Home | History | Annotate | Download | only in simd
      1 ;
      2 ; jidctfst.asm - fast integer IDCT (SSE2)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ;
      6 ; Based on the x86 SIMD extension for IJG JPEG library
      7 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      8 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
      9 ;
     10 ; This file should be assembled with NASM (Netwide Assembler),
     11 ; can *not* be assembled with Microsoft's MASM or any compatible
     12 ; assembler (including Borland's Turbo Assembler).
     13 ; NASM is available from http://nasm.sourceforge.net/ or
     14 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     15 ;
     16 ; This file contains a fast, not so accurate integer implementation of
     17 ; the inverse DCT (Discrete Cosine Transform). The following code is
     18 ; based directly on the IJG's original jidctfst.c; see the jidctfst.c
     19 ; for more details.
     20 ;
     21 ; [TAB8]
     22 
     23 %include "jsimdext.inc"
     24 %include "jdct.inc"
     25 
     26 ; --------------------------------------------------------------------------
     27 
     28 %define CONST_BITS      8       ; 14 is also OK.
     29 %define PASS1_BITS      2
     30 
     31 %if IFAST_SCALE_BITS != PASS1_BITS
     32 %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'."
     33 %endif
     34 
     35 %if CONST_BITS == 8
     36 F_1_082 equ     277             ; FIX(1.082392200)
     37 F_1_414 equ     362             ; FIX(1.414213562)
     38 F_1_847 equ     473             ; FIX(1.847759065)
     39 F_2_613 equ     669             ; FIX(2.613125930)
     40 F_1_613 equ     (F_2_613 - 256) ; FIX(2.613125930) - FIX(1)
     41 %else
     42 ; NASM cannot do compile-time arithmetic on floating-point constants.
     43 %define DESCALE(x,n)  (((x)+(1<<((n)-1)))>>(n))
     44 F_1_082 equ     DESCALE(1162209775,30-CONST_BITS)       ; FIX(1.082392200)
     45 F_1_414 equ     DESCALE(1518500249,30-CONST_BITS)       ; FIX(1.414213562)
     46 F_1_847 equ     DESCALE(1984016188,30-CONST_BITS)       ; FIX(1.847759065)
     47 F_2_613 equ     DESCALE(2805822602,30-CONST_BITS)       ; FIX(2.613125930)
     48 F_1_613 equ     (F_2_613 - (1 << CONST_BITS))   ; FIX(2.613125930) - FIX(1)
     49 %endif
     50 
     51 ; --------------------------------------------------------------------------
     52         SECTION SEG_CONST
     53 
     54 ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow)
     55 ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw)
     56 
     57 %define PRE_MULTIPLY_SCALE_BITS   2
     58 %define CONST_SHIFT     (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS)
     59 
     60         alignz  16
     61         global  EXTN(jconst_idct_ifast_sse2)
     62 
     63 EXTN(jconst_idct_ifast_sse2):
     64 
     65 PW_F1414        times 8 dw  F_1_414 << CONST_SHIFT
     66 PW_F1847        times 8 dw  F_1_847 << CONST_SHIFT
     67 PW_MF1613       times 8 dw -F_1_613 << CONST_SHIFT
     68 PW_F1082        times 8 dw  F_1_082 << CONST_SHIFT
     69 PB_CENTERJSAMP  times 16 db CENTERJSAMPLE
     70 
     71         alignz  16
     72 
     73 ; --------------------------------------------------------------------------
     74         SECTION SEG_TEXT
     75         BITS    32
     76 ;
     77 ; Perform dequantization and inverse DCT on one block of coefficients.
     78 ;
     79 ; GLOBAL(void)
     80 ; jsimd_idct_ifast_sse2 (void *dct_table, JCOEFPTR coef_block,
     81 ;                       JSAMPARRAY output_buf, JDIMENSION output_col)
     82 ;
     83 
     84 %define dct_table(b)    (b)+8           ; jpeg_component_info *compptr
     85 %define coef_block(b)   (b)+12          ; JCOEFPTR coef_block
     86 %define output_buf(b)   (b)+16          ; JSAMPARRAY output_buf
     87 %define output_col(b)   (b)+20          ; JDIMENSION output_col
     88 
     89 %define original_ebp    ebp+0
     90 %define wk(i)           ebp-(WK_NUM-(i))*SIZEOF_XMMWORD ; xmmword wk[WK_NUM]
     91 %define WK_NUM          2
     92 
     93         align   16
     94         global  EXTN(jsimd_idct_ifast_sse2)
     95 
     96 EXTN(jsimd_idct_ifast_sse2):
     97         push    ebp
     98         mov     eax,esp                         ; eax = original ebp
     99         sub     esp, byte 4
    100         and     esp, byte (-SIZEOF_XMMWORD)     ; align to 128 bits
    101         mov     [esp],eax
    102         mov     ebp,esp                         ; ebp = aligned ebp
    103         lea     esp, [wk(0)]
    104         pushpic ebx
    105 ;       push    ecx             ; unused
    106 ;       push    edx             ; need not be preserved
    107         push    esi
    108         push    edi
    109 
    110         get_GOT ebx             ; get GOT address
    111 
    112         ; ---- Pass 1: process columns from input.
    113 
    114 ;       mov     eax, [original_ebp]
    115         mov     edx, POINTER [dct_table(eax)]           ; quantptr
    116         mov     esi, JCOEFPTR [coef_block(eax)]         ; inptr
    117 
    118 %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2
    119         mov     eax, DWORD [DWBLOCK(1,0,esi,SIZEOF_JCOEF)]
    120         or      eax, DWORD [DWBLOCK(2,0,esi,SIZEOF_JCOEF)]
    121         jnz     near .columnDCT
    122 
    123         movdqa  xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
    124         movdqa  xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
    125         por     xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
    126         por     xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
    127         por     xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
    128         por     xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
    129         por     xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
    130         por     xmm1,xmm0
    131         packsswb xmm1,xmm1
    132         packsswb xmm1,xmm1
    133         movd    eax,xmm1
    134         test    eax,eax
    135         jnz     short .columnDCT
    136 
    137         ; -- AC terms all zero
    138 
    139         movdqa  xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
    140         pmullw  xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)]
    141 
    142         movdqa    xmm7,xmm0             ; xmm0=in0=(00 01 02 03 04 05 06 07)
    143         punpcklwd xmm0,xmm0             ; xmm0=(00 00 01 01 02 02 03 03)
    144         punpckhwd xmm7,xmm7             ; xmm7=(04 04 05 05 06 06 07 07)
    145 
    146         pshufd  xmm6,xmm0,0x00          ; xmm6=col0=(00 00 00 00 00 00 00 00)
    147         pshufd  xmm2,xmm0,0x55          ; xmm2=col1=(01 01 01 01 01 01 01 01)
    148         pshufd  xmm5,xmm0,0xAA          ; xmm5=col2=(02 02 02 02 02 02 02 02)
    149         pshufd  xmm0,xmm0,0xFF          ; xmm0=col3=(03 03 03 03 03 03 03 03)
    150         pshufd  xmm1,xmm7,0x00          ; xmm1=col4=(04 04 04 04 04 04 04 04)
    151         pshufd  xmm4,xmm7,0x55          ; xmm4=col5=(05 05 05 05 05 05 05 05)
    152         pshufd  xmm3,xmm7,0xAA          ; xmm3=col6=(06 06 06 06 06 06 06 06)
    153         pshufd  xmm7,xmm7,0xFF          ; xmm7=col7=(07 07 07 07 07 07 07 07)
    154 
    155         movdqa  XMMWORD [wk(0)], xmm2   ; wk(0)=col1
    156         movdqa  XMMWORD [wk(1)], xmm0   ; wk(1)=col3
    157         jmp     near .column_end
    158         alignx  16,7
    159 %endif
    160 .columnDCT:
    161 
    162         ; -- Even part
    163 
    164         movdqa  xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)]
    165         movdqa  xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)]
    166         pmullw  xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    167         pmullw  xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    168         movdqa  xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)]
    169         movdqa  xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)]
    170         pmullw  xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    171         pmullw  xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    172 
    173         movdqa  xmm4,xmm0
    174         movdqa  xmm5,xmm1
    175         psubw   xmm0,xmm2               ; xmm0=tmp11
    176         psubw   xmm1,xmm3
    177         paddw   xmm4,xmm2               ; xmm4=tmp10
    178         paddw   xmm5,xmm3               ; xmm5=tmp13
    179 
    180         psllw   xmm1,PRE_MULTIPLY_SCALE_BITS
    181         pmulhw  xmm1,[GOTOFF(ebx,PW_F1414)]
    182         psubw   xmm1,xmm5               ; xmm1=tmp12
    183 
    184         movdqa  xmm6,xmm4
    185         movdqa  xmm7,xmm0
    186         psubw   xmm4,xmm5               ; xmm4=tmp3
    187         psubw   xmm0,xmm1               ; xmm0=tmp2
    188         paddw   xmm6,xmm5               ; xmm6=tmp0
    189         paddw   xmm7,xmm1               ; xmm7=tmp1
    190 
    191         movdqa  XMMWORD [wk(1)], xmm4   ; wk(1)=tmp3
    192         movdqa  XMMWORD [wk(0)], xmm0   ; wk(0)=tmp2
    193 
    194         ; -- Odd part
    195 
    196         movdqa  xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)]
    197         movdqa  xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)]
    198         pmullw  xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    199         pmullw  xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    200         movdqa  xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)]
    201         movdqa  xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)]
    202         pmullw  xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    203         pmullw  xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)]
    204 
    205         movdqa  xmm4,xmm2
    206         movdqa  xmm0,xmm5
    207         psubw   xmm2,xmm1               ; xmm2=z12
    208         psubw   xmm5,xmm3               ; xmm5=z10
    209         paddw   xmm4,xmm1               ; xmm4=z11
    210         paddw   xmm0,xmm3               ; xmm0=z13
    211 
    212         movdqa  xmm1,xmm5               ; xmm1=z10(unscaled)
    213         psllw   xmm2,PRE_MULTIPLY_SCALE_BITS
    214         psllw   xmm5,PRE_MULTIPLY_SCALE_BITS
    215 
    216         movdqa  xmm3,xmm4
    217         psubw   xmm4,xmm0
    218         paddw   xmm3,xmm0               ; xmm3=tmp7
    219 
    220         psllw   xmm4,PRE_MULTIPLY_SCALE_BITS
    221         pmulhw  xmm4,[GOTOFF(ebx,PW_F1414)]     ; xmm4=tmp11
    222 
    223         ; To avoid overflow...
    224         ;
    225         ; (Original)
    226         ; tmp12 = -2.613125930 * z10 + z5;
    227         ;
    228         ; (This implementation)
    229         ; tmp12 = (-1.613125930 - 1) * z10 + z5;
    230         ;       = -1.613125930 * z10 - z10 + z5;
    231 
    232         movdqa  xmm0,xmm5
    233         paddw   xmm5,xmm2
    234         pmulhw  xmm5,[GOTOFF(ebx,PW_F1847)]     ; xmm5=z5
    235         pmulhw  xmm0,[GOTOFF(ebx,PW_MF1613)]
    236         pmulhw  xmm2,[GOTOFF(ebx,PW_F1082)]
    237         psubw   xmm0,xmm1
    238         psubw   xmm2,xmm5               ; xmm2=tmp10
    239         paddw   xmm0,xmm5               ; xmm0=tmp12
    240 
    241         ; -- Final output stage
    242 
    243         psubw   xmm0,xmm3               ; xmm0=tmp6
    244         movdqa  xmm1,xmm6
    245         movdqa  xmm5,xmm7
    246         paddw   xmm6,xmm3               ; xmm6=data0=(00 01 02 03 04 05 06 07)
    247         paddw   xmm7,xmm0               ; xmm7=data1=(10 11 12 13 14 15 16 17)
    248         psubw   xmm1,xmm3               ; xmm1=data7=(70 71 72 73 74 75 76 77)
    249         psubw   xmm5,xmm0               ; xmm5=data6=(60 61 62 63 64 65 66 67)
    250         psubw   xmm4,xmm0               ; xmm4=tmp5
    251 
    252         movdqa    xmm3,xmm6             ; transpose coefficients(phase 1)
    253         punpcklwd xmm6,xmm7             ; xmm6=(00 10 01 11 02 12 03 13)
    254         punpckhwd xmm3,xmm7             ; xmm3=(04 14 05 15 06 16 07 17)
    255         movdqa    xmm0,xmm5             ; transpose coefficients(phase 1)
    256         punpcklwd xmm5,xmm1             ; xmm5=(60 70 61 71 62 72 63 73)
    257         punpckhwd xmm0,xmm1             ; xmm0=(64 74 65 75 66 76 67 77)
    258 
    259         movdqa  xmm7, XMMWORD [wk(0)]   ; xmm7=tmp2
    260         movdqa  xmm1, XMMWORD [wk(1)]   ; xmm1=tmp3
    261 
    262         movdqa  XMMWORD [wk(0)], xmm5   ; wk(0)=(60 70 61 71 62 72 63 73)
    263         movdqa  XMMWORD [wk(1)], xmm0   ; wk(1)=(64 74 65 75 66 76 67 77)
    264 
    265         paddw   xmm2,xmm4               ; xmm2=tmp4
    266         movdqa  xmm5,xmm7
    267         movdqa  xmm0,xmm1
    268         paddw   xmm7,xmm4               ; xmm7=data2=(20 21 22 23 24 25 26 27)
    269         paddw   xmm1,xmm2               ; xmm1=data4=(40 41 42 43 44 45 46 47)
    270         psubw   xmm5,xmm4               ; xmm5=data5=(50 51 52 53 54 55 56 57)
    271         psubw   xmm0,xmm2               ; xmm0=data3=(30 31 32 33 34 35 36 37)
    272 
    273         movdqa    xmm4,xmm7             ; transpose coefficients(phase 1)
    274         punpcklwd xmm7,xmm0             ; xmm7=(20 30 21 31 22 32 23 33)
    275         punpckhwd xmm4,xmm0             ; xmm4=(24 34 25 35 26 36 27 37)
    276         movdqa    xmm2,xmm1             ; transpose coefficients(phase 1)
    277         punpcklwd xmm1,xmm5             ; xmm1=(40 50 41 51 42 52 43 53)
    278         punpckhwd xmm2,xmm5             ; xmm2=(44 54 45 55 46 56 47 57)
    279 
    280         movdqa    xmm0,xmm3             ; transpose coefficients(phase 2)
    281         punpckldq xmm3,xmm4             ; xmm3=(04 14 24 34 05 15 25 35)
    282         punpckhdq xmm0,xmm4             ; xmm0=(06 16 26 36 07 17 27 37)
    283         movdqa    xmm5,xmm6             ; transpose coefficients(phase 2)
    284         punpckldq xmm6,xmm7             ; xmm6=(00 10 20 30 01 11 21 31)
    285         punpckhdq xmm5,xmm7             ; xmm5=(02 12 22 32 03 13 23 33)
    286 
    287         movdqa  xmm4, XMMWORD [wk(0)]   ; xmm4=(60 70 61 71 62 72 63 73)
    288         movdqa  xmm7, XMMWORD [wk(1)]   ; xmm7=(64 74 65 75 66 76 67 77)
    289 
    290         movdqa  XMMWORD [wk(0)], xmm3   ; wk(0)=(04 14 24 34 05 15 25 35)
    291         movdqa  XMMWORD [wk(1)], xmm0   ; wk(1)=(06 16 26 36 07 17 27 37)
    292 
    293         movdqa    xmm3,xmm1             ; transpose coefficients(phase 2)
    294         punpckldq xmm1,xmm4             ; xmm1=(40 50 60 70 41 51 61 71)
    295         punpckhdq xmm3,xmm4             ; xmm3=(42 52 62 72 43 53 63 73)
    296         movdqa    xmm0,xmm2             ; transpose coefficients(phase 2)
    297         punpckldq xmm2,xmm7             ; xmm2=(44 54 64 74 45 55 65 75)
    298         punpckhdq xmm0,xmm7             ; xmm0=(46 56 66 76 47 57 67 77)
    299 
    300         movdqa     xmm4,xmm6            ; transpose coefficients(phase 3)
    301         punpcklqdq xmm6,xmm1            ; xmm6=col0=(00 10 20 30 40 50 60 70)
    302         punpckhqdq xmm4,xmm1            ; xmm4=col1=(01 11 21 31 41 51 61 71)
    303         movdqa     xmm7,xmm5            ; transpose coefficients(phase 3)
    304         punpcklqdq xmm5,xmm3            ; xmm5=col2=(02 12 22 32 42 52 62 72)
    305         punpckhqdq xmm7,xmm3            ; xmm7=col3=(03 13 23 33 43 53 63 73)
    306 
    307         movdqa  xmm1, XMMWORD [wk(0)]   ; xmm1=(04 14 24 34 05 15 25 35)
    308         movdqa  xmm3, XMMWORD [wk(1)]   ; xmm3=(06 16 26 36 07 17 27 37)
    309 
    310         movdqa  XMMWORD [wk(0)], xmm4   ; wk(0)=col1
    311         movdqa  XMMWORD [wk(1)], xmm7   ; wk(1)=col3
    312 
    313         movdqa     xmm4,xmm1            ; transpose coefficients(phase 3)
    314         punpcklqdq xmm1,xmm2            ; xmm1=col4=(04 14 24 34 44 54 64 74)
    315         punpckhqdq xmm4,xmm2            ; xmm4=col5=(05 15 25 35 45 55 65 75)
    316         movdqa     xmm7,xmm3            ; transpose coefficients(phase 3)
    317         punpcklqdq xmm3,xmm0            ; xmm3=col6=(06 16 26 36 46 56 66 76)
    318         punpckhqdq xmm7,xmm0            ; xmm7=col7=(07 17 27 37 47 57 67 77)
    319 .column_end:
    320 
    321         ; -- Prefetch the next coefficient block
    322 
    323         prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32]
    324         prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32]
    325         prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32]
    326         prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32]
    327 
    328         ; ---- Pass 2: process rows from work array, store into output array.
    329 
    330         mov     eax, [original_ebp]
    331         mov     edi, JSAMPARRAY [output_buf(eax)]       ; (JSAMPROW *)
    332         mov     eax, JDIMENSION [output_col(eax)]
    333 
    334         ; -- Even part
    335 
    336         ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6
    337 
    338         movdqa  xmm2,xmm6
    339         movdqa  xmm0,xmm5
    340         psubw   xmm6,xmm1               ; xmm6=tmp11
    341         psubw   xmm5,xmm3
    342         paddw   xmm2,xmm1               ; xmm2=tmp10
    343         paddw   xmm0,xmm3               ; xmm0=tmp13
    344 
    345         psllw   xmm5,PRE_MULTIPLY_SCALE_BITS
    346         pmulhw  xmm5,[GOTOFF(ebx,PW_F1414)]
    347         psubw   xmm5,xmm0               ; xmm5=tmp12
    348 
    349         movdqa  xmm1,xmm2
    350         movdqa  xmm3,xmm6
    351         psubw   xmm2,xmm0               ; xmm2=tmp3
    352         psubw   xmm6,xmm5               ; xmm6=tmp2
    353         paddw   xmm1,xmm0               ; xmm1=tmp0
    354         paddw   xmm3,xmm5               ; xmm3=tmp1
    355 
    356         movdqa  xmm0, XMMWORD [wk(0)]   ; xmm0=col1
    357         movdqa  xmm5, XMMWORD [wk(1)]   ; xmm5=col3
    358 
    359         movdqa  XMMWORD [wk(0)], xmm2   ; wk(0)=tmp3
    360         movdqa  XMMWORD [wk(1)], xmm6   ; wk(1)=tmp2
    361 
    362         ; -- Odd part
    363 
    364         ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7
    365 
    366         movdqa  xmm2,xmm0
    367         movdqa  xmm6,xmm4
    368         psubw   xmm0,xmm7               ; xmm0=z12
    369         psubw   xmm4,xmm5               ; xmm4=z10
    370         paddw   xmm2,xmm7               ; xmm2=z11
    371         paddw   xmm6,xmm5               ; xmm6=z13
    372 
    373         movdqa  xmm7,xmm4               ; xmm7=z10(unscaled)
    374         psllw   xmm0,PRE_MULTIPLY_SCALE_BITS
    375         psllw   xmm4,PRE_MULTIPLY_SCALE_BITS
    376 
    377         movdqa  xmm5,xmm2
    378         psubw   xmm2,xmm6
    379         paddw   xmm5,xmm6               ; xmm5=tmp7
    380 
    381         psllw   xmm2,PRE_MULTIPLY_SCALE_BITS
    382         pmulhw  xmm2,[GOTOFF(ebx,PW_F1414)]     ; xmm2=tmp11
    383 
    384         ; To avoid overflow...
    385         ;
    386         ; (Original)
    387         ; tmp12 = -2.613125930 * z10 + z5;
    388         ;
    389         ; (This implementation)
    390         ; tmp12 = (-1.613125930 - 1) * z10 + z5;
    391         ;       = -1.613125930 * z10 - z10 + z5;
    392 
    393         movdqa  xmm6,xmm4
    394         paddw   xmm4,xmm0
    395         pmulhw  xmm4,[GOTOFF(ebx,PW_F1847)]     ; xmm4=z5
    396         pmulhw  xmm6,[GOTOFF(ebx,PW_MF1613)]
    397         pmulhw  xmm0,[GOTOFF(ebx,PW_F1082)]
    398         psubw   xmm6,xmm7
    399         psubw   xmm0,xmm4               ; xmm0=tmp10
    400         paddw   xmm6,xmm4               ; xmm6=tmp12
    401 
    402         ; -- Final output stage
    403 
    404         psubw   xmm6,xmm5               ; xmm6=tmp6
    405         movdqa  xmm7,xmm1
    406         movdqa  xmm4,xmm3
    407         paddw   xmm1,xmm5               ; xmm1=data0=(00 10 20 30 40 50 60 70)
    408         paddw   xmm3,xmm6               ; xmm3=data1=(01 11 21 31 41 51 61 71)
    409         psraw   xmm1,(PASS1_BITS+3)     ; descale
    410         psraw   xmm3,(PASS1_BITS+3)     ; descale
    411         psubw   xmm7,xmm5               ; xmm7=data7=(07 17 27 37 47 57 67 77)
    412         psubw   xmm4,xmm6               ; xmm4=data6=(06 16 26 36 46 56 66 76)
    413         psraw   xmm7,(PASS1_BITS+3)     ; descale
    414         psraw   xmm4,(PASS1_BITS+3)     ; descale
    415         psubw   xmm2,xmm6               ; xmm2=tmp5
    416 
    417         packsswb  xmm1,xmm4     ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76)
    418         packsswb  xmm3,xmm7     ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77)
    419 
    420         movdqa  xmm5, XMMWORD [wk(1)]   ; xmm5=tmp2
    421         movdqa  xmm6, XMMWORD [wk(0)]   ; xmm6=tmp3
    422 
    423         paddw   xmm0,xmm2               ; xmm0=tmp4
    424         movdqa  xmm4,xmm5
    425         movdqa  xmm7,xmm6
    426         paddw   xmm5,xmm2               ; xmm5=data2=(02 12 22 32 42 52 62 72)
    427         paddw   xmm6,xmm0               ; xmm6=data4=(04 14 24 34 44 54 64 74)
    428         psraw   xmm5,(PASS1_BITS+3)     ; descale
    429         psraw   xmm6,(PASS1_BITS+3)     ; descale
    430         psubw   xmm4,xmm2               ; xmm4=data5=(05 15 25 35 45 55 65 75)
    431         psubw   xmm7,xmm0               ; xmm7=data3=(03 13 23 33 43 53 63 73)
    432         psraw   xmm4,(PASS1_BITS+3)     ; descale
    433         psraw   xmm7,(PASS1_BITS+3)     ; descale
    434 
    435         movdqa    xmm2,[GOTOFF(ebx,PB_CENTERJSAMP)]     ; xmm2=[PB_CENTERJSAMP]
    436 
    437         packsswb  xmm5,xmm6     ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74)
    438         packsswb  xmm7,xmm4     ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75)
    439 
    440         paddb     xmm1,xmm2
    441         paddb     xmm3,xmm2
    442         paddb     xmm5,xmm2
    443         paddb     xmm7,xmm2
    444 
    445         movdqa    xmm0,xmm1     ; transpose coefficients(phase 1)
    446         punpcklbw xmm1,xmm3     ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71)
    447         punpckhbw xmm0,xmm3     ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77)
    448         movdqa    xmm6,xmm5     ; transpose coefficients(phase 1)
    449         punpcklbw xmm5,xmm7     ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73)
    450         punpckhbw xmm6,xmm7     ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75)
    451 
    452         movdqa    xmm4,xmm1     ; transpose coefficients(phase 2)
    453         punpcklwd xmm1,xmm5     ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33)
    454         punpckhwd xmm4,xmm5     ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73)
    455         movdqa    xmm2,xmm6     ; transpose coefficients(phase 2)
    456         punpcklwd xmm6,xmm0     ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37)
    457         punpckhwd xmm2,xmm0     ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77)
    458 
    459         movdqa    xmm3,xmm1     ; transpose coefficients(phase 3)
    460         punpckldq xmm1,xmm6     ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17)
    461         punpckhdq xmm3,xmm6     ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37)
    462         movdqa    xmm7,xmm4     ; transpose coefficients(phase 3)
    463         punpckldq xmm4,xmm2     ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57)
    464         punpckhdq xmm7,xmm2     ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77)
    465 
    466         pshufd  xmm5,xmm1,0x4E  ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07)
    467         pshufd  xmm0,xmm3,0x4E  ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27)
    468         pshufd  xmm6,xmm4,0x4E  ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47)
    469         pshufd  xmm2,xmm7,0x4E  ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67)
    470 
    471         mov     edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW]
    472         mov     esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW]
    473         movq    XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1
    474         movq    XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3
    475         mov     edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW]
    476         mov     esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW]
    477         movq    XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4
    478         movq    XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7
    479 
    480         mov     edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW]
    481         mov     esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW]
    482         movq    XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5
    483         movq    XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0
    484         mov     edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW]
    485         mov     esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW]
    486         movq    XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6
    487         movq    XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2
    488 
    489         pop     edi
    490         pop     esi
    491 ;       pop     edx             ; need not be preserved
    492 ;       pop     ecx             ; unused
    493         poppic  ebx
    494         mov     esp,ebp         ; esp <- aligned ebp
    495         pop     esp             ; esp <- original ebp
    496         pop     ebp
    497         ret
    498 
    499 ; For some reason, the OS X linker does not honor the request to align the
    500 ; segment unless we do this.
    501         align   16
    502