Home | History | Annotate | Download | only in simd
      1 ;
      2 ; jidctfst.asm - fast integer IDCT (64-bit SSE2)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ; Copyright (C) 2009, D. R. Commander.
      6 ;
      7 ; Based on the x86 SIMD extension for IJG JPEG library
      8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
     10 ;
     11 ; This file should be assembled with NASM (Netwide Assembler),
     12 ; can *not* be assembled with Microsoft's MASM or any compatible
     13 ; assembler (including Borland's Turbo Assembler).
     14 ; NASM is available from http://nasm.sourceforge.net/ or
     15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     16 ;
     17 ; This file contains a fast, not so accurate integer implementation of
     18 ; the inverse DCT (Discrete Cosine Transform). The following code is
     19 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
     20 ; for more details.
     21 ;
     22 ; [TAB8]
     23 
     24 %include "jsimdext.inc"
     25 %include "jdct.inc"
     26 
     27 ; --------------------------------------------------------------------------
     28 
     29 %define CONST_BITS      8       ; 14 is also OK.
     30 %define PASS1_BITS      2
     31 
     32 %if IFAST_SCALE_BITS != PASS1_BITS
     33 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
     34 %endif
     35 
     36 %if CONST_BITS == 8
     37 F_1_082 equ     277             ; FIX(1.082392200)
     38 F_1_414 equ     362             ; FIX(1.414213562)
     39 F_1_847 equ     473             ; FIX(1.847759065)
     40 F_2_613 equ     669             ; FIX(2.613125930)
     41 F_1_613 equ     (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
     42 %else
     43 ; NASM cannot do compile-time arithmetic on floating-point constants.
     44 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
     45 F_1_082 equ     DESCALE(1162209775,30-CONST_BITS)       ; FIX(1.082392200)
     46 F_1_414 equ     DESCALE(1518500249,30-CONST_BITS)       ; FIX(1.414213562)
     47 F_1_847 equ     DESCALE(1984016188,30-CONST_BITS)       ; FIX(1.847759065)
     48 F_2_613 equ     DESCALE(2805822602,30-CONST_BITS)       ; FIX(2.613125930)
     49 F_1_613 equ     (F_2_613 - (1 << CONST_BITS))   ; FIX(2.613125930) - FIX(1)
     50 %endif
     51 
     52 ; --------------------------------------------------------------------------
     53         SECTION SEG_CONST
     54 
     55 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
     56 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
     57 
     58 %define PRE_MULTIPLY_SCALE_BITS   2
     59 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
     60 
     61         alignz  16
     62         global  EXTN(jconst_idct_ifast_sse2)
     63 
     64 EXTN(jconst_idct_ifast_sse2):
     65 
     66 PW_F1414        times 8 dw  F_1_414 << CONST_SHIFT
     67 PW_F1847        times 8 dw  F_1_847 << CONST_SHIFT
     68 PW_MF1613       times 8 dw -F_1_613 << CONST_SHIFT
     69 PW_F1082        times 8 dw  F_1_082 << CONST_SHIFT
     70 PB_CENTERJSAMP  times 16 db CENTERJSAMPLE
     71 
     72         alignz  16
     73 
     74 ; --------------------------------------------------------------------------
     75         SECTION SEG_TEXT
     76         BITS    64
     77 ;
     78 ; Perform dequantization and inverse DCT on one block of coefficients.
     79 ;
     80 ; GLOBAL(void)
     81 ; jsimd_idct_ifast_sse2 (void *dct_table, JCOEFPTR coef_block,
     82 ;                       JSAMPARRAY output_buf, JDIMENSION output_col)
     83 ;
     84 
     85 ; r10 = jpeg_component_info *compptr
     86 ; r11 = JCOEFPTR coef_block
     87 ; r12 = JSAMPARRAY output_buf
     88 ; r13 = JDIMENSION output_col
     89 
     90 %define original_rbp    rbp+0
     91 %define wk(i)           rbp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
     92 %define WK_NUM          2
     93 
     94         align   16
     95         global  EXTN(jsimd_idct_ifast_sse2)
     96 
     97 EXTN(jsimd_idct_ifast_sse2):
     98         push    rbp
     99         mov     rax,rsp                         ; rax = original rbp
    100         sub     rsp, byte 4
    101         and     rsp, byte (-SIZEOF_XMMWORD)     ; align to 128 bits
    102         mov     [rsp],rax
    103         mov     rbp,rsp                         ; rbp = aligned rbp
    104         lea     rsp, [wk(0)]
    105         collect_args
    106 
    107         ; ---- Pass 1: process columns from input.
    108 
    109         mov     rdx, r10                ; quantptr
    110         mov     rsi, r11                ; inptr
    111 
    112 %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2
    113         mov     eax, DWORD [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)]
    114         or      eax, DWORD [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)]
    115         jnz     near .columnDCT
    116 
    117         movdqa  xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)]
    118         movdqa  xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)]
    119         por     xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)]
    120         por     xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)]
    121         por     xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)]
    122         por     xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)]
    123         por     xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)]
    124         por     xmm1,xmm0
    125         packsswb xmm1,xmm1
    126         packsswb xmm1,xmm1
    127         movd    eax,xmm1
    128         test    rax,rax
    129         jnz     short .columnDCT
    130 
    131         ; -- AC terms all zero
    132 
    133         movdqa  xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)]
    134         pmullw  xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)]
    135 
    136         movdqa    xmm7,xmm0             ; xmm0=in0=(00 01 02 03 04 05 06 07)
    137         punpcklwd xmm0,xmm0             ; xmm0=(00 00 01 01 02 02 03 03)
    138         punpckhwd xmm7,xmm7             ; xmm7=(04 04 05 05 06 06 07 07)
    139 
    140         pshufd  xmm6,xmm0,0x00          ; xmm6=col0=(00 00 00 00 00 00 00 00)
    141         pshufd  xmm2,xmm0,0x55          ; xmm2=col1=(01 01 01 01 01 01 01 01)
    142         pshufd  xmm5,xmm0,0xAA          ; xmm5=col2=(02 02 02 02 02 02 02 02)
    143         pshufd  xmm0,xmm0,0xFF          ; xmm0=col3=(03 03 03 03 03 03 03 03)
    144         pshufd  xmm1,xmm7,0x00          ; xmm1=col4=(04 04 04 04 04 04 04 04)
    145         pshufd  xmm4,xmm7,0x55          ; xmm4=col5=(05 05 05 05 05 05 05 05)
    146         pshufd  xmm3,xmm7,0xAA          ; xmm3=col6=(06 06 06 06 06 06 06 06)
    147         pshufd  xmm7,xmm7,0xFF          ; xmm7=col7=(07 07 07 07 07 07 07 07)
    148 
    149         movdqa  XMMWORD [wk(0)], xmm2   ; wk(0)=col1
    150         movdqa  XMMWORD [wk(1)], xmm0   ; wk(1)=col3
    151         jmp     near .column_end
    152 %endif
    153 .columnDCT:
    154 
    155         ; -- Even part
    156 
    157         movdqa  xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)]
    158         movdqa  xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)]
    159         pmullw  xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    160         pmullw  xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    161         movdqa  xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)]
    162         movdqa  xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)]
    163         pmullw  xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    164         pmullw  xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    165 
    166         movdqa  xmm4,xmm0
    167         movdqa  xmm5,xmm1
    168         psubw   xmm0,xmm2               ; xmm0=tmp11
    169         psubw   xmm1,xmm3
    170         paddw   xmm4,xmm2               ; xmm4=tmp10
    171         paddw   xmm5,xmm3               ; xmm5=tmp13
    172 
    173         psllw   xmm1,PRE_MULTIPLY_SCALE_BITS
    174         pmulhw  xmm1,[rel PW_F1414]
    175         psubw   xmm1,xmm5               ; xmm1=tmp12
    176 
    177         movdqa  xmm6,xmm4
    178         movdqa  xmm7,xmm0
    179         psubw   xmm4,xmm5               ; xmm4=tmp3
    180         psubw   xmm0,xmm1               ; xmm0=tmp2
    181         paddw   xmm6,xmm5               ; xmm6=tmp0
    182         paddw   xmm7,xmm1               ; xmm7=tmp1
    183 
    184         movdqa  XMMWORD [wk(1)], xmm4   ; wk(1)=tmp3
    185         movdqa  XMMWORD [wk(0)], xmm0   ; wk(0)=tmp2
    186 
    187         ; -- Odd part
    188 
    189         movdqa  xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)]
    190         movdqa  xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)]
    191         pmullw  xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    192         pmullw  xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    193         movdqa  xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)]
    194         movdqa  xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)]
    195         pmullw  xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    196         pmullw  xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_IFAST_MULT_TYPE)]
    197 
    198         movdqa  xmm4,xmm2
    199         movdqa  xmm0,xmm5
    200         psubw   xmm2,xmm1               ; xmm2=z12
    201         psubw   xmm5,xmm3               ; xmm5=z10
    202         paddw   xmm4,xmm1               ; xmm4=z11
    203         paddw   xmm0,xmm3               ; xmm0=z13
    204 
    205         movdqa  xmm1,xmm5               ; xmm1=z10(unscaled)
    206         psllw   xmm2,PRE_MULTIPLY_SCALE_BITS
    207         psllw   xmm5,PRE_MULTIPLY_SCALE_BITS
    208 
    209         movdqa  xmm3,xmm4
    210         psubw   xmm4,xmm0
    211         paddw   xmm3,xmm0               ; xmm3=tmp7
    212 
    213         psllw   xmm4,PRE_MULTIPLY_SCALE_BITS
    214         pmulhw  xmm4,[rel PW_F1414]     ; xmm4=tmp11
    215 
    216         ; To avoid overflow...
    217         ;
    218         ; (Original)
    219         ; tmp12 = -2.613125930 * z10 + z5;
    220         ;
    221         ; (This implementation)
    222         ; tmp12 = (-1.613125930 - 1) * z10 + z5;
    223         ;       = -1.613125930 * z10 - z10 + z5;
    224 
    225         movdqa  xmm0,xmm5
    226         paddw   xmm5,xmm2
    227         pmulhw  xmm5,[rel PW_F1847]     ; xmm5=z5
    228         pmulhw  xmm0,[rel PW_MF1613]
    229         pmulhw  xmm2,[rel PW_F1082]
    230         psubw   xmm0,xmm1
    231         psubw   xmm2,xmm5               ; xmm2=tmp10
    232         paddw   xmm0,xmm5               ; xmm0=tmp12
    233 
    234         ; -- Final output stage
    235 
    236         psubw   xmm0,xmm3               ; xmm0=tmp6
    237         movdqa  xmm1,xmm6
    238         movdqa  xmm5,xmm7
    239         paddw   xmm6,xmm3               ; xmm6=data0=(00 01 02 03 04 05 06 07)
    240         paddw   xmm7,xmm0               ; xmm7=data1=(10 11 12 13 14 15 16 17)
    241         psubw   xmm1,xmm3               ; xmm1=data7=(70 71 72 73 74 75 76 77)
    242         psubw   xmm5,xmm0               ; xmm5=data6=(60 61 62 63 64 65 66 67)
    243         psubw   xmm4,xmm0               ; xmm4=tmp5
    244 
    245         movdqa    xmm3,xmm6             ; transpose coefficients(phase 1)
    246         punpcklwd xmm6,xmm7             ; xmm6=(00 10 01 11 02 12 03 13)
    247         punpckhwd xmm3,xmm7             ; xmm3=(04 14 05 15 06 16 07 17)
    248         movdqa    xmm0,xmm5             ; transpose coefficients(phase 1)
    249         punpcklwd xmm5,xmm1             ; xmm5=(60 70 61 71 62 72 63 73)
    250         punpckhwd xmm0,xmm1             ; xmm0=(64 74 65 75 66 76 67 77)
    251 
    252         movdqa  xmm7, XMMWORD [wk(0)]   ; xmm7=tmp2
    253         movdqa  xmm1, XMMWORD [wk(1)]   ; xmm1=tmp3
    254 
    255         movdqa  XMMWORD [wk(0)], xmm5   ; wk(0)=(60 70 61 71 62 72 63 73)
    256         movdqa  XMMWORD [wk(1)], xmm0   ; wk(1)=(64 74 65 75 66 76 67 77)
    257 
    258         paddw   xmm2,xmm4               ; xmm2=tmp4
    259         movdqa  xmm5,xmm7
    260         movdqa  xmm0,xmm1
    261         paddw   xmm7,xmm4               ; xmm7=data2=(20 21 22 23 24 25 26 27)
    262         paddw   xmm1,xmm2               ; xmm1=data4=(40 41 42 43 44 45 46 47)
    263         psubw   xmm5,xmm4               ; xmm5=data5=(50 51 52 53 54 55 56 57)
    264         psubw   xmm0,xmm2               ; xmm0=data3=(30 31 32 33 34 35 36 37)
    265 
    266         movdqa    xmm4,xmm7             ; transpose coefficients(phase 1)
    267         punpcklwd xmm7,xmm0             ; xmm7=(20 30 21 31 22 32 23 33)
    268         punpckhwd xmm4,xmm0             ; xmm4=(24 34 25 35 26 36 27 37)
    269         movdqa    xmm2,xmm1             ; transpose coefficients(phase 1)
    270         punpcklwd xmm1,xmm5             ; xmm1=(40 50 41 51 42 52 43 53)
    271         punpckhwd xmm2,xmm5             ; xmm2=(44 54 45 55 46 56 47 57)
    272 
    273         movdqa    xmm0,xmm3             ; transpose coefficients(phase 2)
    274         punpckldq xmm3,xmm4             ; xmm3=(04 14 24 34 05 15 25 35)
    275         punpckhdq xmm0,xmm4             ; xmm0=(06 16 26 36 07 17 27 37)
    276         movdqa    xmm5,xmm6             ; transpose coefficients(phase 2)
    277         punpckldq xmm6,xmm7             ; xmm6=(00 10 20 30 01 11 21 31)
    278         punpckhdq xmm5,xmm7             ; xmm5=(02 12 22 32 03 13 23 33)
    279 
    280         movdqa  xmm4, XMMWORD [wk(0)]   ; xmm4=(60 70 61 71 62 72 63 73)
    281         movdqa  xmm7, XMMWORD [wk(1)]   ; xmm7=(64 74 65 75 66 76 67 77)
    282 
    283         movdqa  XMMWORD [wk(0)], xmm3   ; wk(0)=(04 14 24 34 05 15 25 35)
    284         movdqa  XMMWORD [wk(1)], xmm0   ; wk(1)=(06 16 26 36 07 17 27 37)
    285 
    286         movdqa    xmm3,xmm1             ; transpose coefficients(phase 2)
    287         punpckldq xmm1,xmm4             ; xmm1=(40 50 60 70 41 51 61 71)
    288         punpckhdq xmm3,xmm4             ; xmm3=(42 52 62 72 43 53 63 73)
    289         movdqa    xmm0,xmm2             ; transpose coefficients(phase 2)
    290         punpckldq xmm2,xmm7             ; xmm2=(44 54 64 74 45 55 65 75)
    291         punpckhdq xmm0,xmm7             ; xmm0=(46 56 66 76 47 57 67 77)
    292 
    293         movdqa     xmm4,xmm6            ; transpose coefficients(phase 3)
    294         punpcklqdq xmm6,xmm1            ; xmm6=col0=(00 10 20 30 40 50 60 70)
    295         punpckhqdq xmm4,xmm1            ; xmm4=col1=(01 11 21 31 41 51 61 71)
    296         movdqa     xmm7,xmm5            ; transpose coefficients(phase 3)
    297         punpcklqdq xmm5,xmm3            ; xmm5=col2=(02 12 22 32 42 52 62 72)
    298         punpckhqdq xmm7,xmm3            ; xmm7=col3=(03 13 23 33 43 53 63 73)
    299 
    300         movdqa  xmm1, XMMWORD [wk(0)]   ; xmm1=(04 14 24 34 05 15 25 35)
    301         movdqa  xmm3, XMMWORD [wk(1)]   ; xmm3=(06 16 26 36 07 17 27 37)
    302 
    303         movdqa  XMMWORD [wk(0)], xmm4   ; wk(0)=col1
    304         movdqa  XMMWORD [wk(1)], xmm7   ; wk(1)=col3
    305 
    306         movdqa     xmm4,xmm1            ; transpose coefficients(phase 3)
    307         punpcklqdq xmm1,xmm2            ; xmm1=col4=(04 14 24 34 44 54 64 74)
    308         punpckhqdq xmm4,xmm2            ; xmm4=col5=(05 15 25 35 45 55 65 75)
    309         movdqa     xmm7,xmm3            ; transpose coefficients(phase 3)
    310         punpcklqdq xmm3,xmm0            ; xmm3=col6=(06 16 26 36 46 56 66 76)
    311         punpckhqdq xmm7,xmm0            ; xmm7=col7=(07 17 27 37 47 57 67 77)
    312 .column_end:
    313 
    314         ; -- Prefetch the next coefficient block
    315 
    316         prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
    317         prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
    318         prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
    319         prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
    320 
    321         ; ---- Pass 2: process rows from work array, store into output array.
    322 
    323         mov     rax, [original_rbp]
    324         mov     rdi, r12        ; (JSAMPROW *)
    325         mov     eax, r13d
    326 
    327         ; -- Even part
    328 
    329         ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6
    330 
    331         movdqa  xmm2,xmm6
    332         movdqa  xmm0,xmm5
    333         psubw   xmm6,xmm1               ; xmm6=tmp11
    334         psubw   xmm5,xmm3
    335         paddw   xmm2,xmm1               ; xmm2=tmp10
    336         paddw   xmm0,xmm3               ; xmm0=tmp13
    337 
    338         psllw   xmm5,PRE_MULTIPLY_SCALE_BITS
    339         pmulhw  xmm5,[rel PW_F1414]
    340         psubw   xmm5,xmm0               ; xmm5=tmp12
    341 
    342         movdqa  xmm1,xmm2
    343         movdqa  xmm3,xmm6
    344         psubw   xmm2,xmm0               ; xmm2=tmp3
    345         psubw   xmm6,xmm5               ; xmm6=tmp2
    346         paddw   xmm1,xmm0               ; xmm1=tmp0
    347         paddw   xmm3,xmm5               ; xmm3=tmp1
    348 
    349         movdqa  xmm0, XMMWORD [wk(0)]   ; xmm0=col1
    350         movdqa  xmm5, XMMWORD [wk(1)]   ; xmm5=col3
    351 
    352         movdqa  XMMWORD [wk(0)], xmm2   ; wk(0)=tmp3
    353         movdqa  XMMWORD [wk(1)], xmm6   ; wk(1)=tmp2
    354 
    355         ; -- Odd part
    356 
    357         ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7
    358 
    359         movdqa  xmm2,xmm0
    360         movdqa  xmm6,xmm4
    361         psubw   xmm0,xmm7               ; xmm0=z12
    362         psubw   xmm4,xmm5               ; xmm4=z10
    363         paddw   xmm2,xmm7               ; xmm2=z11
    364         paddw   xmm6,xmm5               ; xmm6=z13
    365 
    366         movdqa  xmm7,xmm4               ; xmm7=z10(unscaled)
    367         psllw   xmm0,PRE_MULTIPLY_SCALE_BITS
    368         psllw   xmm4,PRE_MULTIPLY_SCALE_BITS
    369 
    370         movdqa  xmm5,xmm2
    371         psubw   xmm2,xmm6
    372         paddw   xmm5,xmm6               ; xmm5=tmp7
    373 
    374         psllw   xmm2,PRE_MULTIPLY_SCALE_BITS
    375         pmulhw  xmm2,[rel PW_F1414]     ; xmm2=tmp11
    376 
    377         ; To avoid overflow...
    378         ;
    379         ; (Original)
    380         ; tmp12 = -2.613125930 * z10 + z5;
    381         ;
    382         ; (This implementation)
    383         ; tmp12 = (-1.613125930 - 1) * z10 + z5;
    384         ;       = -1.613125930 * z10 - z10 + z5;
    385 
    386         movdqa  xmm6,xmm4
    387         paddw   xmm4,xmm0
    388         pmulhw  xmm4,[rel PW_F1847]     ; xmm4=z5
    389         pmulhw  xmm6,[rel PW_MF1613]
    390         pmulhw  xmm0,[rel PW_F1082]
    391         psubw   xmm6,xmm7
    392         psubw   xmm0,xmm4               ; xmm0=tmp10
    393         paddw   xmm6,xmm4               ; xmm6=tmp12
    394 
    395         ; -- Final output stage
    396 
    397         psubw   xmm6,xmm5               ; xmm6=tmp6
    398         movdqa  xmm7,xmm1
    399         movdqa  xmm4,xmm3
    400         paddw   xmm1,xmm5               ; xmm1=data0=(00 10 20 30 40 50 60 70)
    401         paddw   xmm3,xmm6               ; xmm3=data1=(01 11 21 31 41 51 61 71)
    402         psraw   xmm1,(PASS1_BITS+3)     ; descale
    403         psraw   xmm3,(PASS1_BITS+3)     ; descale
    404         psubw   xmm7,xmm5               ; xmm7=data7=(07 17 27 37 47 57 67 77)
    405         psubw   xmm4,xmm6               ; xmm4=data6=(06 16 26 36 46 56 66 76)
    406         psraw   xmm7,(PASS1_BITS+3)     ; descale
    407         psraw   xmm4,(PASS1_BITS+3)     ; descale
    408         psubw   xmm2,xmm6               ; xmm2=tmp5
    409 
    410         packsswb  xmm1,xmm4     ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76)
    411         packsswb  xmm3,xmm7     ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77)
    412 
    413         movdqa  xmm5, XMMWORD [wk(1)]   ; xmm5=tmp2
    414         movdqa  xmm6, XMMWORD [wk(0)]   ; xmm6=tmp3
    415 
    416         paddw   xmm0,xmm2               ; xmm0=tmp4
    417         movdqa  xmm4,xmm5
    418         movdqa  xmm7,xmm6
    419         paddw   xmm5,xmm2               ; xmm5=data2=(02 12 22 32 42 52 62 72)
    420         paddw   xmm6,xmm0               ; xmm6=data4=(04 14 24 34 44 54 64 74)
    421         psraw   xmm5,(PASS1_BITS+3)     ; descale
    422         psraw   xmm6,(PASS1_BITS+3)     ; descale
    423         psubw   xmm4,xmm2               ; xmm4=data5=(05 15 25 35 45 55 65 75)
    424         psubw   xmm7,xmm0               ; xmm7=data3=(03 13 23 33 43 53 63 73)
    425         psraw   xmm4,(PASS1_BITS+3)     ; descale
    426         psraw   xmm7,(PASS1_BITS+3)     ; descale
    427 
    428         movdqa    xmm2,[rel PB_CENTERJSAMP]     ; xmm2=[rel PB_CENTERJSAMP]
    429 
    430         packsswb  xmm5,xmm6     ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74)
    431         packsswb  xmm7,xmm4     ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75)
    432 
    433         paddb     xmm1,xmm2
    434         paddb     xmm3,xmm2
    435         paddb     xmm5,xmm2
    436         paddb     xmm7,xmm2
    437 
    438         movdqa    xmm0,xmm1     ; transpose coefficients(phase 1)
    439         punpcklbw xmm1,xmm3     ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71)
    440         punpckhbw xmm0,xmm3     ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77)
    441         movdqa    xmm6,xmm5     ; transpose coefficients(phase 1)
    442         punpcklbw xmm5,xmm7     ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73)
    443         punpckhbw xmm6,xmm7     ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75)
    444 
    445         movdqa    xmm4,xmm1     ; transpose coefficients(phase 2)
    446         punpcklwd xmm1,xmm5     ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33)
    447         punpckhwd xmm4,xmm5     ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73)
    448         movdqa    xmm2,xmm6     ; transpose coefficients(phase 2)
    449         punpcklwd xmm6,xmm0     ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37)
    450         punpckhwd xmm2,xmm0     ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77)
    451 
    452         movdqa    xmm3,xmm1     ; transpose coefficients(phase 3)
    453         punpckldq xmm1,xmm6     ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
    454         punpckhdq xmm3,xmm6     ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
    455         movdqa    xmm7,xmm4     ; transpose coefficients(phase 3)
    456         punpckldq xmm4,xmm2     ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57)
    457         punpckhdq xmm7,xmm2     ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77)
    458 
    459         pshufd  xmm5,xmm1,0x4E  ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07)
    460         pshufd  xmm0,xmm3,0x4E  ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27)
    461         pshufd  xmm6,xmm4,0x4E  ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47)
    462         pshufd  xmm2,xmm7,0x4E  ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67)
    463 
    464         mov     rdx, JSAMPROW [rdi+0*SIZEOF_JSAMPROW]
    465         mov     rsi, JSAMPROW [rdi+2*SIZEOF_JSAMPROW]
    466         movq    XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1
    467         movq    XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3
    468         mov     rdx, JSAMPROW [rdi+4*SIZEOF_JSAMPROW]
    469         mov     rsi, JSAMPROW [rdi+6*SIZEOF_JSAMPROW]
    470         movq    XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4
    471         movq    XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7
    472 
    473         mov     rdx, JSAMPROW [rdi+1*SIZEOF_JSAMPROW]
    474         mov     rsi, JSAMPROW [rdi+3*SIZEOF_JSAMPROW]
    475         movq    XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5
    476         movq    XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0
    477         mov     rdx, JSAMPROW [rdi+5*SIZEOF_JSAMPROW]
    478         mov     rsi, JSAMPROW [rdi+7*SIZEOF_JSAMPROW]
    479         movq    XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6
    480         movq    XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2
    481 
    482         uncollect_args
    483         mov     rsp,rbp         ; rsp <- aligned rbp
    484         pop     rsp             ; rsp <- original rbp
    485         pop     rbp
    486         ret
    487         ret
    488 
    489 ; For some reason, the OS X linker does not honor the request to align the
    490 ; segment unless we do this.
    491         align   16
    492