Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jdcoefct.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1994-1997, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright 2009 Pierre Ossman <ossman (at) cendio.se> for Cendio AB
      8  * Copyright (C) 2010, 2015-2016, D. R. Commander.
      9  * Copyright (C) 2015, Google, Inc.
     10  * For conditions of distribution and use, see the accompanying README.ijg
     11  * file.
     12  *
     13  * This file contains the coefficient buffer controller for decompression.
     14  * This controller is the top level of the JPEG decompressor proper.
     15  * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
     16  *
     17  * In buffered-image mode, this controller is the interface between
     18  * input-oriented processing and output-oriented processing.
     19  * Also, the input side (only) is used when reading a file for transcoding.
     20  */
     21 
     22 #include "jinclude.h"
     23 #include "jdcoefct.h"
     24 #include "jpegcomp.h"
     25 
     26 
     27 /* Forward declarations */
     28 METHODDEF(int) decompress_onepass
     29         (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
     30 #ifdef D_MULTISCAN_FILES_SUPPORTED
     31 METHODDEF(int) decompress_data
     32         (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
     33 #endif
     34 #ifdef BLOCK_SMOOTHING_SUPPORTED
     35 LOCAL(boolean) smoothing_ok (j_decompress_ptr cinfo);
     36 METHODDEF(int) decompress_smooth_data
     37         (j_decompress_ptr cinfo, JSAMPIMAGE output_buf);
     38 #endif
     39 
     40 
     41 /*
     42  * Initialize for an input processing pass.
     43  */
     44 
     45 METHODDEF(void)
     46 start_input_pass (j_decompress_ptr cinfo)
     47 {
     48   cinfo->input_iMCU_row = 0;
     49   start_iMCU_row(cinfo);
     50 }
     51 
     52 
     53 /*
     54  * Initialize for an output processing pass.
     55  */
     56 
     57 METHODDEF(void)
     58 start_output_pass (j_decompress_ptr cinfo)
     59 {
     60 #ifdef BLOCK_SMOOTHING_SUPPORTED
     61   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     62 
     63   /* If multipass, check to see whether to use block smoothing on this pass */
     64   if (coef->pub.coef_arrays != NULL) {
     65     if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
     66       coef->pub.decompress_data = decompress_smooth_data;
     67     else
     68       coef->pub.decompress_data = decompress_data;
     69   }
     70 #endif
     71   cinfo->output_iMCU_row = 0;
     72 }
     73 
     74 
     75 /*
     76  * Decompress and return some data in the single-pass case.
     77  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
     78  * Input and output must run in lockstep since we have only a one-MCU buffer.
     79  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
     80  *
     81  * NB: output_buf contains a plane for each component in image,
     82  * which we index according to the component's SOF position.
     83  */
     84 
     85 METHODDEF(int)
     86 decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
     87 {
     88   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
     89   JDIMENSION MCU_col_num;       /* index of current MCU within row */
     90   JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
     91   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
     92   int blkn, ci, xindex, yindex, yoffset, useful_width;
     93   JSAMPARRAY output_ptr;
     94   JDIMENSION start_col, output_col;
     95   jpeg_component_info *compptr;
     96   inverse_DCT_method_ptr inverse_DCT;
     97 
     98   /* Loop to process as much as one whole iMCU row */
     99   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    100        yoffset++) {
    101     for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
    102          MCU_col_num++) {
    103       /* Try to fetch an MCU.  Entropy decoder expects buffer to be zeroed. */
    104       jzero_far((void *) coef->MCU_buffer[0],
    105                 (size_t) (cinfo->blocks_in_MCU * sizeof(JBLOCK)));
    106       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    107         /* Suspension forced; update state counters and exit */
    108         coef->MCU_vert_offset = yoffset;
    109         coef->MCU_ctr = MCU_col_num;
    110         return JPEG_SUSPENDED;
    111       }
    112 
    113       /* Only perform the IDCT on blocks that are contained within the desired
    114        * cropping region.
    115        */
    116       if (MCU_col_num >= cinfo->master->first_iMCU_col &&
    117           MCU_col_num <= cinfo->master->last_iMCU_col) {
    118         /* Determine where data should go in output_buf and do the IDCT thing.
    119          * We skip dummy blocks at the right and bottom edges (but blkn gets
    120          * incremented past them!).  Note the inner loop relies on having
    121          * allocated the MCU_buffer[] blocks sequentially.
    122          */
    123         blkn = 0;                 /* index of current DCT block within MCU */
    124         for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    125           compptr = cinfo->cur_comp_info[ci];
    126           /* Don't bother to IDCT an uninteresting component. */
    127           if (! compptr->component_needed) {
    128             blkn += compptr->MCU_blocks;
    129             continue;
    130           }
    131           inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
    132           useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
    133                                                       : compptr->last_col_width;
    134           output_ptr = output_buf[compptr->component_index] +
    135             yoffset * compptr->_DCT_scaled_size;
    136           start_col = (MCU_col_num - cinfo->master->first_iMCU_col) *
    137               compptr->MCU_sample_width;
    138           for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    139             if (cinfo->input_iMCU_row < last_iMCU_row ||
    140                 yoffset+yindex < compptr->last_row_height) {
    141               output_col = start_col;
    142               for (xindex = 0; xindex < useful_width; xindex++) {
    143                 (*inverse_DCT) (cinfo, compptr,
    144                                 (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
    145                                 output_ptr, output_col);
    146                 output_col += compptr->_DCT_scaled_size;
    147               }
    148             }
    149             blkn += compptr->MCU_width;
    150             output_ptr += compptr->_DCT_scaled_size;
    151           }
    152         }
    153       }
    154     }
    155     /* Completed an MCU row, but perhaps not an iMCU row */
    156     coef->MCU_ctr = 0;
    157   }
    158   /* Completed the iMCU row, advance counters for next one */
    159   cinfo->output_iMCU_row++;
    160   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    161     start_iMCU_row(cinfo);
    162     return JPEG_ROW_COMPLETED;
    163   }
    164   /* Completed the scan */
    165   (*cinfo->inputctl->finish_input_pass) (cinfo);
    166   return JPEG_SCAN_COMPLETED;
    167 }
    168 
    169 
    170 /*
    171  * Dummy consume-input routine for single-pass operation.
    172  */
    173 
    174 METHODDEF(int)
    175 dummy_consume_data (j_decompress_ptr cinfo)
    176 {
    177   return JPEG_SUSPENDED;        /* Always indicate nothing was done */
    178 }
    179 
    180 
    181 #ifdef D_MULTISCAN_FILES_SUPPORTED
    182 
    183 /*
    184  * Consume input data and store it in the full-image coefficient buffer.
    185  * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
    186  * ie, v_samp_factor block rows for each component in the scan.
    187  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    188  */
    189 
    190 METHODDEF(int)
    191 consume_data (j_decompress_ptr cinfo)
    192 {
    193   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    194   JDIMENSION MCU_col_num;       /* index of current MCU within row */
    195   int blkn, ci, xindex, yindex, yoffset;
    196   JDIMENSION start_col;
    197   JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
    198   JBLOCKROW buffer_ptr;
    199   jpeg_component_info *compptr;
    200 
    201   /* Align the virtual buffers for the components used in this scan. */
    202   for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    203     compptr = cinfo->cur_comp_info[ci];
    204     buffer[ci] = (*cinfo->mem->access_virt_barray)
    205       ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
    206        cinfo->input_iMCU_row * compptr->v_samp_factor,
    207        (JDIMENSION) compptr->v_samp_factor, TRUE);
    208     /* Note: entropy decoder expects buffer to be zeroed,
    209      * but this is handled automatically by the memory manager
    210      * because we requested a pre-zeroed array.
    211      */
    212   }
    213 
    214   /* Loop to process one whole iMCU row */
    215   for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
    216        yoffset++) {
    217     for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
    218          MCU_col_num++) {
    219       /* Construct list of pointers to DCT blocks belonging to this MCU */
    220       blkn = 0;                 /* index of current DCT block within MCU */
    221       for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
    222         compptr = cinfo->cur_comp_info[ci];
    223         start_col = MCU_col_num * compptr->MCU_width;
    224         for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
    225           buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
    226           for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
    227             coef->MCU_buffer[blkn++] = buffer_ptr++;
    228           }
    229         }
    230       }
    231       /* Try to fetch the MCU. */
    232       if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
    233         /* Suspension forced; update state counters and exit */
    234         coef->MCU_vert_offset = yoffset;
    235         coef->MCU_ctr = MCU_col_num;
    236         return JPEG_SUSPENDED;
    237       }
    238     }
    239     /* Completed an MCU row, but perhaps not an iMCU row */
    240     coef->MCU_ctr = 0;
    241   }
    242   /* Completed the iMCU row, advance counters for next one */
    243   if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
    244     start_iMCU_row(cinfo);
    245     return JPEG_ROW_COMPLETED;
    246   }
    247   /* Completed the scan */
    248   (*cinfo->inputctl->finish_input_pass) (cinfo);
    249   return JPEG_SCAN_COMPLETED;
    250 }
    251 
    252 
    253 /*
    254  * Decompress and return some data in the multi-pass case.
    255  * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
    256  * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
    257  *
    258  * NB: output_buf contains a plane for each component in image.
    259  */
    260 
    261 METHODDEF(int)
    262 decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    263 {
    264   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    265   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    266   JDIMENSION block_num;
    267   int ci, block_row, block_rows;
    268   JBLOCKARRAY buffer;
    269   JBLOCKROW buffer_ptr;
    270   JSAMPARRAY output_ptr;
    271   JDIMENSION output_col;
    272   jpeg_component_info *compptr;
    273   inverse_DCT_method_ptr inverse_DCT;
    274 
    275   /* Force some input to be done if we are getting ahead of the input. */
    276   while (cinfo->input_scan_number < cinfo->output_scan_number ||
    277          (cinfo->input_scan_number == cinfo->output_scan_number &&
    278           cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
    279     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    280       return JPEG_SUSPENDED;
    281   }
    282 
    283   /* OK, output from the virtual arrays. */
    284   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    285        ci++, compptr++) {
    286     /* Don't bother to IDCT an uninteresting component. */
    287     if (! compptr->component_needed)
    288       continue;
    289     /* Align the virtual buffer for this component. */
    290     buffer = (*cinfo->mem->access_virt_barray)
    291       ((j_common_ptr) cinfo, coef->whole_image[ci],
    292        cinfo->output_iMCU_row * compptr->v_samp_factor,
    293        (JDIMENSION) compptr->v_samp_factor, FALSE);
    294     /* Count non-dummy DCT block rows in this iMCU row. */
    295     if (cinfo->output_iMCU_row < last_iMCU_row)
    296       block_rows = compptr->v_samp_factor;
    297     else {
    298       /* NB: can't use last_row_height here; it is input-side-dependent! */
    299       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    300       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    301     }
    302     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    303     output_ptr = output_buf[ci];
    304     /* Loop over all DCT blocks to be processed. */
    305     for (block_row = 0; block_row < block_rows; block_row++) {
    306       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
    307       output_col = 0;
    308       for (block_num = cinfo->master->first_MCU_col[ci];
    309            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
    310         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
    311                         output_ptr, output_col);
    312         buffer_ptr++;
    313         output_col += compptr->_DCT_scaled_size;
    314       }
    315       output_ptr += compptr->_DCT_scaled_size;
    316     }
    317   }
    318 
    319   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    320     return JPEG_ROW_COMPLETED;
    321   return JPEG_SCAN_COMPLETED;
    322 }
    323 
    324 #endif /* D_MULTISCAN_FILES_SUPPORTED */
    325 
    326 
    327 #ifdef BLOCK_SMOOTHING_SUPPORTED
    328 
    329 /*
    330  * This code applies interblock smoothing as described by section K.8
    331  * of the JPEG standard: the first 5 AC coefficients are estimated from
    332  * the DC values of a DCT block and its 8 neighboring blocks.
    333  * We apply smoothing only for progressive JPEG decoding, and only if
    334  * the coefficients it can estimate are not yet known to full precision.
    335  */
    336 
    337 /* Natural-order array positions of the first 5 zigzag-order coefficients */
    338 #define Q01_POS  1
    339 #define Q10_POS  8
    340 #define Q20_POS  16
    341 #define Q11_POS  9
    342 #define Q02_POS  2
    343 
    344 /*
    345  * Determine whether block smoothing is applicable and safe.
    346  * We also latch the current states of the coef_bits[] entries for the
    347  * AC coefficients; otherwise, if the input side of the decompressor
    348  * advances into a new scan, we might think the coefficients are known
    349  * more accurately than they really are.
    350  */
    351 
    352 LOCAL(boolean)
    353 smoothing_ok (j_decompress_ptr cinfo)
    354 {
    355   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    356   boolean smoothing_useful = FALSE;
    357   int ci, coefi;
    358   jpeg_component_info *compptr;
    359   JQUANT_TBL *qtable;
    360   int *coef_bits;
    361   int *coef_bits_latch;
    362 
    363   if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
    364     return FALSE;
    365 
    366   /* Allocate latch area if not already done */
    367   if (coef->coef_bits_latch == NULL)
    368     coef->coef_bits_latch = (int *)
    369       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    370                                   cinfo->num_components *
    371                                   (SAVED_COEFS * sizeof(int)));
    372   coef_bits_latch = coef->coef_bits_latch;
    373 
    374   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    375        ci++, compptr++) {
    376     /* All components' quantization values must already be latched. */
    377     if ((qtable = compptr->quant_table) == NULL)
    378       return FALSE;
    379     /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
    380     if (qtable->quantval[0] == 0 ||
    381         qtable->quantval[Q01_POS] == 0 ||
    382         qtable->quantval[Q10_POS] == 0 ||
    383         qtable->quantval[Q20_POS] == 0 ||
    384         qtable->quantval[Q11_POS] == 0 ||
    385         qtable->quantval[Q02_POS] == 0)
    386       return FALSE;
    387     /* DC values must be at least partly known for all components. */
    388     coef_bits = cinfo->coef_bits[ci];
    389     if (coef_bits[0] < 0)
    390       return FALSE;
    391     /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
    392     for (coefi = 1; coefi <= 5; coefi++) {
    393       coef_bits_latch[coefi] = coef_bits[coefi];
    394       if (coef_bits[coefi] != 0)
    395         smoothing_useful = TRUE;
    396     }
    397     coef_bits_latch += SAVED_COEFS;
    398   }
    399 
    400   return smoothing_useful;
    401 }
    402 
    403 
    404 /*
    405  * Variant of decompress_data for use when doing block smoothing.
    406  */
    407 
    408 METHODDEF(int)
    409 decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
    410 {
    411   my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
    412   JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
    413   JDIMENSION block_num, last_block_column;
    414   int ci, block_row, block_rows, access_rows;
    415   JBLOCKARRAY buffer;
    416   JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
    417   JSAMPARRAY output_ptr;
    418   JDIMENSION output_col;
    419   jpeg_component_info *compptr;
    420   inverse_DCT_method_ptr inverse_DCT;
    421   boolean first_row, last_row;
    422   JCOEF *workspace;
    423   int *coef_bits;
    424   JQUANT_TBL *quanttbl;
    425   JLONG Q00,Q01,Q02,Q10,Q11,Q20, num;
    426   int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
    427   int Al, pred;
    428 
    429   /* Keep a local variable to avoid looking it up more than once */
    430   workspace = coef->workspace;
    431 
    432   /* Force some input to be done if we are getting ahead of the input. */
    433   while (cinfo->input_scan_number <= cinfo->output_scan_number &&
    434          ! cinfo->inputctl->eoi_reached) {
    435     if (cinfo->input_scan_number == cinfo->output_scan_number) {
    436       /* If input is working on current scan, we ordinarily want it to
    437        * have completed the current row.  But if input scan is DC,
    438        * we want it to keep one row ahead so that next block row's DC
    439        * values are up to date.
    440        */
    441       JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
    442       if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
    443         break;
    444     }
    445     if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
    446       return JPEG_SUSPENDED;
    447   }
    448 
    449   /* OK, output from the virtual arrays. */
    450   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    451        ci++, compptr++) {
    452     /* Don't bother to IDCT an uninteresting component. */
    453     if (! compptr->component_needed)
    454       continue;
    455     /* Count non-dummy DCT block rows in this iMCU row. */
    456     if (cinfo->output_iMCU_row < last_iMCU_row) {
    457       block_rows = compptr->v_samp_factor;
    458       access_rows = block_rows * 2; /* this and next iMCU row */
    459       last_row = FALSE;
    460     } else {
    461       /* NB: can't use last_row_height here; it is input-side-dependent! */
    462       block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
    463       if (block_rows == 0) block_rows = compptr->v_samp_factor;
    464       access_rows = block_rows; /* this iMCU row only */
    465       last_row = TRUE;
    466     }
    467     /* Align the virtual buffer for this component. */
    468     if (cinfo->output_iMCU_row > 0) {
    469       access_rows += compptr->v_samp_factor; /* prior iMCU row too */
    470       buffer = (*cinfo->mem->access_virt_barray)
    471         ((j_common_ptr) cinfo, coef->whole_image[ci],
    472          (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
    473          (JDIMENSION) access_rows, FALSE);
    474       buffer += compptr->v_samp_factor; /* point to current iMCU row */
    475       first_row = FALSE;
    476     } else {
    477       buffer = (*cinfo->mem->access_virt_barray)
    478         ((j_common_ptr) cinfo, coef->whole_image[ci],
    479          (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
    480       first_row = TRUE;
    481     }
    482     /* Fetch component-dependent info */
    483     coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
    484     quanttbl = compptr->quant_table;
    485     Q00 = quanttbl->quantval[0];
    486     Q01 = quanttbl->quantval[Q01_POS];
    487     Q10 = quanttbl->quantval[Q10_POS];
    488     Q20 = quanttbl->quantval[Q20_POS];
    489     Q11 = quanttbl->quantval[Q11_POS];
    490     Q02 = quanttbl->quantval[Q02_POS];
    491     inverse_DCT = cinfo->idct->inverse_DCT[ci];
    492     output_ptr = output_buf[ci];
    493     /* Loop over all DCT blocks to be processed. */
    494     for (block_row = 0; block_row < block_rows; block_row++) {
    495       buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci];
    496       if (first_row && block_row == 0)
    497         prev_block_row = buffer_ptr;
    498       else
    499         prev_block_row = buffer[block_row-1];
    500       if (last_row && block_row == block_rows-1)
    501         next_block_row = buffer_ptr;
    502       else
    503         next_block_row = buffer[block_row+1];
    504       /* We fetch the surrounding DC values using a sliding-register approach.
    505        * Initialize all nine here so as to do the right thing on narrow pics.
    506        */
    507       DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
    508       DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
    509       DC7 = DC8 = DC9 = (int) next_block_row[0][0];
    510       output_col = 0;
    511       last_block_column = compptr->width_in_blocks - 1;
    512       for (block_num = cinfo->master->first_MCU_col[ci];
    513            block_num <= cinfo->master->last_MCU_col[ci]; block_num++) {
    514         /* Fetch current DCT block into workspace so we can modify it. */
    515         jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
    516         /* Update DC values */
    517         if (block_num < last_block_column) {
    518           DC3 = (int) prev_block_row[1][0];
    519           DC6 = (int) buffer_ptr[1][0];
    520           DC9 = (int) next_block_row[1][0];
    521         }
    522         /* Compute coefficient estimates per K.8.
    523          * An estimate is applied only if coefficient is still zero,
    524          * and is not known to be fully accurate.
    525          */
    526         /* AC01 */
    527         if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
    528           num = 36 * Q00 * (DC4 - DC6);
    529           if (num >= 0) {
    530             pred = (int) (((Q01<<7) + num) / (Q01<<8));
    531             if (Al > 0 && pred >= (1<<Al))
    532               pred = (1<<Al)-1;
    533           } else {
    534             pred = (int) (((Q01<<7) - num) / (Q01<<8));
    535             if (Al > 0 && pred >= (1<<Al))
    536               pred = (1<<Al)-1;
    537             pred = -pred;
    538           }
    539           workspace[1] = (JCOEF) pred;
    540         }
    541         /* AC10 */
    542         if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
    543           num = 36 * Q00 * (DC2 - DC8);
    544           if (num >= 0) {
    545             pred = (int) (((Q10<<7) + num) / (Q10<<8));
    546             if (Al > 0 && pred >= (1<<Al))
    547               pred = (1<<Al)-1;
    548           } else {
    549             pred = (int) (((Q10<<7) - num) / (Q10<<8));
    550             if (Al > 0 && pred >= (1<<Al))
    551               pred = (1<<Al)-1;
    552             pred = -pred;
    553           }
    554           workspace[8] = (JCOEF) pred;
    555         }
    556         /* AC20 */
    557         if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
    558           num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
    559           if (num >= 0) {
    560             pred = (int) (((Q20<<7) + num) / (Q20<<8));
    561             if (Al > 0 && pred >= (1<<Al))
    562               pred = (1<<Al)-1;
    563           } else {
    564             pred = (int) (((Q20<<7) - num) / (Q20<<8));
    565             if (Al > 0 && pred >= (1<<Al))
    566               pred = (1<<Al)-1;
    567             pred = -pred;
    568           }
    569           workspace[16] = (JCOEF) pred;
    570         }
    571         /* AC11 */
    572         if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
    573           num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
    574           if (num >= 0) {
    575             pred = (int) (((Q11<<7) + num) / (Q11<<8));
    576             if (Al > 0 && pred >= (1<<Al))
    577               pred = (1<<Al)-1;
    578           } else {
    579             pred = (int) (((Q11<<7) - num) / (Q11<<8));
    580             if (Al > 0 && pred >= (1<<Al))
    581               pred = (1<<Al)-1;
    582             pred = -pred;
    583           }
    584           workspace[9] = (JCOEF) pred;
    585         }
    586         /* AC02 */
    587         if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
    588           num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
    589           if (num >= 0) {
    590             pred = (int) (((Q02<<7) + num) / (Q02<<8));
    591             if (Al > 0 && pred >= (1<<Al))
    592               pred = (1<<Al)-1;
    593           } else {
    594             pred = (int) (((Q02<<7) - num) / (Q02<<8));
    595             if (Al > 0 && pred >= (1<<Al))
    596               pred = (1<<Al)-1;
    597             pred = -pred;
    598           }
    599           workspace[2] = (JCOEF) pred;
    600         }
    601         /* OK, do the IDCT */
    602         (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
    603                         output_ptr, output_col);
    604         /* Advance for next column */
    605         DC1 = DC2; DC2 = DC3;
    606         DC4 = DC5; DC5 = DC6;
    607         DC7 = DC8; DC8 = DC9;
    608         buffer_ptr++, prev_block_row++, next_block_row++;
    609         output_col += compptr->_DCT_scaled_size;
    610       }
    611       output_ptr += compptr->_DCT_scaled_size;
    612     }
    613   }
    614 
    615   if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
    616     return JPEG_ROW_COMPLETED;
    617   return JPEG_SCAN_COMPLETED;
    618 }
    619 
    620 #endif /* BLOCK_SMOOTHING_SUPPORTED */
    621 
    622 
    623 /*
    624  * Initialize coefficient buffer controller.
    625  */
    626 
    627 GLOBAL(void)
    628 jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
    629 {
    630   my_coef_ptr coef;
    631 
    632   coef = (my_coef_ptr)
    633     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    634                                 sizeof(my_coef_controller));
    635   cinfo->coef = (struct jpeg_d_coef_controller *) coef;
    636   coef->pub.start_input_pass = start_input_pass;
    637   coef->pub.start_output_pass = start_output_pass;
    638 #ifdef BLOCK_SMOOTHING_SUPPORTED
    639   coef->coef_bits_latch = NULL;
    640 #endif
    641 
    642   /* Create the coefficient buffer. */
    643   if (need_full_buffer) {
    644 #ifdef D_MULTISCAN_FILES_SUPPORTED
    645     /* Allocate a full-image virtual array for each component, */
    646     /* padded to a multiple of samp_factor DCT blocks in each direction. */
    647     /* Note we ask for a pre-zeroed array. */
    648     int ci, access_rows;
    649     jpeg_component_info *compptr;
    650 
    651     for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    652          ci++, compptr++) {
    653       access_rows = compptr->v_samp_factor;
    654 #ifdef BLOCK_SMOOTHING_SUPPORTED
    655       /* If block smoothing could be used, need a bigger window */
    656       if (cinfo->progressive_mode)
    657         access_rows *= 3;
    658 #endif
    659       coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
    660         ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
    661          (JDIMENSION) jround_up((long) compptr->width_in_blocks,
    662                                 (long) compptr->h_samp_factor),
    663          (JDIMENSION) jround_up((long) compptr->height_in_blocks,
    664                                 (long) compptr->v_samp_factor),
    665          (JDIMENSION) access_rows);
    666     }
    667     coef->pub.consume_data = consume_data;
    668     coef->pub.decompress_data = decompress_data;
    669     coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
    670 #else
    671     ERREXIT(cinfo, JERR_NOT_COMPILED);
    672 #endif
    673   } else {
    674     /* We only need a single-MCU buffer. */
    675     JBLOCKROW buffer;
    676     int i;
    677 
    678     buffer = (JBLOCKROW)
    679       (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    680                                   D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK));
    681     for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
    682       coef->MCU_buffer[i] = buffer + i;
    683     }
    684     coef->pub.consume_data = dummy_consume_data;
    685     coef->pub.decompress_data = decompress_onepass;
    686     coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
    687   }
    688 
    689   /* Allocate the workspace buffer */
    690   coef->workspace = (JCOEF *)
    691     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    692                                 sizeof(JCOEF) * DCTSIZE2);
    693 }
    694