITS_NONZERO(temp); \
    572     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \
    573     while (r > 15) { \
    574       EMIT_BITS(code_0xf0, size_0xf0) \
    575       r -= 16; \
    576     } \
    577     /* Emit Huffman symbol for run length / number of bits */ \
    578     temp3 = (r << 4) + nbits;  \
    579     code = actbl->ehufco[temp3]; \
    580     size = actbl->ehufsi[temp3]; \
    581     EMIT_CODE(code, size) \
    582     r = 0;  \
    583   } \
    584 }
    585 
    586   /* One iteration for each value in jpeg_natural_order[] */
    587   kloop(1);   kloop(8);   kloop(16);  kloop(9);   kloop(2);   kloop(3);
    588   kloop(10);  kloop(17);  kloop(24);  kloop(32);  kloop(25);  kloop(18);
    589   kloop(11);  kloop(4);   kloop(5);   kloop(12);  kloop(19);  kloop(26);
    590   kloop(33);  kloop(40);  kloop(48);  kloop(41);  kloop(34);  kloop(27);
    591   kloop(20);  kloop(13);  kloop(6);   kloop(7);   kloop(14);  kloop(21);
    592   kloop(28);  kloop(35);  kloop(42);  kloop(49);  kloop(56);  kloop(57);
    593   kloop(50);  kloop(43);  kloop(36);  kloop(29);  kloop(22);  kloop(15);
    594   kloop(23);  kloop(30);  kloop(37);  kloop(44);  kloop(51);  kloop(58);
    595   kloop(59);  kloop(52);  kloop(45);  kloop(38);  kloop(31);  kloop(39);
    596   kloop(46);  kloop(53);  kloop(60);  kloop(61);  kloop(54);  kloop(47);
    597   kloop(55);  kloop(62);  kloop(63);
    598 
    599   /* If the last coef(s) were zero, emit an end-of-block code */
    600   if (r > 0) {
    601     code = actbl->ehufco[0];
    602     size = actbl->ehufsi[0];
    603     EMIT_BITS(code, size)
    604   }
    605 
    606   state->cur.put_buffer = put_buffer;
    607   state->cur.put_bits = put_bits;
    608   STORE_BUFFER()
    609 
    610   return TRUE;
    611 }
    612 
    613 
    614 /*
    615  * Emit a restart marker & resynchronize predictions.
    616  */
    617 
    618 LOCAL(boolean)
    619 emit_restart (working_state *state, int restart_num)
    620 {
    621   int ci;
    622 
    623   if (! flush_bits(state))
    624     return FALSE;
    625 
    626   emit_byte(state, 0xFF, return FALSE);
    627   emit_byte(state, JPEG_RST0 + restart_num, return FALSE);
    628 
    629   /* Re-initialize DC predictions to 0 */
    630   for (ci = 0; ci < state->cinfo->comps_in_scan; ci++)
    631     state->cur.last_dc_val[ci] = 0;
    632 
    633   /* The restart counter is not updated until we successfully write the MCU. */
    634 
    635   return TRUE;
    636 }
    637 
    638 
    639 /*
    640  * Encode and output one MCU's worth of Huffman-compressed coefficients.
    641  */
    642 
    643 METHODDEF(boolean)
    644 encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    645 {
    646   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    647   working_state state;
    648   int blkn, ci;
    649   jpeg_component_info *compptr;
    650 
    651   /* Load up working state */
    652   state.next_output_byte = cinfo->dest->next_output_byte;
    653   state.free_in_buffer = cinfo->dest->free_in_buffer;
    654   ASSIGN_STATE(state.cur, entropy->saved);
    655   state.cinfo = cinfo;
    656 
    657   /* Emit restart marker if needed */
    658   if (cinfo->restart_interval) {
    659     if (entropy->restarts_to_go == 0)
    660       if (! emit_restart(&state, entropy->next_restart_num))
    661         return FALSE;
    662   }
    663 
    664   /* Encode the MCU data blocks */
    665   if (entropy->simd) {
    666     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    667       ci = cinfo->MCU_membership[blkn];
    668       compptr = cinfo->cur_comp_info[ci];
    669       if (! encode_one_block_simd(&state,
    670                                   MCU_data[blkn][0], state.cur.last_dc_val[ci],
    671                                   entropy->dc_derived_tbls[compptr->dc_tbl_no],
    672                                   entropy->ac_derived_tbls[compptr->ac_tbl_no]))
    673         return FALSE;
    674       /* Update last_dc_val */
    675       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
    676     }
    677   } else {
    678     for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    679       ci = cinfo->MCU_membership[blkn];
    680       compptr = cinfo->cur_comp_info[ci];
    681       if (! encode_one_block(&state,
    682                              MCU_data[blkn][0], state.cur.last_dc_val[ci],
    683                              entropy->dc_derived_tbls[compptr->dc_tbl_no],
    684                              entropy->ac_derived_tbls[compptr->ac_tbl_no]))
    685         return FALSE;
    686       /* Update last_dc_val */
    687       state.cur.last_dc_val[ci] = MCU_data[blkn][0][0];
    688     }
    689   }
    690 
    691   /* Completed MCU, so update state */
    692   cinfo->dest->next_output_byte = state.next_output_byte;
    693   cinfo->dest->free_in_buffer = state.free_in_buffer;
    694   ASSIGN_STATE(entropy->saved, state.cur);
    695 
    696   /* Update restart-interval state too */
    697   if (cinfo->restart_interval) {
    698     if (entropy->restarts_to_go == 0) {
    699       entropy->restarts_to_go = cinfo->restart_interval;
    700       entropy->next_restart_num++;
    701       entropy->next_restart_num &= 7;
    702     }
    703     entropy->restarts_to_go--;
    704   }
    705 
    706   return TRUE;
    707 }
    708 
    709 
    710 /*
    711  * Finish up at the end of a Huffman-compressed scan.
    712  */
    713 
    714 METHODDEF(void)
    715 finish_pass_huff (j_compress_ptr cinfo)
    716 {
    717   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    718   working_state state;
    719 
    720   /* Load up working state ... flush_bits needs it */
    721   state.next_output_byte = cinfo->dest->next_output_byte;
    722   state.free_in_buffer = cinfo->dest->free_in_buffer;
    723   ASSIGN_STATE(state.cur, entropy->saved);
    724   state.cinfo = cinfo;
    725 
    726   /* Flush out the last data */
    727   if (! flush_bits(&state))
    728     ERREXIT(cinfo, JERR_CANT_SUSPEND);
    729 
    730   /* Update state */
    731   cinfo->dest->next_output_byte = state.next_output_byte;
    732   cinfo->dest->free_in_buffer = state.free_in_buffer;
    733   ASSIGN_STATE(entropy->saved, state.cur);
    734 }
    735 
    736 
    737 /*
    738  * Huffman coding optimization.
    739  *
    740  * We first scan the supplied data and count the number of uses of each symbol
    741  * that is to be Huffman-coded. (This process MUST agree with the code above.)
    742  * Then we build a Huffman coding tree for the observed counts.
    743  * Symbols which are not needed at all for the particular image are not
    744  * assigned any code, which saves space in the DHT marker as well as in
    745  * the compressed data.
    746  */
    747 
    748 #ifdef ENTROPY_OPT_SUPPORTED
    749 
    750 
    751 /* Process a single block's worth of coefficients */
    752 
    753 LOCAL(void)
    754 htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val,
    755                  long dc_counts[], long ac_counts[])
    756 {
    757   register int temp;
    758   register int nbits;
    759   register int k, r;
    760 
    761   /* Encode the DC coefficient difference per section F.1.2.1 */
    762 
    763   temp = block[0] - last_dc_val;
    764   if (temp < 0)
    765     temp = -temp;
    766 
    767   /* Find the number of bits needed for the magnitude of the coefficient */
    768   nbits = 0;
    769   while (temp) {
    770     nbits++;
    771     temp >>= 1;
    772   }
    773   /* Check for out-of-range coefficient values.
    774    * Since we're encoding a difference, the range limit is twice as much.
    775    */
    776   if (nbits > MAX_COEF_BITS+1)
    777     ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    778 
    779   /* Count the Huffman symbol for the number of bits */
    780   dc_counts[nbits]++;
    781 
    782   /* Encode the AC coefficients per section F.1.2.2 */
    783 
    784   r = 0;                        /* r = run length of zeros */
    785 
    786   for (k = 1; k < DCTSIZE2; k++) {
    787     if ((temp = block[jpeg_natural_order[k]]) == 0) {
    788       r++;
    789     } else {
    790       /* if run length > 15, must emit special run-length-16 codes (0xF0) */
    791       while (r > 15) {
    792         ac_counts[0xF0]++;
    793         r -= 16;
    794       }
    795 
    796       /* Find the number of bits needed for the magnitude of the coefficient */
    797       if (temp < 0)
    798         temp = -temp;
    799 
    800       /* Find the number of bits needed for the magnitude of the coefficient */
    801       nbits = 1;                /* there must be at least one 1 bit */
    802       while ((temp >>= 1))
    803         nbits++;
    804       /* Check for out-of-range coefficient values */
    805       if (nbits > MAX_COEF_BITS)
    806         ERREXIT(cinfo, JERR_BAD_DCT_COEF);
    807 
    808       /* Count Huffman symbol for run length / number of bits */
    809       ac_counts[(r << 4) + nbits]++;
    810 
    811       r = 0;
    812     }
    813   }
    814 
    815   /* If the last coef(s) were zero, emit an end-of-block code */
    816   if (r > 0)
    817     ac_counts[0]++;
    818 }
    819 
    820 
    821 /*
    822  * Trial-encode one MCU's worth of Huffman-compressed coefficients.
    823  * No data is actually output, so no suspension return is possible.
    824  */
    825 
    826 METHODDEF(boolean)
    827 encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
    828 {
    829   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
    830   int blkn, ci;
    831   jpeg_component_info *compptr;
    832 
    833   /* Take care of restart intervals if needed */
    834   if (cinfo->restart_interval) {
    835     if (entropy->restarts_to_go == 0) {
    836       /* Re-initialize DC predictions to 0 */
    837       for (ci = 0; ci < cinfo->comps_in_scan; ci++)
    838         entropy->saved.last_dc_val[ci] = 0;
    839       /* Update restart state */
    840       entropy->restarts_to_go = cinfo->restart_interval;
    841     }
    842     entropy->restarts_to_go--;
    843   }
    844 
    845   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
    846     ci = cinfo->MCU_membership[blkn];
    847     compptr = cinfo->cur_comp_info[ci];
    848     htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci],
    849                     entropy->dc_count_ptrs[compptr->dc_tbl_no],
    850                     entropy->ac_count_ptrs[compptr->ac_tbl_no]);
    851     entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0];
    852   }
    853 
    854   return TRUE;
    855 }
    856 
    857 
    858 /*
    859  * Generate the best Huffman code table for the given counts, fill htbl.
    860  * Note this is also used by jcphuff.c.
    861  *
    862  * The JPEG standard requires that no symbol be assigned a codeword of all
    863  * one bits (so that padding bits added at the end of a compressed segment
    864  * can't look like a valid code).  Because of the canonical ordering of
    865  * codewords, this just means that there must be an unused slot in the
    866  * longest codeword length category.  Section K.2 of the JPEG spec suggests
    867  * reserving such a slot by pretending that symbol 256 is a valid symbol
    868  * with count 1.  In theory that's not optimal; giving it count zero but
    869  * including it in the symbol set anyway should give a better Huffman code.
    870  * But the theoretically better code actually seems to come out worse in
    871  * practice, because it produces more all-ones bytes (which incur stuffed
    872  * zero bytes in the final file).  In any case the difference is tiny.
    873  *
    874  * The JPEG standard requires Huffman codes to be no more than 16 bits long.
    875  * If some symbols have a very small but nonzero probability, the Huffman tree
    876  * must be adjusted to meet the code length restriction.  We currently use
    877  * the adjustment method suggested in JPEG section K.2.  This method is *not*
    878  * optimal; it may not choose the best possible limited-length code.  But
    879  * typically only very-low-frequency symbols will be given less-than-optimal
    880  * lengths, so the code is almost optimal.  Experimental comparisons against
    881  * an optimal limited-length-code algorithm indicate that the difference is
    882  * microscopic --- usually less than a hundredth of a percent of total size.
    883  * So the extra complexity of an optimal algorithm doesn't seem worthwhile.
    884  */
    885 
    886 GLOBAL(void)
    887 jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[])
    888 {
    889 #define MAX_CLEN 32             /* assumed maximum initial code length */
    890   UINT8 bits[MAX_CLEN+1];       /* bits[k] = # of symbols with code length k */
    891   int codesize[257];            /* codesize[k] = code length of symbol k */
    892   int others[257];              /* next symbol in current branch of tree */
    893   int c1, c2;
    894   int p, i, j;
    895   long v;
    896 
    897   /* This algorithm is explained in section K.2 of the JPEG standard */
    898 
    899   MEMZERO(bits, sizeof(bits));
    900   MEMZERO(codesize, sizeof(codesize));
    901   for (i = 0; i < 257; i++)
    902     others[i] = -1;             /* init links to empty */
    903 
    904   freq[256] = 1;                /* make sure 256 has a nonzero count */
    905   /* Including the pseudo-symbol 256 in the Huffman procedure guarantees
    906    * that no real symbol is given code-value of all ones, because 256
    907    * will be placed last in the largest codeword category.
    908    */
    909 
    910   /* Huffman's basic algorithm to assign optimal code lengths to symbols */
    911 
    912   for (;;) {
    913     /* Find the smallest nonzero frequency, set c1 = its symbol */
    914     /* In case of ties, take the larger symbol number */
    915     c1 = -1;
    916     v = 1000000000L;
    917     for (i = 0; i <= 256; i++) {
    918       if (freq[i] && freq[i] <= v) {
    919         v = freq[i];
    920         c1 = i;
    921       }
    922     }
    923 
    924     /* Find the next smallest nonzero frequency, set c2 = its symbol */
    925     /* In case of ties, take the larger symbol number */
    926     c2 = -1;
    927     v = 1000000000L;
    928     for (i = 0; i <= 256; i++) {
    929       if (freq[i] && freq[i] <= v && i != c1) {
    930         v = freq[i];
    931         c2 = i;
    932       }
    933     }
    934 
    935     /* Done if we've merged everything into one frequency */
    936     if (c2 < 0)
    937       break;
    938 
    939     /* Else merge the two counts/trees */
    940     freq[c1] += freq[c2];
    941     freq[c2] = 0;
    942 
    943     /* Increment the codesize of everything in c1's tree branch */
    944     codesize[c1]++;
    945     while (others[c1] >= 0) {
    946       c1 = others[c1];
    947       codesize[c1]++;
    948     }
    949 
    950     others[c1] = c2;            /* chain c2 onto c1's tree branch */
    951 
    952     /* Increment the codesize of everything in c2's tree branch */
    953     codesize[c2]++;
    954     while (others[c2] >= 0) {
    955       c2 = others[c2];
    956       codesize[c2]++;
    957     }
    958   }
    959 
    960   /* Now count the number of symbols of each code length */
    961   for (i = 0; i <= 256; i++) {
    962     if (codesize[i]) {
    963       /* The JPEG standard seems to think that this can't happen, */
    964       /* but I'm paranoid... */
    965       if (codesize[i] > MAX_CLEN)
    966         ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW);
    967 
    968       bits[codesize[i]]++;
    969     }
    970   }
    971 
    972   /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure
    973    * Huffman procedure assigned any such lengths, we must adjust the coding.
    974    * Here is what the JPEG spec says about how this next bit works:
    975    * Since symbols are paired for the longest Huffman code, the symbols are
    976    * removed from this length category two at a time.  The prefix for the pair
    977    * (which is one bit shorter) is allocated to one of the pair; then,
    978    * skipping the BITS entry for that prefix length, a code word from the next
    979    * shortest nonzero BITS entry is converted into a prefix for two code words
    980    * one bit longer.
    981    */
    982 
    983   for (i = MAX_CLEN; i > 16; i--) {
    984     while (bits[i] > 0) {
    985       j = i - 2;                /* find length of new prefix to be used */
    986       while (bits[j] == 0)
    987         j--;
    988 
    989       bits[i] -= 2;             /* remove two symbols */
    990       bits[i-1]++;              /* one goes in this length */
    991       bits[j+1] += 2;           /* two new symbols in this length */
    992       bits[j]--;                /* symbol of this length is now a prefix */
    993     }
    994   }
    995 
    996   /* Remove the count for the pseudo-symbol 256 from the largest codelength */
    997   while (bits[i] == 0)          /* find largest codelength still in use */
    998     i--;
    999   bits[i]--;
   1000 
   1001   /* Return final symbol counts (only for lengths 0..16) */
   1002   MEMCOPY(htbl->bits, bits, sizeof(htbl->bits));
   1003 
   1004   /* Return a list of the symbols sorted by code length */
   1005   /* It's not real clear to me why we don't need to consider the codelength
   1006    * changes made above, but the JPEG spec seems to think this works.
   1007    */
   1008   p = 0;
   1009   for (i = 1; i <= MAX_CLEN; i++) {
   1010     for (j = 0; j <= 255; j++) {
   1011       if (codesize[j] == i) {
   1012         htbl->huffval[p] = (UINT8) j;
   1013         p++;
   1014       }
   1015     }
   1016   }
   1017 
   1018   /* Set sent_table FALSE so updated table will be written to JPEG file. */
   1019   htbl->sent_table = FALSE;
   1020 }
   1021 
   1022 
   1023 /*
   1024  * Finish up a statistics-gathering pass and create the new Huffman tables.
   1025  */
   1026 
   1027 METHODDEF(void)
   1028 finish_pass_gather (j_compress_ptr cinfo)
   1029 {
   1030   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   1031   int ci, dctbl, actbl;
   1032   jpeg_component_info *compptr;
   1033   JHUFF_TBL **htblptr;
   1034   boolean did_dc[NUM_HUFF_TBLS];
   1035   boolean did_ac[NUM_HUFF_TBLS];
   1036 
   1037   /* It's important not to apply jpeg_gen_optimal_table more than once
   1038    * per table, because it clobbers the input frequency counts!
   1039    */
   1040   MEMZERO(did_dc, sizeof(did_dc));
   1041   MEMZERO(did_ac, sizeof(did_ac));
   1042 
   1043   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
   1044     compptr = cinfo->cur_comp_info[ci];
   1045     dctbl = compptr->dc_tbl_no;
   1046     actbl = compptr->ac_tbl_no;
   1047     if (! did_dc[dctbl]) {
   1048       htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl];
   1049       if (*htblptr == NULL)
   1050         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   1051       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]);
   1052       did_dc[dctbl] = TRUE;
   1053     }
   1054     if (! did_ac[actbl]) {
   1055       htblptr = & cinfo->ac_huff_tbl_ptrs[actbl];
   1056       if (*htblptr == NULL)
   1057         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
   1058       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]);
   1059       did_ac[actbl] = TRUE;
   1060     }
   1061   }
   1062 }
   1063 
   1064 
   1065 #endif /* ENTROPY_OPT_SUPPORTED */
   1066 
   1067 
   1068 /*
   1069  * Module initialization routine for Huffman entropy encoding.
   1070  */
   1071 
   1072 GLOBAL(void)
   1073 jinit_huff_encoder (j_compress_ptr cinfo)
   1074 {
   1075   huff_entropy_ptr entropy;
   1076   int i;
   1077 
   1078   entropy = (huff_entropy_ptr)
   1079     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
   1080                                 sizeof(huff_entropy_encoder));
   1081   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy;
   1082   entropy->pub.start_pass = start_pass_huff;
   1083 
   1084   /* Mark tables unallocated */
   1085   for (i = 0; i < NUM_HUFF_TBLS; i++) {
   1086     entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
   1087 #ifdef ENTROPY_OPT_SUPPORTED
   1088     entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL;
   1089 #endif
   1090   }
   1091 }
   1092