Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jidctflt.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * Modified 2010 by Guido Vollbeding.
      7  * libjpeg-turbo Modifications:
      8  * Copyright (C) 2014, D. R. Commander.
      9  * For conditions of distribution and use, see the accompanying README.ijg
     10  * file.
     11  *
     12  * This file contains a floating-point implementation of the
     13  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
     14  * must also perform dequantization of the input coefficients.
     15  *
     16  * This implementation should be more accurate than either of the integer
     17  * IDCT implementations.  However, it may not give the same results on all
     18  * machines because of differences in roundoff behavior.  Speed will depend
     19  * on the hardware's floating point capacity.
     20  *
     21  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
     22  * on each row (or vice versa, but it's more convenient to emit a row at
     23  * a time).  Direct algorithms are also available, but they are much more
     24  * complex and seem not to be any faster when reduced to code.
     25  *
     26  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
     27  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
     28  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
     29  * JPEG textbook (see REFERENCES section in file README.ijg).  The following
     30  * code is based directly on figure 4-8 in P&M.
     31  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
     32  * possible to arrange the computation so that many of the multiplies are
     33  * simple scalings of the final outputs.  These multiplies can then be
     34  * folded into the multiplications or divisions by the JPEG quantization
     35  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
     36  * to be done in the DCT itself.
     37  * The primary disadvantage of this method is that with a fixed-point
     38  * implementation, accuracy is lost due to imprecise representation of the
     39  * scaled quantization values.  However, that problem does not arise if
     40  * we use floating point arithmetic.
     41  */
     42 
     43 #define JPEG_INTERNALS
     44 #include "jinclude.h"
     45 #include "jpeglib.h"
     46 #include "jdct.h"               /* Private declarations for DCT subsystem */
     47 
     48 #ifdef DCT_FLOAT_SUPPORTED
     49 
     50 
     51 /*
     52  * This module is specialized to the case DCTSIZE = 8.
     53  */
     54 
     55 #if DCTSIZE != 8
     56   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     57 #endif
     58 
     59 
     60 /* Dequantize a coefficient by multiplying it by the multiplier-table
     61  * entry; produce a float result.
     62  */
     63 
     64 #define DEQUANTIZE(coef,quantval)  (((FAST_FLOAT) (coef)) * (quantval))
     65 
     66 
     67 /*
     68  * Perform dequantization and inverse DCT on one block of coefficients.
     69  */
     70 
     71 GLOBAL(void)
     72 jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info *compptr,
     73                  JCOEFPTR coef_block,
     74                  JSAMPARRAY output_buf, JDIMENSION output_col)
     75 {
     76   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
     77   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
     78   FAST_FLOAT z5, z10, z11, z12, z13;
     79   JCOEFPTR inptr;
     80   FLOAT_MULT_TYPE *quantptr;
     81   FAST_FLOAT *wsptr;
     82   JSAMPROW outptr;
     83   JSAMPLE *range_limit = cinfo->sample_range_limit;
     84   int ctr;
     85   FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
     86   #define _0_125 ((FLOAT_MULT_TYPE)0.125)
     87 
     88   /* Pass 1: process columns from input, store into work array. */
     89 
     90   inptr = coef_block;
     91   quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
     92   wsptr = workspace;
     93   for (ctr = DCTSIZE; ctr > 0; ctr--) {
     94     /* Due to quantization, we will usually find that many of the input
     95      * coefficients are zero, especially the AC terms.  We can exploit this
     96      * by short-circuiting the IDCT calculation for any column in which all
     97      * the AC terms are zero.  In that case each output is equal to the
     98      * DC coefficient (with scale factor as needed).
     99      * With typical images and quantization tables, half or more of the
    100      * column DCT calculations can be simplified this way.
    101      */
    102 
    103     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    104         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
    105         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
    106         inptr[DCTSIZE*7] == 0) {
    107       /* AC terms all zero */
    108       FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0],
    109                                     quantptr[DCTSIZE*0] * _0_125);
    110 
    111       wsptr[DCTSIZE*0] = dcval;
    112       wsptr[DCTSIZE*1] = dcval;
    113       wsptr[DCTSIZE*2] = dcval;
    114       wsptr[DCTSIZE*3] = dcval;
    115       wsptr[DCTSIZE*4] = dcval;
    116       wsptr[DCTSIZE*5] = dcval;
    117       wsptr[DCTSIZE*6] = dcval;
    118       wsptr[DCTSIZE*7] = dcval;
    119 
    120       inptr++;                  /* advance pointers to next column */
    121       quantptr++;
    122       wsptr++;
    123       continue;
    124     }
    125 
    126     /* Even part */
    127 
    128     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0] * _0_125);
    129     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2] * _0_125);
    130     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4] * _0_125);
    131     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6] * _0_125);
    132 
    133     tmp10 = tmp0 + tmp2;        /* phase 3 */
    134     tmp11 = tmp0 - tmp2;
    135 
    136     tmp13 = tmp1 + tmp3;        /* phases 5-3 */
    137     tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
    138 
    139     tmp0 = tmp10 + tmp13;       /* phase 2 */
    140     tmp3 = tmp10 - tmp13;
    141     tmp1 = tmp11 + tmp12;
    142     tmp2 = tmp11 - tmp12;
    143 
    144     /* Odd part */
    145 
    146     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1] * _0_125);
    147     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3] * _0_125);
    148     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5] * _0_125);
    149     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7] * _0_125);
    150 
    151     z13 = tmp6 + tmp5;          /* phase 6 */
    152     z10 = tmp6 - tmp5;
    153     z11 = tmp4 + tmp7;
    154     z12 = tmp4 - tmp7;
    155 
    156     tmp7 = z11 + z13;           /* phase 5 */
    157     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
    158 
    159     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    160     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    161     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    162 
    163     tmp6 = tmp12 - tmp7;        /* phase 2 */
    164     tmp5 = tmp11 - tmp6;
    165     tmp4 = tmp10 - tmp5;
    166 
    167     wsptr[DCTSIZE*0] = tmp0 + tmp7;
    168     wsptr[DCTSIZE*7] = tmp0 - tmp7;
    169     wsptr[DCTSIZE*1] = tmp1 + tmp6;
    170     wsptr[DCTSIZE*6] = tmp1 - tmp6;
    171     wsptr[DCTSIZE*2] = tmp2 + tmp5;
    172     wsptr[DCTSIZE*5] = tmp2 - tmp5;
    173     wsptr[DCTSIZE*3] = tmp3 + tmp4;
    174     wsptr[DCTSIZE*4] = tmp3 - tmp4;
    175 
    176     inptr++;                    /* advance pointers to next column */
    177     quantptr++;
    178     wsptr++;
    179   }
    180 
    181   /* Pass 2: process rows from work array, store into output array. */
    182 
    183   wsptr = workspace;
    184   for (ctr = 0; ctr < DCTSIZE; ctr++) {
    185     outptr = output_buf[ctr] + output_col;
    186     /* Rows of zeroes can be exploited in the same way as we did with columns.
    187      * However, the column calculation has created many nonzero AC terms, so
    188      * the simplification applies less often (typically 5% to 10% of the time).
    189      * And testing floats for zero is relatively expensive, so we don't bother.
    190      */
    191 
    192     /* Even part */
    193 
    194     /* Apply signed->unsigned and prepare float->int conversion */
    195     z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5);
    196     tmp10 = z5 + wsptr[4];
    197     tmp11 = z5 - wsptr[4];
    198 
    199     tmp13 = wsptr[2] + wsptr[6];
    200     tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
    201 
    202     tmp0 = tmp10 + tmp13;
    203     tmp3 = tmp10 - tmp13;
    204     tmp1 = tmp11 + tmp12;
    205     tmp2 = tmp11 - tmp12;
    206 
    207     /* Odd part */
    208 
    209     z13 = wsptr[5] + wsptr[3];
    210     z10 = wsptr[5] - wsptr[3];
    211     z11 = wsptr[1] + wsptr[7];
    212     z12 = wsptr[1] - wsptr[7];
    213 
    214     tmp7 = z11 + z13;
    215     tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
    216 
    217     z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
    218     tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */
    219     tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */
    220 
    221     tmp6 = tmp12 - tmp7;
    222     tmp5 = tmp11 - tmp6;
    223     tmp4 = tmp10 - tmp5;
    224 
    225     /* Final output stage: float->int conversion and range-limit */
    226 
    227     outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK];
    228     outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK];
    229     outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK];
    230     outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK];
    231     outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK];
    232     outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK];
    233     outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK];
    234     outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK];
    235 
    236     wsptr += DCTSIZE;           /* advance pointer to next row */
    237   }
    238 }
    239 
    240 #endif /* DCT_FLOAT_SUPPORTED */
    241