Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jcsample.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1996, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright 2009 Pierre Ossman <ossman (at) cendio.se> for Cendio AB
      8  * Copyright (C) 2014, MIPS Technologies, Inc., California.
      9  * Copyright (C) 2015, D. R. Commander.
     10  * For conditions of distribution and use, see the accompanying README.ijg
     11  * file.
     12  *
     13  * This file contains downsampling routines.
     14  *
     15  * Downsampling input data is counted in "row groups".  A row group
     16  * is defined to be max_v_samp_factor pixel rows of each component,
     17  * from which the downsampler produces v_samp_factor sample rows.
     18  * A single row group is processed in each call to the downsampler module.
     19  *
     20  * The downsampler is responsible for edge-expansion of its output data
     21  * to fill an integral number of DCT blocks horizontally.  The source buffer
     22  * may be modified if it is helpful for this purpose (the source buffer is
     23  * allocated wide enough to correspond to the desired output width).
     24  * The caller (the prep controller) is responsible for vertical padding.
     25  *
     26  * The downsampler may request "context rows" by setting need_context_rows
     27  * during startup.  In this case, the input arrays will contain at least
     28  * one row group's worth of pixels above and below the passed-in data;
     29  * the caller will create dummy rows at image top and bottom by replicating
     30  * the first or last real pixel row.
     31  *
     32  * An excellent reference for image resampling is
     33  *   Digital Image Warping, George Wolberg, 1990.
     34  *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
     35  *
     36  * The downsampling algorithm used here is a simple average of the source
     37  * pixels covered by the output pixel.  The hi-falutin sampling literature
     38  * refers to this as a "box filter".  In general the characteristics of a box
     39  * filter are not very good, but for the specific cases we normally use (1:1
     40  * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
     41  * nearly so bad.  If you intend to use other sampling ratios, you'd be well
     42  * advised to improve this code.
     43  *
     44  * A simple input-smoothing capability is provided.  This is mainly intended
     45  * for cleaning up color-dithered GIF input files (if you find it inadequate,
     46  * we suggest using an external filtering program such as pnmconvol).  When
     47  * enabled, each input pixel P is replaced by a weighted sum of itself and its
     48  * eight neighbors.  P's weight is 1-8*SF and each neighbor's weight is SF,
     49  * where SF = (smoothing_factor / 1024).
     50  * Currently, smoothing is only supported for 2h2v sampling factors.
     51  */
     52 
     53 #define JPEG_INTERNALS
     54 #include "jinclude.h"
     55 #include "jpeglib.h"
     56 #include "jsimd.h"
     57 
     58 
     59 /* Pointer to routine to downsample a single component */
     60 typedef void (*downsample1_ptr) (j_compress_ptr cinfo,
     61                                  jpeg_component_info *compptr,
     62                                  JSAMPARRAY input_data,
     63                                  JSAMPARRAY output_data);
     64 
     65 /* Private subobject */
     66 
     67 typedef struct {
     68   struct jpeg_downsampler pub;  /* public fields */
     69 
     70   /* Downsampling method pointers, one per component */
     71   downsample1_ptr methods[MAX_COMPONENTS];
     72 } my_downsampler;
     73 
     74 typedef my_downsampler *my_downsample_ptr;
     75 
     76 
     77 /*
     78  * Initialize for a downsampling pass.
     79  */
     80 
     81 METHODDEF(void)
     82 start_pass_downsample (j_compress_ptr cinfo)
     83 {
     84   /* no work for now */
     85 }
     86 
     87 
     88 /*
     89  * Expand a component horizontally from width input_cols to width output_cols,
     90  * by duplicating the rightmost samples.
     91  */
     92 
     93 LOCAL(void)
     94 expand_right_edge (JSAMPARRAY image_data, int num_rows,
     95                    JDIMENSION input_cols, JDIMENSION output_cols)
     96 {
     97   register JSAMPROW ptr;
     98   register JSAMPLE pixval;
     99   register int count;
    100   int row;
    101   int numcols = (int) (output_cols - input_cols);
    102 
    103   if (numcols > 0) {
    104     for (row = 0; row < num_rows; row++) {
    105       ptr = image_data[row] + input_cols;
    106       pixval = ptr[-1];         /* don't need GETJSAMPLE() here */
    107       for (count = numcols; count > 0; count--)
    108         *ptr++ = pixval;
    109     }
    110   }
    111 }
    112 
    113 
    114 /*
    115  * Do downsampling for a whole row group (all components).
    116  *
    117  * In this version we simply downsample each component independently.
    118  */
    119 
    120 METHODDEF(void)
    121 sep_downsample (j_compress_ptr cinfo,
    122                 JSAMPIMAGE input_buf, JDIMENSION in_row_index,
    123                 JSAMPIMAGE output_buf, JDIMENSION out_row_group_index)
    124 {
    125   my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample;
    126   int ci;
    127   jpeg_component_info *compptr;
    128   JSAMPARRAY in_ptr, out_ptr;
    129 
    130   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    131        ci++, compptr++) {
    132     in_ptr = input_buf[ci] + in_row_index;
    133     out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor);
    134     (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr);
    135   }
    136 }
    137 
    138 
    139 /*
    140  * Downsample pixel values of a single component.
    141  * One row group is processed per call.
    142  * This version handles arbitrary integral sampling ratios, without smoothing.
    143  * Note that this version is not actually used for customary sampling ratios.
    144  */
    145 
    146 METHODDEF(void)
    147 int_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    148                 JSAMPARRAY input_data, JSAMPARRAY output_data)
    149 {
    150   int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v;
    151   JDIMENSION outcol, outcol_h;  /* outcol_h == outcol*h_expand */
    152   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    153   JSAMPROW inptr, outptr;
    154   JLONG outvalue;
    155 
    156   h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor;
    157   v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor;
    158   numpix = h_expand * v_expand;
    159   numpix2 = numpix/2;
    160 
    161   /* Expand input data enough to let all the output samples be generated
    162    * by the standard loop.  Special-casing padded output would be more
    163    * efficient.
    164    */
    165   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    166                     cinfo->image_width, output_cols * h_expand);
    167 
    168   inrow = 0;
    169   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    170     outptr = output_data[outrow];
    171     for (outcol = 0, outcol_h = 0; outcol < output_cols;
    172          outcol++, outcol_h += h_expand) {
    173       outvalue = 0;
    174       for (v = 0; v < v_expand; v++) {
    175         inptr = input_data[inrow+v] + outcol_h;
    176         for (h = 0; h < h_expand; h++) {
    177           outvalue += (JLONG) GETJSAMPLE(*inptr++);
    178         }
    179       }
    180       *outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix);
    181     }
    182     inrow += v_expand;
    183   }
    184 }
    185 
    186 
    187 /*
    188  * Downsample pixel values of a single component.
    189  * This version handles the special case of a full-size component,
    190  * without smoothing.
    191  */
    192 
    193 METHODDEF(void)
    194 fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    195                      JSAMPARRAY input_data, JSAMPARRAY output_data)
    196 {
    197   /* Copy the data */
    198   jcopy_sample_rows(input_data, 0, output_data, 0,
    199                     cinfo->max_v_samp_factor, cinfo->image_width);
    200   /* Edge-expand */
    201   expand_right_edge(output_data, cinfo->max_v_samp_factor,
    202                     cinfo->image_width, compptr->width_in_blocks * DCTSIZE);
    203 }
    204 
    205 
    206 /*
    207  * Downsample pixel values of a single component.
    208  * This version handles the common case of 2:1 horizontal and 1:1 vertical,
    209  * without smoothing.
    210  *
    211  * A note about the "bias" calculations: when rounding fractional values to
    212  * integer, we do not want to always round 0.5 up to the next integer.
    213  * If we did that, we'd introduce a noticeable bias towards larger values.
    214  * Instead, this code is arranged so that 0.5 will be rounded up or down at
    215  * alternate pixel locations (a simple ordered dither pattern).
    216  */
    217 
    218 METHODDEF(void)
    219 h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    220                  JSAMPARRAY input_data, JSAMPARRAY output_data)
    221 {
    222   int outrow;
    223   JDIMENSION outcol;
    224   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    225   register JSAMPROW inptr, outptr;
    226   register int bias;
    227 
    228   /* Expand input data enough to let all the output samples be generated
    229    * by the standard loop.  Special-casing padded output would be more
    230    * efficient.
    231    */
    232   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    233                     cinfo->image_width, output_cols * 2);
    234 
    235   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    236     outptr = output_data[outrow];
    237     inptr = input_data[outrow];
    238     bias = 0;                   /* bias = 0,1,0,1,... for successive samples */
    239     for (outcol = 0; outcol < output_cols; outcol++) {
    240       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1])
    241                               + bias) >> 1);
    242       bias ^= 1;                /* 0=>1, 1=>0 */
    243       inptr += 2;
    244     }
    245   }
    246 }
    247 
    248 
    249 /*
    250  * Downsample pixel values of a single component.
    251  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    252  * without smoothing.
    253  */
    254 
    255 METHODDEF(void)
    256 h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    257                  JSAMPARRAY input_data, JSAMPARRAY output_data)
    258 {
    259   int inrow, outrow;
    260   JDIMENSION outcol;
    261   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    262   register JSAMPROW inptr0, inptr1, outptr;
    263   register int bias;
    264 
    265   /* Expand input data enough to let all the output samples be generated
    266    * by the standard loop.  Special-casing padded output would be more
    267    * efficient.
    268    */
    269   expand_right_edge(input_data, cinfo->max_v_samp_factor,
    270                     cinfo->image_width, output_cols * 2);
    271 
    272   inrow = 0;
    273   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    274     outptr = output_data[outrow];
    275     inptr0 = input_data[inrow];
    276     inptr1 = input_data[inrow+1];
    277     bias = 1;                   /* bias = 1,2,1,2,... for successive samples */
    278     for (outcol = 0; outcol < output_cols; outcol++) {
    279       *outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    280                               GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1])
    281                               + bias) >> 2);
    282       bias ^= 3;                /* 1=>2, 2=>1 */
    283       inptr0 += 2; inptr1 += 2;
    284     }
    285     inrow += 2;
    286   }
    287 }
    288 
    289 
    290 #ifdef INPUT_SMOOTHING_SUPPORTED
    291 
    292 /*
    293  * Downsample pixel values of a single component.
    294  * This version handles the standard case of 2:1 horizontal and 2:1 vertical,
    295  * with smoothing.  One row of context is required.
    296  */
    297 
    298 METHODDEF(void)
    299 h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    300                         JSAMPARRAY input_data, JSAMPARRAY output_data)
    301 {
    302   int inrow, outrow;
    303   JDIMENSION colctr;
    304   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    305   register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr;
    306   JLONG membersum, neighsum, memberscale, neighscale;
    307 
    308   /* Expand input data enough to let all the output samples be generated
    309    * by the standard loop.  Special-casing padded output would be more
    310    * efficient.
    311    */
    312   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    313                     cinfo->image_width, output_cols * 2);
    314 
    315   /* We don't bother to form the individual "smoothed" input pixel values;
    316    * we can directly compute the output which is the average of the four
    317    * smoothed values.  Each of the four member pixels contributes a fraction
    318    * (1-8*SF) to its own smoothed image and a fraction SF to each of the three
    319    * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
    320    * output.  The four corner-adjacent neighbor pixels contribute a fraction
    321    * SF to just one smoothed pixel, or SF/4 to the final output; while the
    322    * eight edge-adjacent neighbors contribute SF to each of two smoothed
    323    * pixels, or SF/2 overall.  In order to use integer arithmetic, these
    324    * factors are scaled by 2^16 = 65536.
    325    * Also recall that SF = smoothing_factor / 1024.
    326    */
    327 
    328   memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */
    329   neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */
    330 
    331   inrow = 0;
    332   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    333     outptr = output_data[outrow];
    334     inptr0 = input_data[inrow];
    335     inptr1 = input_data[inrow+1];
    336     above_ptr = input_data[inrow-1];
    337     below_ptr = input_data[inrow+2];
    338 
    339     /* Special case for first column: pretend column -1 is same as column 0 */
    340     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    341                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    342     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    343                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    344                GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) +
    345                GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]);
    346     neighsum += neighsum;
    347     neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) +
    348                 GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]);
    349     membersum = membersum * memberscale + neighsum * neighscale;
    350     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    351     inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    352 
    353     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    354       /* sum of pixels directly mapped to this output element */
    355       membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    356                   GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    357       /* sum of edge-neighbor pixels */
    358       neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    359                  GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    360                  GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) +
    361                  GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]);
    362       /* The edge-neighbors count twice as much as corner-neighbors */
    363       neighsum += neighsum;
    364       /* Add in the corner-neighbors */
    365       neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) +
    366                   GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]);
    367       /* form final output scaled up by 2^16 */
    368       membersum = membersum * memberscale + neighsum * neighscale;
    369       /* round, descale and output it */
    370       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    371       inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2;
    372     }
    373 
    374     /* Special case for last column */
    375     membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) +
    376                 GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]);
    377     neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) +
    378                GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) +
    379                GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) +
    380                GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]);
    381     neighsum += neighsum;
    382     neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) +
    383                 GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]);
    384     membersum = membersum * memberscale + neighsum * neighscale;
    385     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    386 
    387     inrow += 2;
    388   }
    389 }
    390 
    391 
    392 /*
    393  * Downsample pixel values of a single component.
    394  * This version handles the special case of a full-size component,
    395  * with smoothing.  One row of context is required.
    396  */
    397 
    398 METHODDEF(void)
    399 fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr,
    400                             JSAMPARRAY input_data, JSAMPARRAY output_data)
    401 {
    402   int outrow;
    403   JDIMENSION colctr;
    404   JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE;
    405   register JSAMPROW inptr, above_ptr, below_ptr, outptr;
    406   JLONG membersum, neighsum, memberscale, neighscale;
    407   int colsum, lastcolsum, nextcolsum;
    408 
    409   /* Expand input data enough to let all the output samples be generated
    410    * by the standard loop.  Special-casing padded output would be more
    411    * efficient.
    412    */
    413   expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2,
    414                     cinfo->image_width, output_cols);
    415 
    416   /* Each of the eight neighbor pixels contributes a fraction SF to the
    417    * smoothed pixel, while the main pixel contributes (1-8*SF).  In order
    418    * to use integer arithmetic, these factors are multiplied by 2^16 = 65536.
    419    * Also recall that SF = smoothing_factor / 1024.
    420    */
    421 
    422   memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */
    423   neighscale = cinfo->smoothing_factor * 64; /* scaled SF */
    424 
    425   for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) {
    426     outptr = output_data[outrow];
    427     inptr = input_data[outrow];
    428     above_ptr = input_data[outrow-1];
    429     below_ptr = input_data[outrow+1];
    430 
    431     /* Special case for first column */
    432     colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) +
    433              GETJSAMPLE(*inptr);
    434     membersum = GETJSAMPLE(*inptr++);
    435     nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    436                  GETJSAMPLE(*inptr);
    437     neighsum = colsum + (colsum - membersum) + nextcolsum;
    438     membersum = membersum * memberscale + neighsum * neighscale;
    439     *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    440     lastcolsum = colsum; colsum = nextcolsum;
    441 
    442     for (colctr = output_cols - 2; colctr > 0; colctr--) {
    443       membersum = GETJSAMPLE(*inptr++);
    444       above_ptr++; below_ptr++;
    445       nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) +
    446                    GETJSAMPLE(*inptr);
    447       neighsum = lastcolsum + (colsum - membersum) + nextcolsum;
    448       membersum = membersum * memberscale + neighsum * neighscale;
    449       *outptr++ = (JSAMPLE) ((membersum + 32768) >> 16);
    450       lastcolsum = colsum; colsum = nextcolsum;
    451     }
    452 
    453     /* Special case for last column */
    454     membersum = GETJSAMPLE(*inptr);
    455     neighsum = lastcolsum + (colsum - membersum) + colsum;
    456     membersum = membersum * memberscale + neighsum * neighscale;
    457     *outptr = (JSAMPLE) ((membersum + 32768) >> 16);
    458 
    459   }
    460 }
    461 
    462 #endif /* INPUT_SMOOTHING_SUPPORTED */
    463 
    464 
    465 /*
    466  * Module initialization routine for downsampling.
    467  * Note that we must select a routine for each component.
    468  */
    469 
    470 GLOBAL(void)
    471 jinit_downsampler (j_compress_ptr cinfo)
    472 {
    473   my_downsample_ptr downsample;
    474   int ci;
    475   jpeg_component_info *compptr;
    476   boolean smoothok = TRUE;
    477 
    478   downsample = (my_downsample_ptr)
    479     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    480                                 sizeof(my_downsampler));
    481   cinfo->downsample = (struct jpeg_downsampler *) downsample;
    482   downsample->pub.start_pass = start_pass_downsample;
    483   downsample->pub.downsample = sep_downsample;
    484   downsample->pub.need_context_rows = FALSE;
    485 
    486   if (cinfo->CCIR601_sampling)
    487     ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
    488 
    489   /* Verify we can handle the sampling factors, and set up method pointers */
    490   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    491        ci++, compptr++) {
    492     if (compptr->h_samp_factor == cinfo->max_h_samp_factor &&
    493         compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    494 #ifdef INPUT_SMOOTHING_SUPPORTED
    495       if (cinfo->smoothing_factor) {
    496         downsample->methods[ci] = fullsize_smooth_downsample;
    497         downsample->pub.need_context_rows = TRUE;
    498       } else
    499 #endif
    500         downsample->methods[ci] = fullsize_downsample;
    501     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    502                compptr->v_samp_factor == cinfo->max_v_samp_factor) {
    503       smoothok = FALSE;
    504       if (jsimd_can_h2v1_downsample())
    505         downsample->methods[ci] = jsimd_h2v1_downsample;
    506       else
    507         downsample->methods[ci] = h2v1_downsample;
    508     } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor &&
    509                compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) {
    510 #ifdef INPUT_SMOOTHING_SUPPORTED
    511       if (cinfo->smoothing_factor) {
    512 #if defined(__mips__)
    513         if (jsimd_can_h2v2_smooth_downsample())
    514           downsample->methods[ci] = jsimd_h2v2_smooth_downsample;
    515         else
    516 #endif
    517           downsample->methods[ci] = h2v2_smooth_downsample;
    518         downsample->pub.need_context_rows = TRUE;
    519       } else
    520 #endif
    521       {
    522         if (jsimd_can_h2v2_downsample())
    523           downsample->methods[ci] = jsimd_h2v2_downsample;
    524         else
    525           downsample->methods[ci] = h2v2_downsample;
    526       }
    527     } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 &&
    528                (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) {
    529       smoothok = FALSE;
    530       downsample->methods[ci] = int_downsample;
    531     } else
    532       ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
    533   }
    534 
    535 #ifdef INPUT_SMOOTHING_SUPPORTED
    536   if (cinfo->smoothing_factor && !smoothok)
    537     TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL);
    538 #endif
    539 }
    540