Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jddctmgr.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1994-1996, Thomas G. Lane.
      6  * Modified 2002-2010 by Guido Vollbeding.
      7  * libjpeg-turbo Modifications:
      8  * Copyright 2009 Pierre Ossman <ossman (at) cendio.se> for Cendio AB
      9  * Copyright (C) 2010, 2015, D. R. Commander.
     10  * Copyright (C) 2013, MIPS Technologies, Inc., California.
     11  * For conditions of distribution and use, see the accompanying README.ijg
     12  * file.
     13  *
     14  * This file contains the inverse-DCT management logic.
     15  * This code selects a particular IDCT implementation to be used,
     16  * and it performs related housekeeping chores.  No code in this file
     17  * is executed per IDCT step, only during output pass setup.
     18  *
     19  * Note that the IDCT routines are responsible for performing coefficient
     20  * dequantization as well as the IDCT proper.  This module sets up the
     21  * dequantization multiplier table needed by the IDCT routine.
     22  */
     23 
     24 #define JPEG_INTERNALS
     25 #include "jinclude.h"
     26 #include "jpeglib.h"
     27 #include "jdct.h"               /* Private declarations for DCT subsystem */
     28 #include "jsimddct.h"
     29 #include "jpegcomp.h"
     30 
     31 
     32 /*
     33  * The decompressor input side (jdinput.c) saves away the appropriate
     34  * quantization table for each component at the start of the first scan
     35  * involving that component.  (This is necessary in order to correctly
     36  * decode files that reuse Q-table slots.)
     37  * When we are ready to make an output pass, the saved Q-table is converted
     38  * to a multiplier table that will actually be used by the IDCT routine.
     39  * The multiplier table contents are IDCT-method-dependent.  To support
     40  * application changes in IDCT method between scans, we can remake the
     41  * multiplier tables if necessary.
     42  * In buffered-image mode, the first output pass may occur before any data
     43  * has been seen for some components, and thus before their Q-tables have
     44  * been saved away.  To handle this case, multiplier tables are preset
     45  * to zeroes; the result of the IDCT will be a neutral gray level.
     46  */
     47 
     48 
     49 /* Private subobject for this module */
     50 
     51 typedef struct {
     52   struct jpeg_inverse_dct pub;  /* public fields */
     53 
     54   /* This array contains the IDCT method code that each multiplier table
     55    * is currently set up for, or -1 if it's not yet set up.
     56    * The actual multiplier tables are pointed to by dct_table in the
     57    * per-component comp_info structures.
     58    */
     59   int cur_method[MAX_COMPONENTS];
     60 } my_idct_controller;
     61 
     62 typedef my_idct_controller *my_idct_ptr;
     63 
     64 
     65 /* Allocated multiplier tables: big enough for any supported variant */
     66 
     67 typedef union {
     68   ISLOW_MULT_TYPE islow_array[DCTSIZE2];
     69 #ifdef DCT_IFAST_SUPPORTED
     70   IFAST_MULT_TYPE ifast_array[DCTSIZE2];
     71 #endif
     72 #ifdef DCT_FLOAT_SUPPORTED
     73   FLOAT_MULT_TYPE float_array[DCTSIZE2];
     74 #endif
     75 } multiplier_table;
     76 
     77 
     78 /* The current scaled-IDCT routines require ISLOW-style multiplier tables,
     79  * so be sure to compile that code if either ISLOW or SCALING is requested.
     80  */
     81 #ifdef DCT_ISLOW_SUPPORTED
     82 #define PROVIDE_ISLOW_TABLES
     83 #else
     84 #ifdef IDCT_SCALING_SUPPORTED
     85 #define PROVIDE_ISLOW_TABLES
     86 #endif
     87 #endif
     88 
     89 
     90 /*
     91  * Prepare for an output pass.
     92  * Here we select the proper IDCT routine for each component and build
     93  * a matching multiplier table.
     94  */
     95 
     96 METHODDEF(void)
     97 start_pass (j_decompress_ptr cinfo)
     98 {
     99   my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
    100   int ci, i;
    101   jpeg_component_info *compptr;
    102   int method = 0;
    103   inverse_DCT_method_ptr method_ptr = NULL;
    104   JQUANT_TBL *qtbl;
    105 
    106   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    107        ci++, compptr++) {
    108     /* Select the proper IDCT routine for this component's scaling */
    109     switch (compptr->_DCT_scaled_size) {
    110 #ifdef IDCT_SCALING_SUPPORTED
    111     case 1:
    112       method_ptr = jpeg_idct_1x1;
    113       method = JDCT_ISLOW;      /* jidctred uses islow-style table */
    114       break;
    115     case 2:
    116       if (jsimd_can_idct_2x2())
    117         method_ptr = jsimd_idct_2x2;
    118       else
    119         method_ptr = jpeg_idct_2x2;
    120       method = JDCT_ISLOW;      /* jidctred uses islow-style table */
    121       break;
    122     case 3:
    123       method_ptr = jpeg_idct_3x3;
    124       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    125       break;
    126     case 4:
    127       if (jsimd_can_idct_4x4())
    128         method_ptr = jsimd_idct_4x4;
    129       else
    130         method_ptr = jpeg_idct_4x4;
    131       method = JDCT_ISLOW;      /* jidctred uses islow-style table */
    132       break;
    133     case 5:
    134       method_ptr = jpeg_idct_5x5;
    135       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    136       break;
    137     case 6:
    138 #if defined(__mips__)
    139       if (jsimd_can_idct_6x6())
    140         method_ptr = jsimd_idct_6x6;
    141       else
    142 #endif
    143       method_ptr = jpeg_idct_6x6;
    144       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    145       break;
    146     case 7:
    147       method_ptr = jpeg_idct_7x7;
    148       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    149       break;
    150 #endif
    151     case DCTSIZE:
    152       switch (cinfo->dct_method) {
    153 #ifdef DCT_ISLOW_SUPPORTED
    154       case JDCT_ISLOW:
    155         if (jsimd_can_idct_islow())
    156           method_ptr = jsimd_idct_islow;
    157         else
    158           method_ptr = jpeg_idct_islow;
    159         method = JDCT_ISLOW;
    160         break;
    161 #endif
    162 #ifdef DCT_IFAST_SUPPORTED
    163       case JDCT_IFAST:
    164         if (jsimd_can_idct_ifast())
    165           method_ptr = jsimd_idct_ifast;
    166         else
    167           method_ptr = jpeg_idct_ifast;
    168         method = JDCT_IFAST;
    169         break;
    170 #endif
    171 #ifdef DCT_FLOAT_SUPPORTED
    172       case JDCT_FLOAT:
    173         if (jsimd_can_idct_float())
    174           method_ptr = jsimd_idct_float;
    175         else
    176           method_ptr = jpeg_idct_float;
    177         method = JDCT_FLOAT;
    178         break;
    179 #endif
    180       default:
    181         ERREXIT(cinfo, JERR_NOT_COMPILED);
    182         break;
    183       }
    184       break;
    185 #ifdef IDCT_SCALING_SUPPORTED
    186     case 9:
    187       method_ptr = jpeg_idct_9x9;
    188       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    189       break;
    190     case 10:
    191       method_ptr = jpeg_idct_10x10;
    192       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    193       break;
    194     case 11:
    195       method_ptr = jpeg_idct_11x11;
    196       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    197       break;
    198     case 12:
    199 #if defined(__mips__)
    200       if (jsimd_can_idct_12x12())
    201         method_ptr = jsimd_idct_12x12;
    202       else
    203 #endif
    204       method_ptr = jpeg_idct_12x12;
    205       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    206       break;
    207     case 13:
    208       method_ptr = jpeg_idct_13x13;
    209       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    210       break;
    211     case 14:
    212       method_ptr = jpeg_idct_14x14;
    213       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    214       break;
    215     case 15:
    216       method_ptr = jpeg_idct_15x15;
    217       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    218       break;
    219     case 16:
    220       method_ptr = jpeg_idct_16x16;
    221       method = JDCT_ISLOW;      /* jidctint uses islow-style table */
    222       break;
    223 #endif
    224     default:
    225       ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size);
    226       break;
    227     }
    228     idct->pub.inverse_DCT[ci] = method_ptr;
    229     /* Create multiplier table from quant table.
    230      * However, we can skip this if the component is uninteresting
    231      * or if we already built the table.  Also, if no quant table
    232      * has yet been saved for the component, we leave the
    233      * multiplier table all-zero; we'll be reading zeroes from the
    234      * coefficient controller's buffer anyway.
    235      */
    236     if (! compptr->component_needed || idct->cur_method[ci] == method)
    237       continue;
    238     qtbl = compptr->quant_table;
    239     if (qtbl == NULL)           /* happens if no data yet for component */
    240       continue;
    241     idct->cur_method[ci] = method;
    242     switch (method) {
    243 #ifdef PROVIDE_ISLOW_TABLES
    244     case JDCT_ISLOW:
    245       {
    246         /* For LL&M IDCT method, multipliers are equal to raw quantization
    247          * coefficients, but are stored as ints to ensure access efficiency.
    248          */
    249         ISLOW_MULT_TYPE *ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
    250         for (i = 0; i < DCTSIZE2; i++) {
    251           ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i];
    252         }
    253       }
    254       break;
    255 #endif
    256 #ifdef DCT_IFAST_SUPPORTED
    257     case JDCT_IFAST:
    258       {
    259         /* For AA&N IDCT method, multipliers are equal to quantization
    260          * coefficients scaled by scalefactor[row]*scalefactor[col], where
    261          *   scalefactor[0] = 1
    262          *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
    263          * For integer operation, the multiplier table is to be scaled by
    264          * IFAST_SCALE_BITS.
    265          */
    266         IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
    267 #define CONST_BITS 14
    268         static const INT16 aanscales[DCTSIZE2] = {
    269           /* precomputed values scaled up by 14 bits */
    270           16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
    271           22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270,
    272           21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906,
    273           19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315,
    274           16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520,
    275           12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552,
    276            8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446,
    277            4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247
    278         };
    279         SHIFT_TEMPS
    280 
    281         for (i = 0; i < DCTSIZE2; i++) {
    282           ifmtbl[i] = (IFAST_MULT_TYPE)
    283             DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i],
    284                                   (JLONG) aanscales[i]),
    285                     CONST_BITS-IFAST_SCALE_BITS);
    286         }
    287       }
    288       break;
    289 #endif
    290 #ifdef DCT_FLOAT_SUPPORTED
    291     case JDCT_FLOAT:
    292       {
    293         /* For float AA&N IDCT method, multipliers are equal to quantization
    294          * coefficients scaled by scalefactor[row]*scalefactor[col], where
    295          *   scalefactor[0] = 1
    296          *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7
    297          */
    298         FLOAT_MULT_TYPE *fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
    299         int row, col;
    300         static const double aanscalefactor[DCTSIZE] = {
    301           1.0, 1.387039845, 1.306562965, 1.175875602,
    302           1.0, 0.785694958, 0.541196100, 0.275899379
    303         };
    304 
    305         i = 0;
    306         for (row = 0; row < DCTSIZE; row++) {
    307           for (col = 0; col < DCTSIZE; col++) {
    308             fmtbl[i] = (FLOAT_MULT_TYPE)
    309               ((double) qtbl->quantval[i] *
    310                aanscalefactor[row] * aanscalefactor[col]);
    311             i++;
    312           }
    313         }
    314       }
    315       break;
    316 #endif
    317     default:
    318       ERREXIT(cinfo, JERR_NOT_COMPILED);
    319       break;
    320     }
    321   }
    322 }
    323 
    324 
    325 /*
    326  * Initialize IDCT manager.
    327  */
    328 
    329 GLOBAL(void)
    330 jinit_inverse_dct (j_decompress_ptr cinfo)
    331 {
    332   my_idct_ptr idct;
    333   int ci;
    334   jpeg_component_info *compptr;
    335 
    336   idct = (my_idct_ptr)
    337     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    338                                 sizeof(my_idct_controller));
    339   cinfo->idct = (struct jpeg_inverse_dct *) idct;
    340   idct->pub.start_pass = start_pass;
    341 
    342   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
    343        ci++, compptr++) {
    344     /* Allocate and pre-zero a multiplier table for each component */
    345     compptr->dct_table =
    346       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
    347                                   sizeof(multiplier_table));
    348     MEMZERO(compptr->dct_table, sizeof(multiplier_table));
    349     /* Mark multiplier table not yet set up for any method */
    350     idct->cur_method[ci] = -1;
    351   }
    352 }
    353