Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jfdctflt.c
      3  *
      4  * Copyright (C) 1994-1996, Thomas G. Lane.
      5  * This file is part of the Independent JPEG Group's software.
      6  * For conditions of distribution and use, see the accompanying README.ijg
      7  * file.
      8  *
      9  * This file contains a floating-point implementation of the
     10  * forward DCT (Discrete Cosine Transform).
     11  *
     12  * This implementation should be more accurate than either of the integer
     13  * DCT implementations.  However, it may not give the same results on all
     14  * machines because of differences in roundoff behavior.  Speed will depend
     15  * on the hardware's floating point capacity.
     16  *
     17  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
     18  * on each column.  Direct algorithms are also available, but they are
     19  * much more complex and seem not to be any faster when reduced to code.
     20  *
     21  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     22  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     23  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     24  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
     25  * code is based directly on figure 4-8 in P&M.
     26  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     27  * possible to arrange the computation so that many of the multiplies are
     28  * simple scalings of the final outputs.  These multiplies can then be
     29  * folded into the multiplications or divisions by the JPEG quantization
     30  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     31  * to be done in the DCT itself.
     32  * The primary disadvantage of this method is that with a fixed-point
     33  * implementation, accuracy is lost due to imprecise representation of the
     34  * scaled quantization values.  However, that problem does not arise if
     35  * we use floating point arithmetic.
     36  */
     37 
     38 #define JPEG_INTERNALS
     39 #include "jinclude.h"
     40 #include "jpeglib.h"
     41 #include "jdct.h"               /* Private declarations for DCT subsystem */
     42 
     43 #ifdef DCT_FLOAT_SUPPORTED
     44 
     45 
     46 /*
     47  * This module is specialized to the case DCTSIZE = 8.
     48  */
     49 
     50 #if DCTSIZE != 8
     51   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     52 #endif
     53 
     54 
     55 /*
     56  * Perform the forward DCT on one block of samples.
     57  */
     58 
     59 GLOBAL(void)
     60 jpeg_fdct_float (FAST_FLOAT *data)
     61 {
     62   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     63   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
     64   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
     65   FAST_FLOAT *dataptr;
     66   int ctr;
     67 
     68   /* Pass 1: process rows. */
     69 
     70   dataptr = data;
     71   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
     72     tmp0 = dataptr[0] + dataptr[7];
     73     tmp7 = dataptr[0] - dataptr[7];
     74     tmp1 = dataptr[1] + dataptr[6];
     75     tmp6 = dataptr[1] - dataptr[6];
     76     tmp2 = dataptr[2] + dataptr[5];
     77     tmp5 = dataptr[2] - dataptr[5];
     78     tmp3 = dataptr[3] + dataptr[4];
     79     tmp4 = dataptr[3] - dataptr[4];
     80 
     81     /* Even part */
     82 
     83     tmp10 = tmp0 + tmp3;        /* phase 2 */
     84     tmp13 = tmp0 - tmp3;
     85     tmp11 = tmp1 + tmp2;
     86     tmp12 = tmp1 - tmp2;
     87 
     88     dataptr[0] = tmp10 + tmp11; /* phase 3 */
     89     dataptr[4] = tmp10 - tmp11;
     90 
     91     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
     92     dataptr[2] = tmp13 + z1;    /* phase 5 */
     93     dataptr[6] = tmp13 - z1;
     94 
     95     /* Odd part */
     96 
     97     tmp10 = tmp4 + tmp5;        /* phase 2 */
     98     tmp11 = tmp5 + tmp6;
     99     tmp12 = tmp6 + tmp7;
    100 
    101     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    102     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    103     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    104     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    105     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
    106 
    107     z11 = tmp7 + z3;            /* phase 5 */
    108     z13 = tmp7 - z3;
    109 
    110     dataptr[5] = z13 + z2;      /* phase 6 */
    111     dataptr[3] = z13 - z2;
    112     dataptr[1] = z11 + z4;
    113     dataptr[7] = z11 - z4;
    114 
    115     dataptr += DCTSIZE;         /* advance pointer to next row */
    116   }
    117 
    118   /* Pass 2: process columns. */
    119 
    120   dataptr = data;
    121   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
    122     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
    123     tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
    124     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
    125     tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
    126     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
    127     tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
    128     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
    129     tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
    130 
    131     /* Even part */
    132 
    133     tmp10 = tmp0 + tmp3;        /* phase 2 */
    134     tmp13 = tmp0 - tmp3;
    135     tmp11 = tmp1 + tmp2;
    136     tmp12 = tmp1 - tmp2;
    137 
    138     dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
    139     dataptr[DCTSIZE*4] = tmp10 - tmp11;
    140 
    141     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
    142     dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
    143     dataptr[DCTSIZE*6] = tmp13 - z1;
    144 
    145     /* Odd part */
    146 
    147     tmp10 = tmp4 + tmp5;        /* phase 2 */
    148     tmp11 = tmp5 + tmp6;
    149     tmp12 = tmp6 + tmp7;
    150 
    151     /* The rotator is modified from fig 4-8 to avoid extra negations. */
    152     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
    153     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
    154     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
    155     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
    156 
    157     z11 = tmp7 + z3;            /* phase 5 */
    158     z13 = tmp7 - z3;
    159 
    160     dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
    161     dataptr[DCTSIZE*3] = z13 - z2;
    162     dataptr[DCTSIZE*1] = z11 + z4;
    163     dataptr[DCTSIZE*7] = z11 - z4;
    164 
    165     dataptr++;                  /* advance pointer to next column */
    166   }
    167 }
    168 
    169 #endif /* DCT_FLOAT_SUPPORTED */
    170