Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jmemmgr.c
      3  *
      4  * This file was part of the Independent JPEG Group's software:
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2016, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains the JPEG system-independent memory management
     12  * routines.  This code is usable across a wide variety of machines; most
     13  * of the system dependencies have been isolated in a separate file.
     14  * The major functions provided here are:
     15  *   * pool-based allocation and freeing of memory;
     16  *   * policy decisions about how to divide available memory among the
     17  *     virtual arrays;
     18  *   * control logic for swapping virtual arrays between main memory and
     19  *     backing storage.
     20  * The separate system-dependent file provides the actual backing-storage
     21  * access code, and it contains the policy decision about how much total
     22  * main memory to use.
     23  * This file is system-dependent in the sense that some of its functions
     24  * are unnecessary in some systems.  For example, if there is enough virtual
     25  * memory so that backing storage will never be used, much of the virtual
     26  * array control logic could be removed.  (Of course, if you have that much
     27  * memory then you shouldn't care about a little bit of unused code...)
     28  */
     29 
     30 #define JPEG_INTERNALS
     31 #define AM_MEMORY_MANAGER       /* we define jvirt_Xarray_control structs */
     32 #include "jinclude.h"
     33 #include "jpeglib.h"
     34 #include "jmemsys.h"            /* import the system-dependent declarations */
     35 #ifndef _WIN32
     36 #include <stdint.h>
     37 #endif
     38 #include <limits.h>
     39 
     40 #ifndef NO_GETENV
     41 #ifndef HAVE_STDLIB_H           /* <stdlib.h> should declare getenv() */
     42 extern char *getenv (const char *name);
     43 #endif
     44 #endif
     45 
     46 
     47 LOCAL(size_t)
     48 round_up_pow2 (size_t a, size_t b)
     49 /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */
     50 /* Assumes a >= 0, b > 0, and b is a power of 2 */
     51 {
     52   return ((a + b - 1) & (~(b - 1)));
     53 }
     54 
     55 
     56 /*
     57  * Some important notes:
     58  *   The allocation routines provided here must never return NULL.
     59  *   They should exit to error_exit if unsuccessful.
     60  *
     61  *   It's not a good idea to try to merge the sarray and barray routines,
     62  *   even though they are textually almost the same, because samples are
     63  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     64  *   in machines where byte pointers have a different representation from
     65  *   word pointers, the resulting machine code could not be the same.
     66  */
     67 
     68 
     69 /*
     70  * Many machines require storage alignment: longs must start on 4-byte
     71  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     72  * always returns pointers that are multiples of the worst-case alignment
     73  * requirement, and we had better do so too.
     74  * There isn't any really portable way to determine the worst-case alignment
     75  * requirement.  This module assumes that the alignment requirement is
     76  * multiples of ALIGN_SIZE.
     77  * By default, we define ALIGN_SIZE as sizeof(double).  This is necessary on
     78  * some workstations (where doubles really do need 8-byte alignment) and will
     79  * work fine on nearly everything.  If your machine has lesser alignment needs,
     80  * you can save a few bytes by making ALIGN_SIZE smaller.
     81  * The only place I know of where this will NOT work is certain Macintosh
     82  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     83  * Doing 10-byte alignment is counterproductive because longwords won't be
     84  * aligned well.  Put "#define ALIGN_SIZE 4" in jconfig.h if you have
     85  * such a compiler.
     86  */
     87 
     88 #ifndef ALIGN_SIZE              /* so can override from jconfig.h */
     89 #ifndef WITH_SIMD
     90 #define ALIGN_SIZE  sizeof(double)
     91 #else
     92 #define ALIGN_SIZE  16 /* Most SIMD implementations require this */
     93 #endif
     94 #endif
     95 
     96 /*
     97  * We allocate objects from "pools", where each pool is gotten with a single
     98  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
     99  * overhead within a pool, except for alignment padding.  Each pool has a
    100  * header with a link to the next pool of the same class.
    101  * Small and large pool headers are identical.
    102  */
    103 
    104 typedef struct small_pool_struct *small_pool_ptr;
    105 
    106 typedef struct small_pool_struct {
    107   small_pool_ptr next;  /* next in list of pools */
    108   size_t bytes_used;            /* how many bytes already used within pool */
    109   size_t bytes_left;            /* bytes still available in this pool */
    110 } small_pool_hdr;
    111 
    112 typedef struct large_pool_struct *large_pool_ptr;
    113 
    114 typedef struct large_pool_struct {
    115   large_pool_ptr next;  /* next in list of pools */
    116   size_t bytes_used;            /* how many bytes already used within pool */
    117   size_t bytes_left;            /* bytes still available in this pool */
    118 } large_pool_hdr;
    119 
    120 /*
    121  * Here is the full definition of a memory manager object.
    122  */
    123 
    124 typedef struct {
    125   struct jpeg_memory_mgr pub;   /* public fields */
    126 
    127   /* Each pool identifier (lifetime class) names a linked list of pools. */
    128   small_pool_ptr small_list[JPOOL_NUMPOOLS];
    129   large_pool_ptr large_list[JPOOL_NUMPOOLS];
    130 
    131   /* Since we only have one lifetime class of virtual arrays, only one
    132    * linked list is necessary (for each datatype).  Note that the virtual
    133    * array control blocks being linked together are actually stored somewhere
    134    * in the small-pool list.
    135    */
    136   jvirt_sarray_ptr virt_sarray_list;
    137   jvirt_barray_ptr virt_barray_list;
    138 
    139   /* This counts total space obtained from jpeg_get_small/large */
    140   size_t total_space_allocated;
    141 
    142   /* alloc_sarray and alloc_barray set this value for use by virtual
    143    * array routines.
    144    */
    145   JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
    146 } my_memory_mgr;
    147 
    148 typedef my_memory_mgr *my_mem_ptr;
    149 
    150 
    151 /*
    152  * The control blocks for virtual arrays.
    153  * Note that these blocks are allocated in the "small" pool area.
    154  * System-dependent info for the associated backing store (if any) is hidden
    155  * inside the backing_store_info struct.
    156  */
    157 
    158 struct jvirt_sarray_control {
    159   JSAMPARRAY mem_buffer;        /* => the in-memory buffer */
    160   JDIMENSION rows_in_array;     /* total virtual array height */
    161   JDIMENSION samplesperrow;     /* width of array (and of memory buffer) */
    162   JDIMENSION maxaccess;         /* max rows accessed by access_virt_sarray */
    163   JDIMENSION rows_in_mem;       /* height of memory buffer */
    164   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
    165   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
    166   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
    167   boolean pre_zero;             /* pre-zero mode requested? */
    168   boolean dirty;                /* do current buffer contents need written? */
    169   boolean b_s_open;             /* is backing-store data valid? */
    170   jvirt_sarray_ptr next;        /* link to next virtual sarray control block */
    171   backing_store_info b_s_info;  /* System-dependent control info */
    172 };
    173 
    174 struct jvirt_barray_control {
    175   JBLOCKARRAY mem_buffer;       /* => the in-memory buffer */
    176   JDIMENSION rows_in_array;     /* total virtual array height */
    177   JDIMENSION blocksperrow;      /* width of array (and of memory buffer) */
    178   JDIMENSION maxaccess;         /* max rows accessed by access_virt_barray */
    179   JDIMENSION rows_in_mem;       /* height of memory buffer */
    180   JDIMENSION rowsperchunk;      /* allocation chunk size in mem_buffer */
    181   JDIMENSION cur_start_row;     /* first logical row # in the buffer */
    182   JDIMENSION first_undef_row;   /* row # of first uninitialized row */
    183   boolean pre_zero;             /* pre-zero mode requested? */
    184   boolean dirty;                /* do current buffer contents need written? */
    185   boolean b_s_open;             /* is backing-store data valid? */
    186   jvirt_barray_ptr next;        /* link to next virtual barray control block */
    187   backing_store_info b_s_info;  /* System-dependent control info */
    188 };
    189 
    190 
    191 #ifdef MEM_STATS                /* optional extra stuff for statistics */
    192 
    193 LOCAL(void)
    194 print_mem_stats (j_common_ptr cinfo, int pool_id)
    195 {
    196   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    197   small_pool_ptr shdr_ptr;
    198   large_pool_ptr lhdr_ptr;
    199 
    200   /* Since this is only a debugging stub, we can cheat a little by using
    201    * fprintf directly rather than going through the trace message code.
    202    * This is helpful because message parm array can't handle longs.
    203    */
    204   fprintf(stderr, "Freeing pool %d, total space = %ld\n",
    205           pool_id, mem->total_space_allocated);
    206 
    207   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    208        lhdr_ptr = lhdr_ptr->next) {
    209     fprintf(stderr, "  Large chunk used %ld\n",
    210             (long) lhdr_ptr->bytes_used);
    211   }
    212 
    213   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    214        shdr_ptr = shdr_ptr->next) {
    215     fprintf(stderr, "  Small chunk used %ld free %ld\n",
    216             (long) shdr_ptr->bytes_used,
    217             (long) shdr_ptr->bytes_left);
    218   }
    219 }
    220 
    221 #endif /* MEM_STATS */
    222 
    223 
    224 LOCAL(void)
    225 out_of_memory (j_common_ptr cinfo, int which)
    226 /* Report an out-of-memory error and stop execution */
    227 /* If we compiled MEM_STATS support, report alloc requests before dying */
    228 {
    229 #ifdef MEM_STATS
    230   cinfo->err->trace_level = 2;  /* force self_destruct to report stats */
    231 #endif
    232   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
    233 }
    234 
    235 
    236 /*
    237  * Allocation of "small" objects.
    238  *
    239  * For these, we use pooled storage.  When a new pool must be created,
    240  * we try to get enough space for the current request plus a "slop" factor,
    241  * where the slop will be the amount of leftover space in the new pool.
    242  * The speed vs. space tradeoff is largely determined by the slop values.
    243  * A different slop value is provided for each pool class (lifetime),
    244  * and we also distinguish the first pool of a class from later ones.
    245  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    246  * machines, but may be too small if longs are 64 bits or more.
    247  *
    248  * Since we do not know what alignment malloc() gives us, we have to
    249  * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment
    250  * adjustment.
    251  */
    252 
    253 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
    254 {
    255         1600,                   /* first PERMANENT pool */
    256         16000                   /* first IMAGE pool */
    257 };
    258 
    259 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
    260 {
    261         0,                      /* additional PERMANENT pools */
    262         5000                    /* additional IMAGE pools */
    263 };
    264 
    265 #define MIN_SLOP  50            /* greater than 0 to avoid futile looping */
    266 
    267 
    268 METHODDEF(void *)
    269 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    270 /* Allocate a "small" object */
    271 {
    272   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    273   small_pool_ptr hdr_ptr, prev_hdr_ptr;
    274   char *data_ptr;
    275   size_t min_request, slop;
    276 
    277   /*
    278    * Round up the requested size to a multiple of ALIGN_SIZE in order
    279    * to assure alignment for the next object allocated in the same pool
    280    * and so that algorithms can straddle outside the proper area up
    281    * to the next alignment.
    282    */
    283   if (sizeofobject > MAX_ALLOC_CHUNK) {
    284     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
    285        is close to SIZE_MAX. */
    286     out_of_memory(cinfo, 7);
    287   }
    288   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
    289 
    290   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    291   if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
    292       MAX_ALLOC_CHUNK)
    293     out_of_memory(cinfo, 1);    /* request exceeds malloc's ability */
    294 
    295   /* See if space is available in any existing pool */
    296   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    297     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    298   prev_hdr_ptr = NULL;
    299   hdr_ptr = mem->small_list[pool_id];
    300   while (hdr_ptr != NULL) {
    301     if (hdr_ptr->bytes_left >= sizeofobject)
    302       break;                    /* found pool with enough space */
    303     prev_hdr_ptr = hdr_ptr;
    304     hdr_ptr = hdr_ptr->next;
    305   }
    306 
    307   /* Time to make a new pool? */
    308   if (hdr_ptr == NULL) {
    309     /* min_request is what we need now, slop is what will be leftover */
    310     min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1;
    311     if (prev_hdr_ptr == NULL)   /* first pool in class? */
    312       slop = first_pool_slop[pool_id];
    313     else
    314       slop = extra_pool_slop[pool_id];
    315     /* Don't ask for more than MAX_ALLOC_CHUNK */
    316     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
    317       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
    318     /* Try to get space, if fail reduce slop and try again */
    319     for (;;) {
    320       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
    321       if (hdr_ptr != NULL)
    322         break;
    323       slop /= 2;
    324       if (slop < MIN_SLOP)      /* give up when it gets real small */
    325         out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    326     }
    327     mem->total_space_allocated += min_request + slop;
    328     /* Success, initialize the new pool header and add to end of list */
    329     hdr_ptr->next = NULL;
    330     hdr_ptr->bytes_used = 0;
    331     hdr_ptr->bytes_left = sizeofobject + slop;
    332     if (prev_hdr_ptr == NULL)   /* first pool in class? */
    333       mem->small_list[pool_id] = hdr_ptr;
    334     else
    335       prev_hdr_ptr->next = hdr_ptr;
    336   }
    337 
    338   /* OK, allocate the object from the current pool */
    339   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
    340   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
    341   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
    342     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
    343   data_ptr += hdr_ptr->bytes_used; /* point to place for object */
    344   hdr_ptr->bytes_used += sizeofobject;
    345   hdr_ptr->bytes_left -= sizeofobject;
    346 
    347   return (void *) data_ptr;
    348 }
    349 
    350 
    351 /*
    352  * Allocation of "large" objects.
    353  *
    354  * The external semantics of these are the same as "small" objects.  However,
    355  * the pool management heuristics are quite different.  We assume that each
    356  * request is large enough that it may as well be passed directly to
    357  * jpeg_get_large; the pool management just links everything together
    358  * so that we can free it all on demand.
    359  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    360  * structures.  The routines that create these structures (see below)
    361  * deliberately bunch rows together to ensure a large request size.
    362  */
    363 
    364 METHODDEF(void *)
    365 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    366 /* Allocate a "large" object */
    367 {
    368   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    369   large_pool_ptr hdr_ptr;
    370   char *data_ptr;
    371 
    372   /*
    373    * Round up the requested size to a multiple of ALIGN_SIZE so that
    374    * algorithms can straddle outside the proper area up to the next
    375    * alignment.
    376    */
    377   if (sizeofobject > MAX_ALLOC_CHUNK) {
    378     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
    379        is close to SIZE_MAX. */
    380     out_of_memory(cinfo, 8);
    381   }
    382   sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE);
    383 
    384   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    385   if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) >
    386       MAX_ALLOC_CHUNK)
    387     out_of_memory(cinfo, 3);    /* request exceeds malloc's ability */
    388 
    389   /* Always make a new pool */
    390   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    391     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    392 
    393   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
    394                                             sizeof(large_pool_hdr) +
    395                                             ALIGN_SIZE - 1);
    396   if (hdr_ptr == NULL)
    397     out_of_memory(cinfo, 4);    /* jpeg_get_large failed */
    398   mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) +
    399                                 ALIGN_SIZE - 1;
    400 
    401   /* Success, initialize the new pool header and add to list */
    402   hdr_ptr->next = mem->large_list[pool_id];
    403   /* We maintain space counts in each pool header for statistical purposes,
    404    * even though they are not needed for allocation.
    405    */
    406   hdr_ptr->bytes_used = sizeofobject;
    407   hdr_ptr->bytes_left = 0;
    408   mem->large_list[pool_id] = hdr_ptr;
    409 
    410   data_ptr = (char *) hdr_ptr; /* point to first data byte in pool... */
    411   data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */
    412   if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */
    413     data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE;
    414 
    415   return (void *) data_ptr;
    416 }
    417 
    418 
    419 /*
    420  * Creation of 2-D sample arrays.
    421  *
    422  * To minimize allocation overhead and to allow I/O of large contiguous
    423  * blocks, we allocate the sample rows in groups of as many rows as possible
    424  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    425  * NB: the virtual array control routines, later in this file, know about
    426  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    427  * object so that it can be saved away if this sarray is the workspace for
    428  * a virtual array.
    429  *
    430  * Since we are often upsampling with a factor 2, we align the size (not
    431  * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have
    432  * to be as careful about size.
    433  */
    434 
    435 METHODDEF(JSAMPARRAY)
    436 alloc_sarray (j_common_ptr cinfo, int pool_id,
    437               JDIMENSION samplesperrow, JDIMENSION numrows)
    438 /* Allocate a 2-D sample array */
    439 {
    440   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    441   JSAMPARRAY result;
    442   JSAMPROW workspace;
    443   JDIMENSION rowsperchunk, currow, i;
    444   long ltemp;
    445 
    446   /* Make sure each row is properly aligned */
    447   if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0)
    448     out_of_memory(cinfo, 5);    /* safety check */
    449 
    450   if (samplesperrow > MAX_ALLOC_CHUNK) {
    451     /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject
    452        is close to SIZE_MAX. */
    453     out_of_memory(cinfo, 9);
    454   }
    455   samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) /
    456                                                            sizeof(JSAMPLE));
    457 
    458   /* Calculate max # of rows allowed in one allocation chunk */
    459   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
    460           ((long) samplesperrow * sizeof(JSAMPLE));
    461   if (ltemp <= 0)
    462     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    463   if (ltemp < (long) numrows)
    464     rowsperchunk = (JDIMENSION) ltemp;
    465   else
    466     rowsperchunk = numrows;
    467   mem->last_rowsperchunk = rowsperchunk;
    468 
    469   /* Get space for row pointers (small object) */
    470   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
    471                                     (size_t) (numrows * sizeof(JSAMPROW)));
    472 
    473   /* Get the rows themselves (large objects) */
    474   currow = 0;
    475   while (currow < numrows) {
    476     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    477     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
    478         (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
    479                   * sizeof(JSAMPLE)));
    480     for (i = rowsperchunk; i > 0; i--) {
    481       result[currow++] = workspace;
    482       workspace += samplesperrow;
    483     }
    484   }
    485 
    486   return result;
    487 }
    488 
    489 
    490 /*
    491  * Creation of 2-D coefficient-block arrays.
    492  * This is essentially the same as the code for sample arrays, above.
    493  */
    494 
    495 METHODDEF(JBLOCKARRAY)
    496 alloc_barray (j_common_ptr cinfo, int pool_id,
    497               JDIMENSION blocksperrow, JDIMENSION numrows)
    498 /* Allocate a 2-D coefficient-block array */
    499 {
    500   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    501   JBLOCKARRAY result;
    502   JBLOCKROW workspace;
    503   JDIMENSION rowsperchunk, currow, i;
    504   long ltemp;
    505 
    506   /* Make sure each row is properly aligned */
    507   if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0)
    508     out_of_memory(cinfo, 6);    /* safety check */
    509 
    510   /* Calculate max # of rows allowed in one allocation chunk */
    511   ltemp = (MAX_ALLOC_CHUNK-sizeof(large_pool_hdr)) /
    512           ((long) blocksperrow * sizeof(JBLOCK));
    513   if (ltemp <= 0)
    514     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    515   if (ltemp < (long) numrows)
    516     rowsperchunk = (JDIMENSION) ltemp;
    517   else
    518     rowsperchunk = numrows;
    519   mem->last_rowsperchunk = rowsperchunk;
    520 
    521   /* Get space for row pointers (small object) */
    522   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
    523                                      (size_t) (numrows * sizeof(JBLOCKROW)));
    524 
    525   /* Get the rows themselves (large objects) */
    526   currow = 0;
    527   while (currow < numrows) {
    528     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    529     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
    530         (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
    531                   * sizeof(JBLOCK)));
    532     for (i = rowsperchunk; i > 0; i--) {
    533       result[currow++] = workspace;
    534       workspace += blocksperrow;
    535     }
    536   }
    537 
    538   return result;
    539 }
    540 
    541 
    542 /*
    543  * About virtual array management:
    544  *
    545  * The above "normal" array routines are only used to allocate strip buffers
    546  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    547  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    548  * time, but the memory manager must save the whole array for repeated
    549  * accesses.  The intended implementation is that there is a strip buffer in
    550  * memory (as high as is possible given the desired memory limit), plus a
    551  * backing file that holds the rest of the array.
    552  *
    553  * The request_virt_array routines are told the total size of the image and
    554  * the maximum number of rows that will be accessed at once.  The in-memory
    555  * buffer must be at least as large as the maxaccess value.
    556  *
    557  * The request routines create control blocks but not the in-memory buffers.
    558  * That is postponed until realize_virt_arrays is called.  At that time the
    559  * total amount of space needed is known (approximately, anyway), so free
    560  * memory can be divided up fairly.
    561  *
    562  * The access_virt_array routines are responsible for making a specific strip
    563  * area accessible (after reading or writing the backing file, if necessary).
    564  * Note that the access routines are told whether the caller intends to modify
    565  * the accessed strip; during a read-only pass this saves having to rewrite
    566  * data to disk.  The access routines are also responsible for pre-zeroing
    567  * any newly accessed rows, if pre-zeroing was requested.
    568  *
    569  * In current usage, the access requests are usually for nonoverlapping
    570  * strips; that is, successive access start_row numbers differ by exactly
    571  * num_rows = maxaccess.  This means we can get good performance with simple
    572  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    573  * of the access height; then there will never be accesses across bufferload
    574  * boundaries.  The code will still work with overlapping access requests,
    575  * but it doesn't handle bufferload overlaps very efficiently.
    576  */
    577 
    578 
    579 METHODDEF(jvirt_sarray_ptr)
    580 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    581                      JDIMENSION samplesperrow, JDIMENSION numrows,
    582                      JDIMENSION maxaccess)
    583 /* Request a virtual 2-D sample array */
    584 {
    585   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    586   jvirt_sarray_ptr result;
    587 
    588   /* Only IMAGE-lifetime virtual arrays are currently supported */
    589   if (pool_id != JPOOL_IMAGE)
    590     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    591 
    592   /* get control block */
    593   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
    594                                           sizeof(struct jvirt_sarray_control));
    595 
    596   result->mem_buffer = NULL;    /* marks array not yet realized */
    597   result->rows_in_array = numrows;
    598   result->samplesperrow = samplesperrow;
    599   result->maxaccess = maxaccess;
    600   result->pre_zero = pre_zero;
    601   result->b_s_open = FALSE;     /* no associated backing-store object */
    602   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
    603   mem->virt_sarray_list = result;
    604 
    605   return result;
    606 }
    607 
    608 
    609 METHODDEF(jvirt_barray_ptr)
    610 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    611                      JDIMENSION blocksperrow, JDIMENSION numrows,
    612                      JDIMENSION maxaccess)
    613 /* Request a virtual 2-D coefficient-block array */
    614 {
    615   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    616   jvirt_barray_ptr result;
    617 
    618   /* Only IMAGE-lifetime virtual arrays are currently supported */
    619   if (pool_id != JPOOL_IMAGE)
    620     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
    621 
    622   /* get control block */
    623   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
    624                                           sizeof(struct jvirt_barray_control));
    625 
    626   result->mem_buffer = NULL;    /* marks array not yet realized */
    627   result->rows_in_array = numrows;
    628   result->blocksperrow = blocksperrow;
    629   result->maxaccess = maxaccess;
    630   result->pre_zero = pre_zero;
    631   result->b_s_open = FALSE;     /* no associated backing-store object */
    632   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
    633   mem->virt_barray_list = result;
    634 
    635   return result;
    636 }
    637 
    638 
    639 METHODDEF(void)
    640 realize_virt_arrays (j_common_ptr cinfo)
    641 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    642 {
    643   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    644   size_t space_per_minheight, maximum_space, avail_mem;
    645   size_t minheights, max_minheights;
    646   jvirt_sarray_ptr sptr;
    647   jvirt_barray_ptr bptr;
    648 
    649   /* Compute the minimum space needed (maxaccess rows in each buffer)
    650    * and the maximum space needed (full image height in each buffer).
    651    * These may be of use to the system-dependent jpeg_mem_available routine.
    652    */
    653   space_per_minheight = 0;
    654   maximum_space = 0;
    655   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    656     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    657       size_t new_space = (long) sptr->rows_in_array *
    658                          (long) sptr->samplesperrow * sizeof(JSAMPLE);
    659 
    660       space_per_minheight += (long) sptr->maxaccess *
    661                              (long) sptr->samplesperrow * sizeof(JSAMPLE);
    662       if (SIZE_MAX - maximum_space < new_space)
    663         out_of_memory(cinfo, 10);
    664       maximum_space += new_space;
    665     }
    666   }
    667   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    668     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    669       size_t new_space = (long) bptr->rows_in_array *
    670                          (long) bptr->blocksperrow * sizeof(JBLOCK);
    671 
    672       space_per_minheight += (long) bptr->maxaccess *
    673                              (long) bptr->blocksperrow * sizeof(JBLOCK);
    674       if (SIZE_MAX - maximum_space < new_space)
    675         out_of_memory(cinfo, 11);
    676       maximum_space += new_space;
    677     }
    678   }
    679 
    680   if (space_per_minheight <= 0)
    681     return;                     /* no unrealized arrays, no work */
    682 
    683   /* Determine amount of memory to actually use; this is system-dependent. */
    684   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
    685                                  mem->total_space_allocated);
    686 
    687   /* If the maximum space needed is available, make all the buffers full
    688    * height; otherwise parcel it out with the same number of minheights
    689    * in each buffer.
    690    */
    691   if (avail_mem >= maximum_space)
    692     max_minheights = 1000000000L;
    693   else {
    694     max_minheights = avail_mem / space_per_minheight;
    695     /* If there doesn't seem to be enough space, try to get the minimum
    696      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    697      */
    698     if (max_minheights <= 0)
    699       max_minheights = 1;
    700   }
    701 
    702   /* Allocate the in-memory buffers and initialize backing store as needed. */
    703 
    704   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    705     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    706       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
    707       if (minheights <= max_minheights) {
    708         /* This buffer fits in memory */
    709         sptr->rows_in_mem = sptr->rows_in_array;
    710       } else {
    711         /* It doesn't fit in memory, create backing store. */
    712         sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
    713         jpeg_open_backing_store(cinfo, & sptr->b_s_info,
    714                                 (long) sptr->rows_in_array *
    715                                 (long) sptr->samplesperrow *
    716                                 (long) sizeof(JSAMPLE));
    717         sptr->b_s_open = TRUE;
    718       }
    719       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
    720                                       sptr->samplesperrow, sptr->rows_in_mem);
    721       sptr->rowsperchunk = mem->last_rowsperchunk;
    722       sptr->cur_start_row = 0;
    723       sptr->first_undef_row = 0;
    724       sptr->dirty = FALSE;
    725     }
    726   }
    727 
    728   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    729     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    730       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
    731       if (minheights <= max_minheights) {
    732         /* This buffer fits in memory */
    733         bptr->rows_in_mem = bptr->rows_in_array;
    734       } else {
    735         /* It doesn't fit in memory, create backing store. */
    736         bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
    737         jpeg_open_backing_store(cinfo, & bptr->b_s_info,
    738                                 (long) bptr->rows_in_array *
    739                                 (long) bptr->blocksperrow *
    740                                 (long) sizeof(JBLOCK));
    741         bptr->b_s_open = TRUE;
    742       }
    743       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
    744                                       bptr->blocksperrow, bptr->rows_in_mem);
    745       bptr->rowsperchunk = mem->last_rowsperchunk;
    746       bptr->cur_start_row = 0;
    747       bptr->first_undef_row = 0;
    748       bptr->dirty = FALSE;
    749     }
    750   }
    751 }
    752 
    753 
    754 LOCAL(void)
    755 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
    756 /* Do backing store read or write of a virtual sample array */
    757 {
    758   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    759 
    760   bytesperrow = (long) ptr->samplesperrow * sizeof(JSAMPLE);
    761   file_offset = ptr->cur_start_row * bytesperrow;
    762   /* Loop to read or write each allocation chunk in mem_buffer */
    763   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    764     /* One chunk, but check for short chunk at end of buffer */
    765     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    766     /* Transfer no more than is currently defined */
    767     thisrow = (long) ptr->cur_start_row + i;
    768     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    769     /* Transfer no more than fits in file */
    770     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    771     if (rows <= 0)              /* this chunk might be past end of file! */
    772       break;
    773     byte_count = rows * bytesperrow;
    774     if (writing)
    775       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    776                                             (void *) ptr->mem_buffer[i],
    777                                             file_offset, byte_count);
    778     else
    779       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    780                                            (void *) ptr->mem_buffer[i],
    781                                            file_offset, byte_count);
    782     file_offset += byte_count;
    783   }
    784 }
    785 
    786 
    787 LOCAL(void)
    788 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
    789 /* Do backing store read or write of a virtual coefficient-block array */
    790 {
    791   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    792 
    793   bytesperrow = (long) ptr->blocksperrow * sizeof(JBLOCK);
    794   file_offset = ptr->cur_start_row * bytesperrow;
    795   /* Loop to read or write each allocation chunk in mem_buffer */
    796   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    797     /* One chunk, but check for short chunk at end of buffer */
    798     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    799     /* Transfer no more than is currently defined */
    800     thisrow = (long) ptr->cur_start_row + i;
    801     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    802     /* Transfer no more than fits in file */
    803     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    804     if (rows <= 0)              /* this chunk might be past end of file! */
    805       break;
    806     byte_count = rows * bytesperrow;
    807     if (writing)
    808       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    809                                             (void *) ptr->mem_buffer[i],
    810                                             file_offset, byte_count);
    811     else
    812       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    813                                            (void *) ptr->mem_buffer[i],
    814                                            file_offset, byte_count);
    815     file_offset += byte_count;
    816   }
    817 }
    818 
    819 
    820 METHODDEF(JSAMPARRAY)
    821 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    822                     JDIMENSION start_row, JDIMENSION num_rows,
    823                     boolean writable)
    824 /* Access the part of a virtual sample array starting at start_row */
    825 /* and extending for num_rows rows.  writable is true if  */
    826 /* caller intends to modify the accessed area. */
    827 {
    828   JDIMENSION end_row = start_row + num_rows;
    829   JDIMENSION undef_row;
    830 
    831   /* debugging check */
    832   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    833       ptr->mem_buffer == NULL)
    834     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    835 
    836   /* Make the desired part of the virtual array accessible */
    837   if (start_row < ptr->cur_start_row ||
    838       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    839     if (! ptr->b_s_open)
    840       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    841     /* Flush old buffer contents if necessary */
    842     if (ptr->dirty) {
    843       do_sarray_io(cinfo, ptr, TRUE);
    844       ptr->dirty = FALSE;
    845     }
    846     /* Decide what part of virtual array to access.
    847      * Algorithm: if target address > current window, assume forward scan,
    848      * load starting at target address.  If target address < current window,
    849      * assume backward scan, load so that target area is top of window.
    850      * Note that when switching from forward write to forward read, will have
    851      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    852      */
    853     if (start_row > ptr->cur_start_row) {
    854       ptr->cur_start_row = start_row;
    855     } else {
    856       /* use long arithmetic here to avoid overflow & unsigned problems */
    857       long ltemp;
    858 
    859       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    860       if (ltemp < 0)
    861         ltemp = 0;              /* don't fall off front end of file */
    862       ptr->cur_start_row = (JDIMENSION) ltemp;
    863     }
    864     /* Read in the selected part of the array.
    865      * During the initial write pass, we will do no actual read
    866      * because the selected part is all undefined.
    867      */
    868     do_sarray_io(cinfo, ptr, FALSE);
    869   }
    870   /* Ensure the accessed part of the array is defined; prezero if needed.
    871    * To improve locality of access, we only prezero the part of the array
    872    * that the caller is about to access, not the entire in-memory array.
    873    */
    874   if (ptr->first_undef_row < end_row) {
    875     if (ptr->first_undef_row < start_row) {
    876       if (writable)             /* writer skipped over a section of array */
    877         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    878       undef_row = start_row;    /* but reader is allowed to read ahead */
    879     } else {
    880       undef_row = ptr->first_undef_row;
    881     }
    882     if (writable)
    883       ptr->first_undef_row = end_row;
    884     if (ptr->pre_zero) {
    885       size_t bytesperrow = (size_t) ptr->samplesperrow * sizeof(JSAMPLE);
    886       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    887       end_row -= ptr->cur_start_row;
    888       while (undef_row < end_row) {
    889         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
    890         undef_row++;
    891       }
    892     } else {
    893       if (! writable)           /* reader looking at undefined data */
    894         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    895     }
    896   }
    897   /* Flag the buffer dirty if caller will write in it */
    898   if (writable)
    899     ptr->dirty = TRUE;
    900   /* Return address of proper part of the buffer */
    901   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    902 }
    903 
    904 
    905 METHODDEF(JBLOCKARRAY)
    906 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
    907                     JDIMENSION start_row, JDIMENSION num_rows,
    908                     boolean writable)
    909 /* Access the part of a virtual block array starting at start_row */
    910 /* and extending for num_rows rows.  writable is true if  */
    911 /* caller intends to modify the accessed area. */
    912 {
    913   JDIMENSION end_row = start_row + num_rows;
    914   JDIMENSION undef_row;
    915 
    916   /* debugging check */
    917   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    918       ptr->mem_buffer == NULL)
    919     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    920 
    921   /* Make the desired part of the virtual array accessible */
    922   if (start_row < ptr->cur_start_row ||
    923       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    924     if (! ptr->b_s_open)
    925       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    926     /* Flush old buffer contents if necessary */
    927     if (ptr->dirty) {
    928       do_barray_io(cinfo, ptr, TRUE);
    929       ptr->dirty = FALSE;
    930     }
    931     /* Decide what part of virtual array to access.
    932      * Algorithm: if target address > current window, assume forward scan,
    933      * load starting at target address.  If target address < current window,
    934      * assume backward scan, load so that target area is top of window.
    935      * Note that when switching from forward write to forward read, will have
    936      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    937      */
    938     if (start_row > ptr->cur_start_row) {
    939       ptr->cur_start_row = start_row;
    940     } else {
    941       /* use long arithmetic here to avoid overflow & unsigned problems */
    942       long ltemp;
    943 
    944       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    945       if (ltemp < 0)
    946         ltemp = 0;              /* don't fall off front end of file */
    947       ptr->cur_start_row = (JDIMENSION) ltemp;
    948     }
    949     /* Read in the selected part of the array.
    950      * During the initial write pass, we will do no actual read
    951      * because the selected part is all undefined.
    952      */
    953     do_barray_io(cinfo, ptr, FALSE);
    954   }
    955   /* Ensure the accessed part of the array is defined; prezero if needed.
    956    * To improve locality of access, we only prezero the part of the array
    957    * that the caller is about to access, not the entire in-memory array.
    958    */
    959   if (ptr->first_undef_row < end_row) {
    960     if (ptr->first_undef_row < start_row) {
    961       if (writable)             /* writer skipped over a section of array */
    962         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    963       undef_row = start_row;    /* but reader is allowed to read ahead */
    964     } else {
    965       undef_row = ptr->first_undef_row;
    966     }
    967     if (writable)
    968       ptr->first_undef_row = end_row;
    969     if (ptr->pre_zero) {
    970       size_t bytesperrow = (size_t) ptr->blocksperrow * sizeof(JBLOCK);
    971       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    972       end_row -= ptr->cur_start_row;
    973       while (undef_row < end_row) {
    974         jzero_far((void *) ptr->mem_buffer[undef_row], bytesperrow);
    975         undef_row++;
    976       }
    977     } else {
    978       if (! writable)           /* reader looking at undefined data */
    979         ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    980     }
    981   }
    982   /* Flag the buffer dirty if caller will write in it */
    983   if (writable)
    984     ptr->dirty = TRUE;
    985   /* Return address of proper part of the buffer */
    986   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    987 }
    988 
    989 
    990 /*
    991  * Release all objects belonging to a specified pool.
    992  */
    993 
    994 METHODDEF(void)
    995 free_pool (j_common_ptr cinfo, int pool_id)
    996 {
    997   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    998   small_pool_ptr shdr_ptr;
    999   large_pool_ptr lhdr_ptr;
   1000   size_t space_freed;
   1001 
   1002   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
   1003     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
   1004 
   1005 #ifdef MEM_STATS
   1006   if (cinfo->err->trace_level > 1)
   1007     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
   1008 #endif
   1009 
   1010   /* If freeing IMAGE pool, close any virtual arrays first */
   1011   if (pool_id == JPOOL_IMAGE) {
   1012     jvirt_sarray_ptr sptr;
   1013     jvirt_barray_ptr bptr;
   1014 
   1015     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
   1016       if (sptr->b_s_open) {     /* there may be no backing store */
   1017         sptr->b_s_open = FALSE; /* prevent recursive close if error */
   1018         (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
   1019       }
   1020     }
   1021     mem->virt_sarray_list = NULL;
   1022     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
   1023       if (bptr->b_s_open) {     /* there may be no backing store */
   1024         bptr->b_s_open = FALSE; /* prevent recursive close if error */
   1025         (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
   1026       }
   1027     }
   1028     mem->virt_barray_list = NULL;
   1029   }
   1030 
   1031   /* Release large objects */
   1032   lhdr_ptr = mem->large_list[pool_id];
   1033   mem->large_list[pool_id] = NULL;
   1034 
   1035   while (lhdr_ptr != NULL) {
   1036     large_pool_ptr next_lhdr_ptr = lhdr_ptr->next;
   1037     space_freed = lhdr_ptr->bytes_used +
   1038                   lhdr_ptr->bytes_left +
   1039                   sizeof(large_pool_hdr);
   1040     jpeg_free_large(cinfo, (void *) lhdr_ptr, space_freed);
   1041     mem->total_space_allocated -= space_freed;
   1042     lhdr_ptr = next_lhdr_ptr;
   1043   }
   1044 
   1045   /* Release small objects */
   1046   shdr_ptr = mem->small_list[pool_id];
   1047   mem->small_list[pool_id] = NULL;
   1048 
   1049   while (shdr_ptr != NULL) {
   1050     small_pool_ptr next_shdr_ptr = shdr_ptr->next;
   1051     space_freed = shdr_ptr->bytes_used +
   1052                   shdr_ptr->bytes_left +
   1053                   sizeof(small_pool_hdr);
   1054     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
   1055     mem->total_space_allocated -= space_freed;
   1056     shdr_ptr = next_shdr_ptr;
   1057   }
   1058 }
   1059 
   1060 
   1061 /*
   1062  * Close up shop entirely.
   1063  * Note that this cannot be called unless cinfo->mem is non-NULL.
   1064  */
   1065 
   1066 METHODDEF(void)
   1067 self_destruct (j_common_ptr cinfo)
   1068 {
   1069   int pool;
   1070 
   1071   /* Close all backing store, release all memory.
   1072    * Releasing pools in reverse order might help avoid fragmentation
   1073    * with some (brain-damaged) malloc libraries.
   1074    */
   1075   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1076     free_pool(cinfo, pool);
   1077   }
   1078 
   1079   /* Release the memory manager control block too. */
   1080   jpeg_free_small(cinfo, (void *) cinfo->mem, sizeof(my_memory_mgr));
   1081   cinfo->mem = NULL;            /* ensures I will be called only once */
   1082 
   1083   jpeg_mem_term(cinfo);         /* system-dependent cleanup */
   1084 }
   1085 
   1086 
   1087 /*
   1088  * Memory manager initialization.
   1089  * When this is called, only the error manager pointer is valid in cinfo!
   1090  */
   1091 
   1092 GLOBAL(void)
   1093 jinit_memory_mgr (j_common_ptr cinfo)
   1094 {
   1095   my_mem_ptr mem;
   1096   long max_to_use;
   1097   int pool;
   1098   size_t test_mac;
   1099 
   1100   cinfo->mem = NULL;            /* for safety if init fails */
   1101 
   1102   /* Check for configuration errors.
   1103    * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1104    * doesn't reflect any real hardware alignment requirement.
   1105    * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1106    * in common if and only if X is a power of 2, ie has only one one-bit.
   1107    * Some compilers may give an "unreachable code" warning here; ignore it.
   1108    */
   1109   if ((ALIGN_SIZE & (ALIGN_SIZE-1)) != 0)
   1110     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
   1111   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1112    * a multiple of ALIGN_SIZE.
   1113    * Again, an "unreachable code" warning may be ignored here.
   1114    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1115    */
   1116   test_mac = (size_t) MAX_ALLOC_CHUNK;
   1117   if ((long) test_mac != MAX_ALLOC_CHUNK ||
   1118       (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0)
   1119     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
   1120 
   1121   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
   1122 
   1123   /* Attempt to allocate memory manager's control block */
   1124   mem = (my_mem_ptr) jpeg_get_small(cinfo, sizeof(my_memory_mgr));
   1125 
   1126   if (mem == NULL) {
   1127     jpeg_mem_term(cinfo);       /* system-dependent cleanup */
   1128     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
   1129   }
   1130 
   1131   /* OK, fill in the method pointers */
   1132   mem->pub.alloc_small = alloc_small;
   1133   mem->pub.alloc_large = alloc_large;
   1134   mem->pub.alloc_sarray = alloc_sarray;
   1135   mem->pub.alloc_barray = alloc_barray;
   1136   mem->pub.request_virt_sarray = request_virt_sarray;
   1137   mem->pub.request_virt_barray = request_virt_barray;
   1138   mem->pub.realize_virt_arrays = realize_virt_arrays;
   1139   mem->pub.access_virt_sarray = access_virt_sarray;
   1140   mem->pub.access_virt_barray = access_virt_barray;
   1141   mem->pub.free_pool = free_pool;
   1142   mem->pub.self_destruct = self_destruct;
   1143 
   1144   /* Make MAX_ALLOC_CHUNK accessible to other modules */
   1145   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
   1146 
   1147   /* Initialize working state */
   1148   mem->pub.max_memory_to_use = max_to_use;
   1149 
   1150   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1151     mem->small_list[pool] = NULL;
   1152     mem->large_list[pool] = NULL;
   1153   }
   1154   mem->virt_sarray_list = NULL;
   1155   mem->virt_barray_list = NULL;
   1156 
   1157   mem->total_space_allocated = sizeof(my_memory_mgr);
   1158 
   1159   /* Declare ourselves open for business */
   1160   cinfo->mem = & mem->pub;
   1161 
   1162   /* Check for an environment variable JPEGMEM; if found, override the
   1163    * default max_memory setting from jpeg_mem_init.  Note that the
   1164    * surrounding application may again override this value.
   1165    * If your system doesn't support getenv(), define NO_GETENV to disable
   1166    * this feature.
   1167    */
   1168 #ifndef NO_GETENV
   1169   { char *memenv;
   1170 
   1171     if ((memenv = getenv("JPEGMEM")) != NULL) {
   1172       char ch = 'x';
   1173 
   1174       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
   1175         if (ch == 'm' || ch == 'M')
   1176           max_to_use *= 1000L;
   1177         mem->pub.max_memory_to_use = max_to_use * 1000L;
   1178       }
   1179     }
   1180   }
   1181 #endif
   1182 
   1183 }
   1184