Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jidctred.c
      3  *
      4  * This file was part of the Independent JPEG Group's software.
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains inverse-DCT routines that produce reduced-size output:
     12  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
     13  *
     14  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
     15  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
     16  * with an 8-to-4 step that produces the four averages of two adjacent outputs
     17  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
     18  * These steps were derived by computing the corresponding values at the end
     19  * of the normal LL&M code, then simplifying as much as possible.
     20  *
     21  * 1x1 is trivial: just take the DC coefficient divided by 8.
     22  *
     23  * See jidctint.c for additional comments.
     24  */
     25 
     26 #define JPEG_INTERNALS
     27 #include "jinclude.h"
     28 #include "jpeglib.h"
     29 #include "jdct.h"               /* Private declarations for DCT subsystem */
     30 
     31 #ifdef IDCT_SCALING_SUPPORTED
     32 
     33 
     34 /*
     35  * This module is specialized to the case DCTSIZE = 8.
     36  */
     37 
     38 #if DCTSIZE != 8
     39   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     40 #endif
     41 
     42 
     43 /* Scaling is the same as in jidctint.c. */
     44 
     45 #if BITS_IN_JSAMPLE == 8
     46 #define CONST_BITS  13
     47 #define PASS1_BITS  2
     48 #else
     49 #define CONST_BITS  13
     50 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
     51 #endif
     52 
     53 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     54  * causing a lot of useless floating-point operations at run time.
     55  * To get around this we use the following pre-calculated constants.
     56  * If you change CONST_BITS you may want to add appropriate values.
     57  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     58  */
     59 
     60 #if CONST_BITS == 13
     61 #define FIX_0_211164243  ((JLONG)  1730)        /* FIX(0.211164243) */
     62 #define FIX_0_509795579  ((JLONG)  4176)        /* FIX(0.509795579) */
     63 #define FIX_0_601344887  ((JLONG)  4926)        /* FIX(0.601344887) */
     64 #define FIX_0_720959822  ((JLONG)  5906)        /* FIX(0.720959822) */
     65 #define FIX_0_765366865  ((JLONG)  6270)        /* FIX(0.765366865) */
     66 #define FIX_0_850430095  ((JLONG)  6967)        /* FIX(0.850430095) */
     67 #define FIX_0_899976223  ((JLONG)  7373)        /* FIX(0.899976223) */
     68 #define FIX_1_061594337  ((JLONG)  8697)        /* FIX(1.061594337) */
     69 #define FIX_1_272758580  ((JLONG)  10426)       /* FIX(1.272758580) */
     70 #define FIX_1_451774981  ((JLONG)  11893)       /* FIX(1.451774981) */
     71 #define FIX_1_847759065  ((JLONG)  15137)       /* FIX(1.847759065) */
     72 #define FIX_2_172734803  ((JLONG)  17799)       /* FIX(2.172734803) */
     73 #define FIX_2_562915447  ((JLONG)  20995)       /* FIX(2.562915447) */
     74 #define FIX_3_624509785  ((JLONG)  29692)       /* FIX(3.624509785) */
     75 #else
     76 #define FIX_0_211164243  FIX(0.211164243)
     77 #define FIX_0_509795579  FIX(0.509795579)
     78 #define FIX_0_601344887  FIX(0.601344887)
     79 #define FIX_0_720959822  FIX(0.720959822)
     80 #define FIX_0_765366865  FIX(0.765366865)
     81 #define FIX_0_850430095  FIX(0.850430095)
     82 #define FIX_0_899976223  FIX(0.899976223)
     83 #define FIX_1_061594337  FIX(1.061594337)
     84 #define FIX_1_272758580  FIX(1.272758580)
     85 #define FIX_1_451774981  FIX(1.451774981)
     86 #define FIX_1_847759065  FIX(1.847759065)
     87 #define FIX_2_172734803  FIX(2.172734803)
     88 #define FIX_2_562915447  FIX(2.562915447)
     89 #define FIX_3_624509785  FIX(3.624509785)
     90 #endif
     91 
     92 
     93 /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
     94  * For 8-bit samples with the recommended scaling, all the variable
     95  * and constant values involved are no more than 16 bits wide, so a
     96  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
     97  * For 12-bit samples, a full 32-bit multiplication will be needed.
     98  */
     99 
    100 #if BITS_IN_JSAMPLE == 8
    101 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
    102 #else
    103 #define MULTIPLY(var,const)  ((var) * (const))
    104 #endif
    105 
    106 
    107 /* Dequantize a coefficient by multiplying it by the multiplier-table
    108  * entry; produce an int result.  In this module, both inputs and result
    109  * are 16 bits or less, so either int or short multiply will work.
    110  */
    111 
    112 #define DEQUANTIZE(coef,quantval)  (((ISLOW_MULT_TYPE) (coef)) * (quantval))
    113 
    114 
    115 /*
    116  * Perform dequantization and inverse DCT on one block of coefficients,
    117  * producing a reduced-size 4x4 output block.
    118  */
    119 
    120 GLOBAL(void)
    121 jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
    122                JCOEFPTR coef_block,
    123                JSAMPARRAY output_buf, JDIMENSION output_col)
    124 {
    125   JLONG tmp0, tmp2, tmp10, tmp12;
    126   JLONG z1, z2, z3, z4;
    127   JCOEFPTR inptr;
    128   ISLOW_MULT_TYPE *quantptr;
    129   int *wsptr;
    130   JSAMPROW outptr;
    131   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    132   int ctr;
    133   int workspace[DCTSIZE*4];     /* buffers data between passes */
    134   SHIFT_TEMPS
    135 
    136   /* Pass 1: process columns from input, store into work array. */
    137 
    138   inptr = coef_block;
    139   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    140   wsptr = workspace;
    141   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    142     /* Don't bother to process column 4, because second pass won't use it */
    143     if (ctr == DCTSIZE-4)
    144       continue;
    145     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
    146         inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 &&
    147         inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) {
    148       /* AC terms all zero; we need not examine term 4 for 4x4 output */
    149       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
    150                              PASS1_BITS);
    151 
    152       wsptr[DCTSIZE*0] = dcval;
    153       wsptr[DCTSIZE*1] = dcval;
    154       wsptr[DCTSIZE*2] = dcval;
    155       wsptr[DCTSIZE*3] = dcval;
    156 
    157       continue;
    158     }
    159 
    160     /* Even part */
    161 
    162     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    163     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS+1);
    164 
    165     z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
    166     z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
    167 
    168     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865);
    169 
    170     tmp10 = tmp0 + tmp2;
    171     tmp12 = tmp0 - tmp2;
    172 
    173     /* Odd part */
    174 
    175     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    176     z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    177     z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    178     z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    179 
    180     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
    181          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
    182          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
    183          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    184 
    185     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
    186          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
    187          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
    188          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
    189 
    190     /* Final output stage */
    191 
    192     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1);
    193     wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1);
    194     wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1);
    195     wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1);
    196   }
    197 
    198   /* Pass 2: process 4 rows from work array, store into output array. */
    199 
    200   wsptr = workspace;
    201   for (ctr = 0; ctr < 4; ctr++) {
    202     outptr = output_buf[ctr] + output_col;
    203     /* It's not clear whether a zero row test is worthwhile here ... */
    204 
    205 #ifndef NO_ZERO_ROW_TEST
    206     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
    207         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    208       /* AC terms all zero */
    209       JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
    210                                   & RANGE_MASK];
    211 
    212       outptr[0] = dcval;
    213       outptr[1] = dcval;
    214       outptr[2] = dcval;
    215       outptr[3] = dcval;
    216 
    217       wsptr += DCTSIZE;         /* advance pointer to next row */
    218       continue;
    219     }
    220 #endif
    221 
    222     /* Even part */
    223 
    224     tmp0 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+1);
    225 
    226     tmp2 = MULTIPLY((JLONG) wsptr[2], FIX_1_847759065)
    227          + MULTIPLY((JLONG) wsptr[6], - FIX_0_765366865);
    228 
    229     tmp10 = tmp0 + tmp2;
    230     tmp12 = tmp0 - tmp2;
    231 
    232     /* Odd part */
    233 
    234     z1 = (JLONG) wsptr[7];
    235     z2 = (JLONG) wsptr[5];
    236     z3 = (JLONG) wsptr[3];
    237     z4 = (JLONG) wsptr[1];
    238 
    239     tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */
    240          + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */
    241          + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */
    242          + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */
    243 
    244     tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */
    245          + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */
    246          + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */
    247          + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */
    248 
    249     /* Final output stage */
    250 
    251     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2,
    252                                           CONST_BITS+PASS1_BITS+3+1)
    253                             & RANGE_MASK];
    254     outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2,
    255                                           CONST_BITS+PASS1_BITS+3+1)
    256                             & RANGE_MASK];
    257     outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0,
    258                                           CONST_BITS+PASS1_BITS+3+1)
    259                             & RANGE_MASK];
    260     outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0,
    261                                           CONST_BITS+PASS1_BITS+3+1)
    262                             & RANGE_MASK];
    263 
    264     wsptr += DCTSIZE;           /* advance pointer to next row */
    265   }
    266 }
    267 
    268 
    269 /*
    270  * Perform dequantization and inverse DCT on one block of coefficients,
    271  * producing a reduced-size 2x2 output block.
    272  */
    273 
    274 GLOBAL(void)
    275 jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
    276                JCOEFPTR coef_block,
    277                JSAMPARRAY output_buf, JDIMENSION output_col)
    278 {
    279   JLONG tmp0, tmp10, z1;
    280   JCOEFPTR inptr;
    281   ISLOW_MULT_TYPE *quantptr;
    282   int *wsptr;
    283   JSAMPROW outptr;
    284   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    285   int ctr;
    286   int workspace[DCTSIZE*2];     /* buffers data between passes */
    287   SHIFT_TEMPS
    288 
    289   /* Pass 1: process columns from input, store into work array. */
    290 
    291   inptr = coef_block;
    292   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    293   wsptr = workspace;
    294   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    295     /* Don't bother to process columns 2,4,6 */
    296     if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6)
    297       continue;
    298     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 &&
    299         inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) {
    300       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
    301       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]),
    302                              PASS1_BITS);
    303 
    304       wsptr[DCTSIZE*0] = dcval;
    305       wsptr[DCTSIZE*1] = dcval;
    306 
    307       continue;
    308     }
    309 
    310     /* Even part */
    311 
    312     z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
    313     tmp10 = LEFT_SHIFT(z1, CONST_BITS+2);
    314 
    315     /* Odd part */
    316 
    317     z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
    318     tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */
    319     z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
    320     tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */
    321     z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
    322     tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
    323     z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
    324     tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
    325 
    326     /* Final output stage */
    327 
    328     wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2);
    329     wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2);
    330   }
    331 
    332   /* Pass 2: process 2 rows from work array, store into output array. */
    333 
    334   wsptr = workspace;
    335   for (ctr = 0; ctr < 2; ctr++) {
    336     outptr = output_buf[ctr] + output_col;
    337     /* It's not clear whether a zero row test is worthwhile here ... */
    338 
    339 #ifndef NO_ZERO_ROW_TEST
    340     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
    341       /* AC terms all zero */
    342       JSAMPLE dcval = range_limit[(int) DESCALE((JLONG) wsptr[0], PASS1_BITS+3)
    343                                   & RANGE_MASK];
    344 
    345       outptr[0] = dcval;
    346       outptr[1] = dcval;
    347 
    348       wsptr += DCTSIZE;         /* advance pointer to next row */
    349       continue;
    350     }
    351 #endif
    352 
    353     /* Even part */
    354 
    355     tmp10 = LEFT_SHIFT((JLONG) wsptr[0], CONST_BITS+2);
    356 
    357     /* Odd part */
    358 
    359     tmp0 = MULTIPLY((JLONG) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */
    360          + MULTIPLY((JLONG) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */
    361          + MULTIPLY((JLONG) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */
    362          + MULTIPLY((JLONG) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */
    363 
    364     /* Final output stage */
    365 
    366     outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0,
    367                                           CONST_BITS+PASS1_BITS+3+2)
    368                             & RANGE_MASK];
    369     outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0,
    370                                           CONST_BITS+PASS1_BITS+3+2)
    371                             & RANGE_MASK];
    372 
    373     wsptr += DCTSIZE;           /* advance pointer to next row */
    374   }
    375 }
    376 
    377 
    378 /*
    379  * Perform dequantization and inverse DCT on one block of coefficients,
    380  * producing a reduced-size 1x1 output block.
    381  */
    382 
    383 GLOBAL(void)
    384 jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info *compptr,
    385                JCOEFPTR coef_block,
    386                JSAMPARRAY output_buf, JDIMENSION output_col)
    387 {
    388   int dcval;
    389   ISLOW_MULT_TYPE *quantptr;
    390   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    391   SHIFT_TEMPS
    392 
    393   /* We hardly need an inverse DCT routine for this: just take the
    394    * average pixel value, which is one-eighth of the DC coefficient.
    395    */
    396   quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table;
    397   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
    398   dcval = (int) DESCALE((JLONG) dcval, 3);
    399 
    400   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
    401 }
    402 
    403 #endif /* IDCT_SCALING_SUPPORTED */
    404