Home | History | Annotate | Download | only in doc
      1 <?xml version="1.0" encoding="utf-8"?>
      2 <!DOCTYPE rfc SYSTEM 'rfc2629.dtd'>
      3 <?rfc toc="yes" symrefs="yes" ?>
      4 
      5 <rfc ipr="trust200902" category="std" docName="draft-ietf-codec-opus-14">
      6 
      7 <front>
      8 <title abbrev="Interactive Audio Codec">Definition of the Opus Audio Codec</title>
      9 
     10 
     11 <author initials="JM" surname="Valin" fullname="Jean-Marc Valin">
     12 <organization>Mozilla Corporation</organization>
     13 <address>
     14 <postal>
     15 <street>650 Castro Street</street>
     16 <city>Mountain View</city>
     17 <region>CA</region>
     18 <code>94041</code>
     19 <country>USA</country>
     20 </postal>
     21 <phone>+1 650 903-0800</phone>
     22 <email>jmvalin (a] jmvalin.ca</email>
     23 </address>
     24 </author>
     25 
     26 <author initials="K." surname="Vos" fullname="Koen Vos">
     27 <organization>Skype Technologies S.A.</organization>
     28 <address>
     29 <postal>
     30 <street>Soder Malarstrand 43</street>
     31 <city>Stockholm</city>
     32 <region></region>
     33 <code>11825</code>
     34 <country>SE</country>
     35 </postal>
     36 <phone>+46 73 085 7619</phone>
     37 <email>koen.vos (a] skype.net</email>
     38 </address>
     39 </author>
     40 
     41 <author initials="T." surname="Terriberry" fullname="Timothy B. Terriberry">
     42 <organization>Mozilla Corporation</organization>
     43 <address>
     44 <postal>
     45 <street>650 Castro Street</street>
     46 <city>Mountain View</city>
     47 <region>CA</region>
     48 <code>94041</code>
     49 <country>USA</country>
     50 </postal>
     51 <phone>+1 650 903-0800</phone>
     52 <email>tterriberry (a] mozilla.com</email>
     53 </address>
     54 </author>
     55 
     56 <date day="17" month="May" year="2012" />
     57 
     58 <area>General</area>
     59 
     60 <workgroup></workgroup>
     61 
     62 <abstract>
     63 <t>
     64 This document defines the Opus interactive speech and audio codec.
     65 Opus is designed to handle a wide range of interactive audio applications,
     66  including Voice over IP, videoconferencing, in-game chat, and even live,
     67  distributed music performances.
     68 It scales from low bitrate narrowband speech at 6 kb/s to very high quality
     69  stereo music at 510 kb/s.
     70 Opus uses both linear prediction (LP) and the Modified Discrete Cosine
     71  Transform (MDCT) to achieve good compression of both speech and music.
     72 </t>
     73 </abstract>
     74 </front>
     75 
     76 <middle>
     77 
     78 <section anchor="introduction" title="Introduction">
     79 <t>
     80 The Opus codec is a real-time interactive audio codec designed to meet the requirements
     81 described in <xref target="requirements"></xref>.
     82 It is composed of a linear
     83  prediction (LP)-based <xref target="LPC"/> layer and a Modified Discrete Cosine Transform
     84  (MDCT)-based <xref target="MDCT"/> layer.
     85 The main idea behind using two layers is that in speech, linear prediction
     86  techniques (such as Code-Excited Linear Prediction, or CELP) code low frequencies more efficiently than transform
     87  (e.g., MDCT) domain techniques, while the situation is reversed for music and
     88  higher speech frequencies.
     89 Thus a codec with both layers available can operate over a wider range than
     90  either one alone and, by combining them, achieve better quality than either
     91  one individually.
     92 </t>
     93 
     94 <t>
     95 The primary normative part of this specification is provided by the source code
     96  in <xref target="ref-implementation"></xref>.
     97 Only the decoder portion of this software is normative, though a
     98  significant amount of code is shared by both the encoder and decoder.
     99 <xref target="conformance"/> provides a decoder conformance test.
    100 The decoder contains a great deal of integer and fixed-point arithmetic which
    101  needs to be performed exactly, including all rounding considerations, so any
    102  useful specification requires domain-specific symbolic language to adequately
    103  define these operations.
    104 Additionally, any
    105 conflict between the symbolic representation and the included reference
    106 implementation must be resolved. For the practical reasons of compatibility and
    107 testability it would be advantageous to give the reference implementation
    108 priority in any disagreement. The C language is also one of the most
    109 widely understood human-readable symbolic representations for machine
    110 behavior.
    111 For these reasons this RFC uses the reference implementation as the sole
    112  symbolic representation of the codec.
    113 </t>
    114 
    115 <t>While the symbolic representation is unambiguous and complete it is not
    116 always the easiest way to understand the codec's operation. For this reason
    117 this document also describes significant parts of the codec in English and
    118 takes the opportunity to explain the rationale behind many of the more
    119 surprising elements of the design. These descriptions are intended to be
    120 accurate and informative, but the limitations of common English sometimes
    121 result in ambiguity, so it is expected that the reader will always read
    122 them alongside the symbolic representation. Numerous references to the
    123 implementation are provided for this purpose. The descriptions sometimes
    124 differ from the reference in ordering or through mathematical simplification
    125 wherever such deviation makes an explanation easier to understand.
    126 For example, the right shift and left shift operations in the reference
    127 implementation are often described using division and multiplication in the text.
    128 In general, the text is focused on the "what" and "why" while the symbolic
    129 representation most clearly provides the "how".
    130 </t>
    131 
    132 <section anchor="notation" title="Notation and Conventions">
    133 <t>
    134 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
    135  "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
    136  interpreted as described in RFC 2119 <xref target="rfc2119"></xref>.
    137 </t>
    138 <t>
    139 Various operations in the codec require bit-exact fixed-point behavior, even
    140  when writing a floating point implementation.
    141 The notation "Q&lt;n&gt;", where n is an integer, denotes the number of binary
    142  digits to the right of the decimal point in a fixed-point number.
    143 For example, a signed Q14 value in a 16-bit word can represent values from
    144  -2.0 to 1.99993896484375, inclusive.
    145 This notation is for informational purposes only.
    146 Arithmetic, when described, always operates on the underlying integer.
    147 E.g., the text will explicitly indicate any shifts required after a
    148  multiplication.
    149 </t>
    150 <t>
    151 Expressions, where included in the text, follow C operator rules and
    152  precedence, with the exception that the syntax "x**y" indicates x raised to
    153  the power y.
    154 The text also makes use of the following functions:
    155 </t>
    156 
    157 <section anchor="min" toc="exclude" title="min(x,y)">
    158 <t>
    159 The smallest of two values x and y.
    160 </t>
    161 </section>
    162 
    163 <section anchor="max" toc="exclude" title="max(x,y)">
    164 <t>
    165 The largest of two values x and y.
    166 </t>
    167 </section>
    168 
    169 <section anchor="clamp" toc="exclude" title="clamp(lo,x,hi)">
    170 <figure align="center">
    171 <artwork align="center"><![CDATA[
    172 clamp(lo,x,hi) = max(lo,min(x,hi))
    173 ]]></artwork>
    174 </figure>
    175 <t>
    176 With this definition, if lo&nbsp;&gt;&nbsp;hi, the lower bound is the one that
    177  is enforced.
    178 </t>
    179 </section>
    180 
    181 <section anchor="sign" toc="exclude" title="sign(x)">
    182 <t>
    183 The sign of x, i.e.,
    184 <figure align="center">
    185 <artwork align="center"><![CDATA[
    186           ( -1,  x < 0 ,
    187 sign(x) = <  0,  x == 0 ,
    188           (  1,  x > 0 .
    189 ]]></artwork>
    190 </figure>
    191 </t>
    192 </section>
    193 
    194 <section anchor="abs" toc="exclude" title="abs(x)">
    195 <t>
    196 The absolute value of x, i.e.,
    197 <figure align="center">
    198 <artwork align="center"><![CDATA[
    199 abs(x) = sign(x)*x .
    200 ]]></artwork>
    201 </figure>
    202 </t>
    203 </section>
    204 
    205 <section anchor="floor" toc="exclude" title="floor(f)">
    206 <t>
    207 The largest integer z such that z &lt;= f.
    208 </t>
    209 </section>
    210 
    211 <section anchor="ceil" toc="exclude" title="ceil(f)">
    212 <t>
    213 The smallest integer z such that z &gt;= f.
    214 </t>
    215 </section>
    216 
    217 <section anchor="round" toc="exclude" title="round(f)">
    218 <t>
    219 The integer z nearest to f, with ties rounded towards negative infinity,
    220  i.e.,
    221 <figure align="center">
    222 <artwork align="center"><![CDATA[
    223  round(f) = ceil(f - 0.5) .
    224 ]]></artwork>
    225 </figure>
    226 </t>
    227 </section>
    228 
    229 <section anchor="log2" toc="exclude" title="log2(f)">
    230 <t>
    231 The base-two logarithm of f.
    232 </t>
    233 </section>
    234 
    235 <section anchor="ilog" toc="exclude" title="ilog(n)">
    236 <t>
    237 The minimum number of bits required to store a positive integer n in two's
    238  complement notation, or 0 for a non-positive integer n.
    239 <figure align="center">
    240 <artwork align="center"><![CDATA[
    241           ( 0,                 n <= 0,
    242 ilog(n) = <
    243           ( floor(log2(n))+1,  n > 0
    244 ]]></artwork>
    245 </figure>
    246 Examples:
    247 <list style="symbols">
    248 <t>ilog(-1) = 0</t>
    249 <t>ilog(0) = 0</t>
    250 <t>ilog(1) = 1</t>
    251 <t>ilog(2) = 2</t>
    252 <t>ilog(3) = 2</t>
    253 <t>ilog(4) = 3</t>
    254 <t>ilog(7) = 3</t>
    255 </list>
    256 </t>
    257 </section>
    258 
    259 </section>
    260 
    261 </section>
    262 
    263 <section anchor="overview" title="Opus Codec Overview">
    264 
    265 <t>
    266 The Opus codec scales from 6&nbsp;kb/s narrowband mono speech to 510&nbsp;kb/s
    267  fullband stereo music, with algorithmic delays ranging from 5&nbsp;ms to
    268  65.2&nbsp;ms.
    269 At any given time, either the LP layer, the MDCT layer, or both, may be active.
    270 It can seamlessly switch between all of its various operating modes, giving it
    271  a great deal of flexibility to adapt to varying content and network
    272  conditions without renegotiating the current session.
    273 The codec allows input and output of various audio bandwidths, defined as
    274  follows:
    275 </t>
    276 <texttable anchor="audio-bandwidth">
    277 <ttcol>Abbreviation</ttcol>
    278 <ttcol align="right">Audio Bandwidth</ttcol>
    279 <ttcol align="right">Sample Rate (Effective)</ttcol>
    280 <c>NB (narrowband)</c>       <c>4&nbsp;kHz</c>  <c>8&nbsp;kHz</c>
    281 <c>MB (medium-band)</c>      <c>6&nbsp;kHz</c> <c>12&nbsp;kHz</c>
    282 <c>WB (wideband)</c>         <c>8&nbsp;kHz</c> <c>16&nbsp;kHz</c>
    283 <c>SWB (super-wideband)</c> <c>12&nbsp;kHz</c> <c>24&nbsp;kHz</c>
    284 <c>FB (fullband)</c>        <c>20&nbsp;kHz (*)</c> <c>48&nbsp;kHz</c>
    285 </texttable>
    286 <t>
    287 (*) Although the sampling theorem allows a bandwidth as large as half the
    288  sampling rate, Opus never codes audio above 20&nbsp;kHz, as that is the
    289  generally accepted upper limit of human hearing.
    290 </t>
    291 
    292 <t>
    293 Opus defines super-wideband (SWB) with an effective sample rate of 24&nbsp;kHz,
    294  unlike some other audio coding standards that use 32&nbsp;kHz.
    295 This was chosen for a number of reasons.
    296 The band layout in the MDCT layer naturally allows skipping coefficients for
    297  frequencies over 12&nbsp;kHz, but does not allow cleanly dropping just those
    298  frequencies over 16&nbsp;kHz.
    299 A sample rate of 24&nbsp;kHz also makes resampling in the MDCT layer easier,
    300  as 24 evenly divides 48, and when 24&nbsp;kHz is sufficient, it can save
    301  computation in other processing, such as Acoustic Echo Cancellation (AEC).
    302 Experimental changes to the band layout to allow a 16&nbsp;kHz cutoff
    303  (32&nbsp;kHz effective sample rate) showed potential quality degradations at
    304  other sample rates, and at typical bitrates the number of bits saved by using
    305  such a cutoff instead of coding in fullband (FB) mode is very small.
    306 Therefore, if an application wishes to process a signal sampled at 32&nbsp;kHz,
    307  it should just use FB.
    308 </t>
    309 
    310 <t>
    311 The LP layer is based on the SILK codec
    312  <xref target="SILK"></xref>.
    313 It supports NB, MB, or WB audio and frame sizes from 10&nbsp;ms to 60&nbsp;ms,
    314  and requires an additional 5&nbsp;ms look-ahead for noise shaping estimation.
    315 A small additional delay (up to 1.5 ms) may be required for sampling rate
    316  conversion.
    317 Like Vorbis <xref target='Vorbis-website'/> and many other modern codecs, SILK is inherently designed for
    318  variable-bitrate (VBR) coding, though the encoder can also produce
    319  constant-bitrate (CBR) streams.
    320 The version of SILK used in Opus is substantially modified from, and not
    321  compatible with, the stand-alone SILK codec previously deployed by Skype.
    322 This document does not serve to define that format, but those interested in the
    323  original SILK codec should see <xref target="SILK"/> instead.
    324 </t>
    325 
    326 <t>
    327 The MDCT layer is based on the CELT  codec <xref target="CELT"></xref>.
    328 It supports NB, WB, SWB, or FB audio and frame sizes from 2.5&nbsp;ms to
    329  20&nbsp;ms, and requires an additional 2.5&nbsp;ms look-ahead due to the
    330  overlapping MDCT windows.
    331 The CELT codec is inherently designed for CBR coding, but unlike many CBR
    332  codecs it is not limited to a set of predetermined rates.
    333 It internally allocates bits to exactly fill any given target budget, and an
    334  encoder can produce a VBR stream by varying the target on a per-frame basis.
    335 The MDCT layer is not used for speech when the audio bandwidth is WB or less,
    336  as it is not useful there.
    337 On the other hand, non-speech signals are not always adequately coded using
    338  linear prediction, so for music only the MDCT layer should be used.
    339 </t>
    340 
    341 <t>
    342 A "Hybrid" mode allows the use of both layers simultaneously with a frame size
    343  of 10&nbsp;or 20&nbsp;ms and a SWB or FB audio bandwidth.
    344 The LP layer codes the low frequencies by resampling the signal down to WB.
    345 The MDCT layer follows, coding the high frequency portion of the signal.
    346 The cutoff between the two lies at 8&nbsp;kHz, the maximum WB audio bandwidth.
    347 In the MDCT layer, all bands below 8&nbsp;kHz are discarded, so there is no
    348  coding redundancy between the two layers.
    349 </t>
    350 
    351 <t>
    352 The sample rate (in contrast to the actual audio bandwidth) can be chosen
    353  independently on the encoder and decoder side, e.g., a fullband signal can be
    354  decoded as wideband, or vice versa.
    355 This approach ensures a sender and receiver can always interoperate, regardless
    356  of the capabilities of their actual audio hardware.
    357 Internally, the LP layer always operates at a sample rate of twice the audio
    358  bandwidth, up to a maximum of 16&nbsp;kHz, which it continues to use for SWB
    359  and FB.
    360 The decoder simply resamples its output to support different sample rates.
    361 The MDCT layer always operates internally at a sample rate of 48&nbsp;kHz.
    362 Since all the supported sample rates evenly divide this rate, and since the
    363  the decoder may easily zero out the high frequency portion of the spectrum in
    364  the frequency domain, it can simply decimate the MDCT layer output to achieve
    365  the other supported sample rates very cheaply.
    366 </t>
    367 
    368 <t>
    369 After conversion to the common, desired output sample rate, the decoder simply
    370  adds the output from the two layers together.
    371 To compensate for the different look-ahead required by each layer, the CELT
    372  encoder input is delayed by an additional 2.7&nbsp;ms.
    373 This ensures that low frequencies and high frequencies arrive at the same time.
    374 This extra delay may be reduced by an encoder by using less look-ahead for noise
    375  shaping or using a simpler resampler in the LP layer, but this will reduce
    376  quality.
    377 However, the base 2.5&nbsp;ms look-ahead in the CELT layer cannot be reduced in
    378  the encoder because it is needed for the MDCT overlap, whose size is fixed by
    379  the decoder.
    380 </t>
    381 
    382 <t>
    383 Both layers use the same entropy coder, avoiding any waste from "padding bits"
    384  between them.
    385 The hybrid approach makes it easy to support both CBR and VBR coding.
    386 Although the LP layer is VBR, the bit allocation of the MDCT layer can produce
    387  a final stream that is CBR by using all the bits left unused by the LP layer.
    388 </t>
    389 
    390 <section title="Control Parameters">
    391 <t>
    392 The Opus codec includes a number of control parameters which can be changed dynamically during
    393 regular operation of the codec, without interrupting the audio stream from the encoder to the decoder.
    394 These parameters only affect the encoder since any impact they have on the bit-stream is signaled
    395 in-band such that a decoder can decode any Opus stream without any out-of-band signaling. Any Opus
    396 implementation can add or modify these control parameters without affecting interoperability. The most
    397 important encoder control parameters in the reference encoder are listed below.
    398 </t>
    399 
    400 <section title="Bitrate" toc="exlcude">
    401 <t>
    402 Opus supports all bitrates from 6&nbsp;kb/s to 510&nbsp;kb/s. All other parameters being
    403 equal, higher bitrate results in higher quality. For a frame size of 20&nbsp;ms, these
    404 are the bitrate "sweet spots" for Opus in various configurations:
    405 <list style="symbols">
    406 <t>8-12 kb/s for NB speech,</t>
    407 <t>16-20 kb/s for WB speech,</t>
    408 <t>28-40 kb/s for FB speech,</t>
    409 <t>48-64 kb/s for FB mono music, and</t>
    410 <t>64-128 kb/s for FB stereo music.</t>
    411 </list>
    412 </t>
    413 </section>
    414 
    415 <section title="Number of Channels (Mono/Stereo)" toc="exlcude">
    416 <t>
    417 Opus can transmit either mono or stereo frames within a single stream.
    418 When decoding a mono frame in a stereo decoder, the left and right channels are
    419  identical, and when decoding a stereo frame in a mono decoder, the mono output
    420  is the average of the left and right channels.
    421 In some cases, it is desirable to encode a stereo input stream in mono (e.g.,
    422  because the bitrate is too low to encode stereo with sufficient quality).
    423 The number of channels encoded can be selected in real-time, but by default the
    424  reference encoder attempts to make the best decision possible given the
    425  current bitrate.
    426 </t>
    427 </section>
    428 
    429 <section title="Audio Bandwidth" toc="exlcude">
    430 <t>
    431 The audio bandwidths supported by Opus are listed in
    432  <xref target="audio-bandwidth"/>.
    433 Just like for the number of channels, any decoder can decode audio encoded at
    434  any bandwidth.
    435 For example, any Opus decoder operating at 8&nbsp;kHz can decode a FB Opus
    436  frame, and any Opus decoder operating at 48&nbsp;kHz can decode a NB frame.
    437 Similarly, the reference encoder can take a 48&nbsp;kHz input signal and
    438  encode it as NB.
    439 The higher the audio bandwidth, the higher the required bitrate to achieve
    440  acceptable quality.
    441 The audio bandwidth can be explicitly specified in real-time, but by default
    442  the reference encoder attempts to make the best bandwidth decision possible
    443  given the current bitrate.
    444 </t>
    445 </section>
    446 
    447 
    448 <section title="Frame Duration" toc="exlcude">
    449 <t>
    450 Opus can encode frames of 2.5, 5, 10, 20, 40 or 60&nbsp;ms.
    451 It can also combine multiple frames into packets of up to 120&nbsp;ms.
    452 For real-time applications, sending fewer packets per second reduces the
    453  bitrate, since it reduces the overhead from IP, UDP, and RTP headers.
    454 However, it increases latency and sensitivity to packet losses, as losing one
    455  packet constitutes a loss of a bigger chunk of audio.
    456 Increasing the frame duration also slightly improves coding efficiency, but the
    457  gain becomes small for frame sizes above 20&nbsp;ms.
    458 For this reason, 20&nbsp;ms frames are a good choice for most applications.
    459 </t>
    460 </section>
    461 
    462 <section title="Complexity" toc="exlcude">
    463 <t>
    464 There are various aspects of the Opus encoding process where trade-offs
    465 can be made between CPU complexity and quality/bitrate. In the reference
    466 encoder, the complexity is selected using an integer from 0 to 10, where
    467 0 is the lowest complexity and 10 is the highest. Examples of
    468 computations for which such trade-offs may occur are:
    469 <list style="symbols">
    470 <t>The order of the pitch analysis whitening filter <xref target="Whitening"/>,</t>
    471 <t>The order of the short-term noise shaping filter,</t>
    472 <t>The number of states in delayed decision quantization of the
    473 residual signal, and</t>
    474 <t>The use of certain bit-stream features such as variable time-frequency
    475 resolution and the pitch post-filter.</t>
    476 </list>
    477 </t>
    478 </section>
    479 
    480 <section title="Packet Loss Resilience" toc="exlcude">
    481 <t>
    482 Audio codecs often exploit inter-frame correlations to reduce the
    483 bitrate at a cost in error propagation: after losing one packet
    484 several packets need to be received before the decoder is able to
    485 accurately reconstruct the speech signal.  The extent to which Opus
    486 exploits inter-frame dependencies can be adjusted on the fly to
    487 choose a trade-off between bitrate and amount of error propagation.
    488 </t>
    489 </section>
    490 
    491 <section title="Forward Error Correction (FEC)" toc="exlcude">
    492 <t>
    493    Another mechanism providing robustness against packet loss is the in-band
    494    Forward Error Correction (FEC).  Packets that are determined to
    495    contain perceptually important speech information, such as onsets or
    496    transients, are encoded again at a lower bitrate and this re-encoded
    497    information is added to a subsequent packet.
    498 </t>
    499 </section>
    500 
    501 <section title="Constant/Variable Bitrate" toc="exlcude">
    502 <t>
    503 Opus is more efficient when operating with variable bitrate (VBR), which is
    504 the default. However, in some (rare) applications, constant bitrate (CBR)
    505 is required. There are two main reasons to operate in CBR mode:
    506 <list style="symbols">
    507 <t>When the transport only supports a fixed size for each compressed frame</t>
    508 <t>When encryption is used for an audio stream that is either highly constrained
    509    (e.g. yes/no, recorded prompts) or highly sensitive <xref target="SRTP-VBR"></xref> </t>
    510 </list>
    511 
    512 When low-latency transmission is required over a relatively slow connection, then
    513 constrained VBR can also be used. This uses VBR in a way that simulates a
    514 "bit reservoir" and is equivalent to what MP3 (MPEG 1, Layer 3) and
    515 AAC (Advanced Audio Coding) call CBR (i.e., not true
    516 CBR due to the bit reservoir).
    517 </t>
    518 </section>
    519 
    520 <section title="Discontinuous Transmission (DTX)" toc="exlcude">
    521 <t>
    522    Discontinuous Transmission (DTX) reduces the bitrate during silence
    523    or background noise.  When DTX is enabled, only one frame is encoded
    524    every 400 milliseconds.
    525 </t>
    526 </section>
    527 
    528 </section>
    529 
    530 </section>
    531 
    532 <section anchor="modes" title="Internal Framing">
    533 
    534 <t>
    535 The Opus encoder produces "packets", which are each a contiguous set of bytes
    536  meant to be transmitted as a single unit.
    537 The packets described here do not include such things as IP, UDP, or RTP
    538  headers which are normally found in a transport-layer packet.
    539 A single packet may contain multiple audio frames, so long as they share a
    540  common set of parameters, including the operating mode, audio bandwidth, frame
    541  size, and channel count (mono vs. stereo).
    542 This section describes the possible combinations of these parameters and the
    543  internal framing used to pack multiple frames into a single packet.
    544 This framing is not self-delimiting.
    545 Instead, it assumes that a higher layer (such as UDP or RTP <xref target='RFC3550'/>
    546 or Ogg <xref target='RFC3533'/> or Matroska <xref target='Matroska-website'/>)
    547  will communicate the length, in bytes, of the packet, and it uses this
    548  information to reduce the framing overhead in the packet itself.
    549 A decoder implementation MUST support the framing described in this section.
    550 An alternative, self-delimiting variant of the framing is described in
    551  <xref target="self-delimiting-framing"/>.
    552 Support for that variant is OPTIONAL.
    553 </t>
    554 
    555 <t>
    556 All bit diagrams in this document number the bits so that bit 0 is the most
    557  significant bit of the first byte, and bit 7 is the least significant.
    558 Bit 8 is thus the most significant bit of the second byte, etc.
    559 Well-formed Opus packets obey certain requirements, marked [R1] through [R7]
    560  below.
    561 These are summarized in <xref target="malformed-packets"/> along with
    562  appropriate means of handling malformed packets.
    563 </t>
    564 
    565 <section anchor="toc_byte" title="The TOC Byte">
    566 <t anchor="R1">
    567 A well-formed Opus packet MUST contain at least one byte&nbsp;[R1].
    568 This byte forms a table-of-contents (TOC) header that signals which of the
    569  various modes and configurations a given packet uses.
    570 It is composed of a configuration number, "config", a stereo flag, "s", and a
    571  frame count code, "c", arranged as illustrated in
    572  <xref target="toc_byte_fig"/>.
    573 A description of each of these fields follows.
    574 </t>
    575 
    576 <figure anchor="toc_byte_fig" title="The TOC Byte">
    577 <artwork align="center"><![CDATA[
    578  0
    579  0 1 2 3 4 5 6 7
    580 +-+-+-+-+-+-+-+-+
    581 | config  |s| c |
    582 +-+-+-+-+-+-+-+-+
    583 ]]></artwork>
    584 </figure>
    585 
    586 <t>
    587 The top five bits of the TOC byte, labeled "config", encode one of 32 possible
    588  configurations of operating mode, audio bandwidth, and frame size.
    589 As described, the LP (SILK) layer and MDCT (CELT) layer can be combined in three possible
    590  operating modes:
    591 <list style="numbers">
    592 <t>A SILK-only mode for use in low bitrate connections with an audio bandwidth
    593  of WB or less,</t>
    594 <t>A Hybrid (SILK+CELT) mode for SWB or FB speech at medium bitrates, and</t>
    595 <t>A CELT-only mode for very low delay speech transmission as well as music
    596  transmission (NB to FB).</t>
    597 </list>
    598 The 32 possible configurations each identify which one of these operating modes
    599  the packet uses, as well as the audio bandwidth and the frame size.
    600 <xref target="config_bits"/> lists the parameters for each configuration.
    601 </t>
    602 <texttable anchor="config_bits" title="TOC Byte Configuration Parameters">
    603 <ttcol>Configuration Number(s)</ttcol>
    604 <ttcol>Mode</ttcol>
    605 <ttcol>Bandwidth</ttcol>
    606 <ttcol>Frame Sizes</ttcol>
    607 <c>0...3</c>   <c>SILK-only</c> <c>NB</c>  <c>10, 20, 40, 60&nbsp;ms</c>
    608 <c>4...7</c>   <c>SILK-only</c> <c>MB</c>  <c>10, 20, 40, 60&nbsp;ms</c>
    609 <c>8...11</c>  <c>SILK-only</c> <c>WB</c>  <c>10, 20, 40, 60&nbsp;ms</c>
    610 <c>12...13</c> <c>Hybrid</c>    <c>SWB</c> <c>10, 20&nbsp;ms</c>
    611 <c>14...15</c> <c>Hybrid</c>    <c>FB</c>  <c>10, 20&nbsp;ms</c>
    612 <c>16...19</c> <c>CELT-only</c> <c>NB</c>  <c>2.5, 5, 10, 20&nbsp;ms</c>
    613 <c>20...23</c> <c>CELT-only</c> <c>WB</c>  <c>2.5, 5, 10, 20&nbsp;ms</c>
    614 <c>24...27</c> <c>CELT-only</c> <c>SWB</c> <c>2.5, 5, 10, 20&nbsp;ms</c>
    615 <c>28...31</c> <c>CELT-only</c> <c>FB</c>  <c>2.5, 5, 10, 20&nbsp;ms</c>
    616 </texttable>
    617 <t>
    618 The configuration numbers in each range (e.g., 0...3 for NB SILK-only)
    619  correspond to the various choices of frame size, in the same order.
    620 For example, configuration 0 has a 10&nbsp;ms frame size and configuration 3
    621  has a 60&nbsp;ms frame size.
    622 </t>
    623 
    624 <t>
    625 One additional bit, labeled "s", signals mono vs. stereo, with 0 indicating
    626  mono and 1 indicating stereo.
    627 </t>
    628 
    629 <t>
    630 The remaining two bits of the TOC byte, labeled "c", code the number of frames
    631  per packet (codes 0 to 3) as follows:
    632 <list style="symbols">
    633 <t>0:    1 frame in the packet</t>
    634 <t>1:    2 frames in the packet, each with equal compressed size</t>
    635 <t>2:    2 frames in the packet, with different compressed sizes</t>
    636 <t>3:    an arbitrary number of frames in the packet</t>
    637 </list>
    638 This draft refers to a packet as a code 0 packet, code 1 packet, etc., based on
    639  the value of "c".
    640 </t>
    641 
    642 </section>
    643 
    644 <section title="Frame Packing">
    645 
    646 <t>
    647 This section describes how frames are packed according to each possible value
    648  of "c" in the TOC byte.
    649 </t>
    650 
    651 <section anchor="frame-length-coding" title="Frame Length Coding">
    652 <t>
    653 When a packet contains multiple VBR frames (i.e., code 2 or 3), the compressed
    654  length of one or more of these frames is indicated with a one- or two-byte
    655  sequence, with the meaning of the first byte as follows:
    656 <list style="symbols">
    657 <t>0:          No frame (discontinuous transmission (DTX) or lost packet)</t>
    658 <t>1...251:    Length of the frame in bytes</t>
    659 <t>252...255:  A second byte is needed. The total length is (second_byte*4)+first_byte</t>
    660 </list>
    661 </t>
    662 
    663 <t>
    664 The special length 0 indicates that no frame is available, either because it
    665  was dropped during transmission by some intermediary or because the encoder
    666  chose not to transmit it.
    667 Any Opus frame in any mode MAY have a length of 0.
    668 </t>
    669 
    670 <t>
    671 The maximum representable length is 255*4+255=1275&nbsp;bytes.
    672 For 20&nbsp;ms frames, this represents a bitrate of 510&nbsp;kb/s, which is
    673  approximately the highest useful rate for lossily compressed fullband stereo
    674  music.
    675 Beyond this point, lossless codecs are more appropriate.
    676 It is also roughly the maximum useful rate of the MDCT layer, as shortly
    677  thereafter quality no longer improves with additional bits due to limitations
    678  on the codebook sizes.
    679 </t>
    680 
    681 <t anchor="R2">
    682 No length is transmitted for the last frame in a VBR packet, or for any of the
    683  frames in a CBR packet, as it can be inferred from the total size of the
    684  packet and the size of all other data in the packet.
    685 However, the length of any individual frame MUST NOT exceed
    686  1275&nbsp;bytes&nbsp;[R2], to allow for repacketization by gateways,
    687  conference bridges, or other software.
    688 </t>
    689 </section>
    690 
    691 <section title="Code 0: One Frame in the Packet">
    692 
    693 <t>
    694 For code&nbsp;0 packets, the TOC byte is immediately followed by N-1&nbsp;bytes
    695  of compressed data for a single frame (where N is the size of the packet),
    696  as illustrated in <xref target="code0_packet"/>.
    697 </t>
    698 <figure anchor="code0_packet" title="A Code 0 Packet" align="center">
    699 <artwork align="center"><![CDATA[
    700  0                   1                   2                   3
    701  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    702 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    703 | config  |s|0|0|                                               |
    704 +-+-+-+-+-+-+-+-+                                               |
    705 |                    Compressed frame 1 (N-1 bytes)...          :
    706 :                                                               |
    707 |                                                               |
    708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    709 ]]></artwork>
    710 </figure>
    711 </section>
    712 
    713 <section title="Code 1: Two Frames in the Packet, Each with Equal Compressed Size">
    714 <t anchor="R3">
    715 For code 1 packets, the TOC byte is immediately followed by the
    716  (N-1)/2&nbsp;bytes of compressed data for the first frame, followed by
    717  (N-1)/2&nbsp;bytes of compressed data for the second frame, as illustrated in
    718  <xref target="code1_packet"/>.
    719 The number of payload bytes available for compressed data, N-1, MUST be even
    720  for all code 1 packets&nbsp;[R3].
    721 </t>
    722 <figure anchor="code1_packet" title="A Code 1 Packet" align="center">
    723 <artwork align="center"><![CDATA[
    724  0                   1                   2                   3
    725  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    727 | config  |s|0|1|                                               |
    728 +-+-+-+-+-+-+-+-+                                               :
    729 |             Compressed frame 1 ((N-1)/2 bytes)...             |
    730 :                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    731 |                               |                               |
    732 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               :
    733 |             Compressed frame 2 ((N-1)/2 bytes)...             |
    734 :                                               +-+-+-+-+-+-+-+-+
    735 |                                               |
    736 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    737 ]]></artwork>
    738 </figure>
    739 </section>
    740 
    741 <section title="Code 2: Two Frames in the Packet, with Different Compressed Sizes">
    742 <t anchor="R4">
    743 For code 2 packets, the TOC byte is followed by a one- or two-byte sequence
    744  indicating the length of the first frame (marked N1 in <xref target='code2_packet'/>),
    745  followed by N1 bytes of compressed data for the first frame.
    746 The remaining N-N1-2 or N-N1-3&nbsp;bytes are the compressed data for the
    747  second frame.
    748 This is illustrated in <xref target="code2_packet"/>.
    749 A code 2 packet MUST contain enough bytes to represent a valid length.
    750 For example, a 1-byte code 2 packet is always invalid, and a 2-byte code 2
    751  packet whose second byte is in the range 252...255 is also invalid.
    752 The length of the first frame, N1, MUST also be no larger than the size of the
    753  payload remaining after decoding that length for all code 2 packets&nbsp;[R4].
    754 This makes, for example, a 2-byte code 2 packet with a second byte in the range
    755  1...251 invalid as well (the only valid 2-byte code 2 packet is one where the
    756  length of both frames is zero).
    757 </t>
    758 <figure anchor="code2_packet" title="A Code 2 Packet" align="center">
    759 <artwork align="center"><![CDATA[
    760  0                   1                   2                   3
    761  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    763 | config  |s|1|0| N1 (1-2 bytes):                               |
    764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               :
    765 |               Compressed frame 1 (N1 bytes)...                |
    766 :                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    767 |                               |                               |
    768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
    769 |                     Compressed frame 2...                     :
    770 :                                                               |
    771 |                                                               |
    772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    773 ]]></artwork>
    774 </figure>
    775 </section>
    776 
    777 <section title="Code 3: A Signaled Number of Frames in the Packet">
    778 <t anchor="R5">
    779 Code 3 packets signal the number of frames, as well as additional
    780  padding, called "Opus padding" to indicate that this padding is added at the
    781  Opus layer, rather than at the transport layer.
    782 Code 3 packets MUST have at least 2 bytes&nbsp;[R6,R7].
    783 The TOC byte is followed by a byte encoding the number of frames in the packet
    784  in bits 2 to 7 (marked "M" in <xref target='frame_count_byte'/>), with bit 1 indicating whether
    785  or not Opus padding is inserted (marked "p" in <xref target='frame_count_byte'/>), and bit 0
    786  indicating VBR (marked "v" in <xref target='frame_count_byte'/>).
    787 M MUST NOT be zero, and the audio duration contained within a packet MUST NOT
    788  exceed 120&nbsp;ms&nbsp;[R5].
    789 This limits the maximum frame count for any frame size to 48 (for 2.5&nbsp;ms
    790  frames), with lower limits for longer frame sizes.
    791 <xref target="frame_count_byte"/> illustrates the layout of the frame count
    792  byte.
    793 </t>
    794 <figure anchor="frame_count_byte" title="The frame count byte">
    795 <artwork align="center"><![CDATA[
    796  0
    797  0 1 2 3 4 5 6 7
    798 +-+-+-+-+-+-+-+-+
    799 |v|p|     M     |
    800 +-+-+-+-+-+-+-+-+
    801 ]]></artwork>
    802 </figure>
    803 <t>
    804 When Opus padding is used, the number of bytes of padding is encoded in the
    805  bytes following the frame count byte.
    806 Values from 0...254 indicate that 0...254&nbsp;bytes of padding are included,
    807  in addition to the byte(s) used to indicate the size of the padding.
    808 If the value is 255, then the size of the additional padding is 254&nbsp;bytes,
    809  plus the padding value encoded in the next byte.
    810 There MUST be at least one more byte in the packet in this case&nbsp;[R6,R7].
    811 The additional padding bytes appear at the end of the packet, and MUST be set
    812  to zero by the encoder to avoid creating a covert channel.
    813 The decoder MUST accept any value for the padding bytes, however.
    814 </t>
    815 <t>
    816 Although this encoding provides multiple ways to indicate a given number of
    817  padding bytes, each uses a different number of bytes to indicate the padding
    818  size, and thus will increase the total packet size by a different amount.
    819 For example, to add 255 bytes to a packet, set the padding bit, p, to 1, insert
    820  a single byte after the frame count byte with a value of 254, and append 254
    821  padding bytes with the value zero to the end of the packet.
    822 To add 256 bytes to a packet, set the padding bit to 1, insert two bytes after
    823  the frame count byte with the values 255 and 0, respectively, and append 254
    824  padding bytes with the value zero to the end of the packet.
    825 By using the value 255 multiple times, it is possible to create a packet of any
    826  specific, desired size.
    827 Let P be the number of header bytes used to indicate the padding size plus the
    828  number of padding bytes themselves (i.e., P is the total number of bytes added
    829  to the packet).
    830 Then P MUST be no more than N-2&nbsp;[R6,R7].
    831 </t>
    832 <t anchor="R6">
    833 In the CBR case, let R=N-2-P be the number of bytes remaining in the packet
    834  after subtracting the (optional) padding.
    835 Then the compressed length of each frame in bytes is equal to R/M.
    836 The value R MUST be a non-negative integer multiple of M&nbsp;[R6].
    837 The compressed data for all M frames follows, each of size
    838  R/M&nbsp;bytes, as illustrated in <xref target="code3cbr_packet"/>.
    839 </t>
    840 
    841 <figure anchor="code3cbr_packet" title="A CBR Code 3 Packet" align="center">
    842 <artwork align="center"><![CDATA[
    843  0                   1                   2                   3
    844  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    845 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    846 | config  |s|1|1|0|p|     M     |  Padding length (Optional)    :
    847 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    848 |                                                               |
    849 :               Compressed frame 1 (R/M bytes)...               :
    850 |                                                               |
    851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    852 |                                                               |
    853 :               Compressed frame 2 (R/M bytes)...               :
    854 |                                                               |
    855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    856 |                                                               |
    857 :                              ...                              :
    858 |                                                               |
    859 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    860 |                                                               |
    861 :               Compressed frame M (R/M bytes)...               :
    862 |                                                               |
    863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    864 :                  Opus Padding (Optional)...                   |
    865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    866 ]]></artwork>
    867 </figure>
    868 
    869 <t anchor="R7">
    870 In the VBR case, the (optional) padding length is followed by M-1 frame
    871  lengths (indicated by "N1" to "N[M-1]" in <xref target='code3vbr_packet'/>), each encoded in a
    872  one- or two-byte sequence as described above.
    873 The packet MUST contain enough data for the M-1 lengths after removing the
    874  (optional) padding, and the sum of these lengths MUST be no larger than the
    875  number of bytes remaining in the packet after decoding them&nbsp;[R7].
    876 The compressed data for all M frames follows, each frame consisting of the
    877  indicated number of bytes, with the final frame consuming any remaining bytes
    878  before the final padding, as illustrated in <xref target="code3cbr_packet"/>.
    879 The number of header bytes (TOC byte, frame count byte, padding length bytes,
    880  and frame length bytes), plus the signaled length of the first M-1 frames themselves,
    881  plus the signaled length of the padding MUST be no larger than N, the total size of the
    882  packet.
    883 </t>
    884 
    885 <figure anchor="code3vbr_packet" title="A VBR Code 3 Packet" align="center">
    886 <artwork align="center"><![CDATA[
    887  0                   1                   2                   3
    888  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    890 | config  |s|1|1|1|p|     M     | Padding length (Optional)     :
    891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    892 : N1 (1-2 bytes): N2 (1-2 bytes):     ...       :     N[M-1]    |
    893 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    894 |                                                               |
    895 :               Compressed frame 1 (N1 bytes)...                :
    896 |                                                               |
    897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    898 |                                                               |
    899 :               Compressed frame 2 (N2 bytes)...                :
    900 |                                                               |
    901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    902 |                                                               |
    903 :                              ...                              :
    904 |                                                               |
    905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    906 |                                                               |
    907 :                     Compressed frame M...                     :
    908 |                                                               |
    909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    910 :                  Opus Padding (Optional)...                   |
    911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    912 ]]></artwork>
    913 </figure>
    914 </section>
    915 </section>
    916 
    917 <section anchor="examples" title="Examples">
    918 <t>
    919 Simplest case, one NB mono 20&nbsp;ms SILK frame:
    920 </t>
    921 
    922 <figure anchor='framing_example_1'>
    923 <artwork><![CDATA[
    924  0                   1                   2                   3
    925  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    926 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    927 |    1    |0|0|0|               compressed data...              :
    928 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    929 ]]></artwork>
    930 </figure>
    931 
    932 <t>
    933 Two FB mono 5&nbsp;ms CELT frames of the same compressed size:
    934 </t>
    935 
    936 <figure anchor='framing_example_2'>
    937 <artwork><![CDATA[
    938  0                   1                   2                   3
    939  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    940 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    941 |   29    |0|0|1|               compressed data...              :
    942 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    943 ]]></artwork>
    944 </figure>
    945 
    946 <t>
    947 Two FB mono 20&nbsp;ms Hybrid frames of different compressed size:
    948 </t>
    949 
    950 <figure anchor='framing_example_3'>
    951 <artwork><![CDATA[
    952  0                   1                   2                   3
    953  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    954 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    955 |   15    |0|1|1|1|0|     2     |      N1       |               |
    956 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               |
    957 |                       compressed data...                      :
    958 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    959 ]]></artwork>
    960 </figure>
    961 
    962 <t>
    963 Four FB stereo 20&nbsp;ms CELT frames of the same compressed size:
    964 </t>
    965 
    966 <figure anchor='framing_example_4'>
    967 <artwork><![CDATA[
    968  0                   1                   2                   3
    969  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
    970 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    971 |   31    |1|1|1|0|0|     4     |      compressed data...       :
    972 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    973 ]]></artwork>
    974 </figure>
    975 </section>
    976 
    977 <section anchor="malformed-packets" title="Receiving Malformed Packets">
    978 <t>
    979 A receiver MUST NOT process packets which violate any of the rules above as
    980  normal Opus packets.
    981 They are reserved for future applications, such as in-band headers (containing
    982  metadata, etc.).
    983 Packets which violate these constraints may cause implementations of
    984  <spanx style="emph">this</spanx> specification to treat them as malformed, and
    985  discard them.
    986 </t>
    987 <t>
    988 These constraints are summarized here for reference:
    989 <list style="format [R%d]">
    990 <t>Packets are at least one byte.</t>
    991 <t>No implicit frame length is larger than 1275 bytes.</t>
    992 <t>Code 1 packets have an odd total length, N, so that (N-1)/2 is an
    993  integer.</t>
    994 <t>Code 2 packets have enough bytes after the TOC for a valid frame
    995  length, and that length is no larger than the number of bytes remaining in the
    996  packet.</t>
    997 <t>Code 3 packets contain at least one frame, but no more than 120&nbsp;ms
    998  of audio total.</t>
    999 <t>The length of a CBR code 3 packet, N, is at least two bytes, the number of
   1000  bytes added to indicate the padding size plus the trailing padding bytes
   1001  themselves, P, is no more than N-2, and the frame count, M, satisfies
   1002  the constraint that (N-2-P) is a non-negative integer multiple of M.</t>
   1003 <t>VBR code 3 packets are large enough to contain all the header bytes (TOC
   1004  byte, frame count byte, any padding length bytes, and any frame length bytes),
   1005  plus the length of the first M-1 frames, plus any trailing padding bytes.</t>
   1006 </list>
   1007 </t>
   1008 </section>
   1009 
   1010 </section>
   1011 
   1012 <section title="Opus Decoder">
   1013 <t>
   1014 The Opus decoder consists of two main blocks: the SILK decoder and the CELT
   1015  decoder.
   1016 At any given time, one or both of the SILK and CELT decoders may be active.
   1017 The output of the Opus decode is the sum of the outputs from the SILK and CELT
   1018  decoders with proper sample rate conversion and delay compensation on the SILK
   1019  side, and optional decimation (when decoding to sample rates less than
   1020  48&nbsp;kHz) on the CELT side, as illustrated in the block diagram below.
   1021 </t>
   1022 <figure>
   1023 <artwork>
   1024 <![CDATA[
   1025                          +---------+    +------------+
   1026                          |  SILK   |    |   Sample   |
   1027                       +->| Decoder |--->|    Rate    |----+
   1028 Bit-    +---------+   |  |         |    | Conversion |    v
   1029 stream  |  Range  |---+  +---------+    +------------+  /---\  Audio
   1030 ------->| Decoder |                                     | + |------>
   1031         |         |---+  +---------+    +------------+  \---/
   1032         +---------+   |  |  CELT   |    | Decimation |    ^
   1033                       +->| Decoder |--->| (Optional) |----+
   1034                          |         |    |            |
   1035                          +---------+    +------------+
   1036 ]]>
   1037 </artwork>
   1038 </figure>
   1039 
   1040 <section anchor="range-decoder" title="Range Decoder">
   1041 <t>
   1042 Opus uses an entropy coder based on range coding <xref target="range-coding"></xref>
   1043 <xref target="Martin79"></xref>,
   1044 which is itself a rediscovery of the FIFO arithmetic code introduced by <xref target="coding-thesis"></xref>.
   1045 It is very similar to arithmetic encoding, except that encoding is done with
   1046 digits in any base instead of with bits,
   1047 so it is faster when using larger bases (i.e., a byte). All of the
   1048 calculations in the range coder must use bit-exact integer arithmetic.
   1049 </t>
   1050 <t>
   1051 Symbols may also be coded as "raw bits" packed directly into the bitstream,
   1052  bypassing the range coder.
   1053 These are packed backwards starting at the end of the frame, as illustrated in
   1054  <xref target="rawbits-example"/>.
   1055 This reduces complexity and makes the stream more resilient to bit errors, as
   1056  corruption in the raw bits will not desynchronize the decoding process, unlike
   1057  corruption in the input to the range decoder.
   1058 Raw bits are only used in the CELT layer.
   1059 </t>
   1060 
   1061 <figure anchor="rawbits-example" title="Illustrative example of packing range
   1062  coder and raw bits data">
   1063 <artwork align="center"><![CDATA[
   1064  0                   1                   2                   3
   1065  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   1066 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   1067 | Range coder data (packed MSB to LSB) ->                       :
   1068 +                                                               +
   1069 :                                                               :
   1070 +     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   1071 :     | <- Boundary occurs at an arbitrary bit position         :
   1072 +-+-+-+                                                         +
   1073 :                          <- Raw bits data (packed LSB to MSB) |
   1074 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   1075 ]]></artwork>
   1076 </figure>
   1077 
   1078 <t>
   1079 Each symbol coded by the range coder is drawn from a finite alphabet and coded
   1080  in a separate "context", which describes the size of the alphabet and the
   1081  relative frequency of each symbol in that alphabet.
   1082 </t>
   1083 <t>
   1084 Suppose there is a context with n symbols, identified with an index that ranges
   1085  from 0 to n-1.
   1086 The parameters needed to encode or decode symbol k in this context are
   1087  represented by a three-tuple (fl[k],&nbsp;fh[k],&nbsp;ft), with
   1088  0&nbsp;&lt;=&nbsp;fl[k]&nbsp;&lt;&nbsp;fh[k]&nbsp;&lt;=&nbsp;ft&nbsp;&lt;=&nbsp;65535.
   1089 The values of this tuple are derived from the probability model for the
   1090  symbol, represented by traditional "frequency counts".
   1091 Because Opus uses static contexts these are not updated as symbols are decoded.
   1092 Let f[i] be the frequency of symbol i.
   1093 Then the three-tuple corresponding to symbol k is given by
   1094 </t>
   1095 <figure align="center">
   1096 <artwork align="center"><![CDATA[
   1097         k-1                                   n-1
   1098         __                                    __
   1099 fl[k] = \  f[i],  fh[k] = fl[k] + f[k],  ft = \  f[i]
   1100         /_                                    /_
   1101         i=0                                   i=0
   1102 ]]></artwork>
   1103 </figure>
   1104 <t>
   1105 The range decoder extracts the symbols and integers encoded using the range
   1106  encoder in <xref target="range-encoder"/>.
   1107 The range decoder maintains an internal state vector composed of the two-tuple
   1108  (val,&nbsp;rng), representing the difference between the high end of the
   1109  current range and the actual coded value, minus one, and the size of the
   1110  current range, respectively.
   1111 Both val and rng are 32-bit unsigned integer values.
   1112 </t>
   1113 
   1114 <section anchor="range-decoder-init" title="Range Decoder Initialization">
   1115 <t>
   1116 Let b0 be the first input byte (or zero if there are no bytes in this Opus
   1117  frame).
   1118 The decoder initializes rng to 128 and initializes val to
   1119  (127&nbsp;-&nbsp;(b0&gt;&gt;1)), where (b0&gt;&gt;1) is the top 7 bits of the
   1120  first input byte.
   1121 It saves the remaining bit, (b0&amp;1), for use in the renormalization
   1122  procedure described in <xref target="range-decoder-renorm"/>, which the
   1123  decoder invokes immediately after initialization to read additional bits and
   1124  establish the invariant that rng&nbsp;&gt;&nbsp;2**23.
   1125 </t>
   1126 </section>
   1127 
   1128 <section anchor="decoding-symbols" title="Decoding Symbols">
   1129 <t>
   1130 Decoding a symbol is a two-step process.
   1131 The first step determines a 16-bit unsigned value fs, which lies within the
   1132  range of some symbol in the current context.
   1133 The second step updates the range decoder state with the three-tuple
   1134  (fl[k],&nbsp;fh[k],&nbsp;ft) corresponding to that symbol.
   1135 </t>
   1136 <t>
   1137 The first step is implemented by ec_decode() (entdec.c), which computes
   1138 <figure align="center">
   1139 <artwork align="center"><![CDATA[
   1140                val
   1141 fs = ft - min(------ + 1, ft) .
   1142               rng/ft
   1143 ]]></artwork>
   1144 </figure>
   1145 The divisions here are integer division.
   1146 </t>
   1147 <t>
   1148 The decoder then identifies the symbol in the current context corresponding to
   1149  fs; i.e., the value of k whose three-tuple (fl[k],&nbsp;fh[k],&nbsp;ft)
   1150  satisfies fl[k]&nbsp;&lt;=&nbsp;fs&nbsp;&lt;&nbsp;fh[k].
   1151 It uses this tuple to update val according to
   1152 <figure align="center">
   1153 <artwork align="center"><![CDATA[
   1154             rng
   1155 val = val - --- * (ft - fh[k]) .
   1156             ft
   1157 ]]></artwork>
   1158 </figure>
   1159 If fl[k] is greater than zero, then the decoder updates rng using
   1160 <figure align="center">
   1161 <artwork align="center"><![CDATA[
   1162       rng
   1163 rng = --- * (fh[k] - fl[k]) .
   1164       ft
   1165 ]]></artwork>
   1166 </figure>
   1167 Otherwise, it updates rng using
   1168 <figure align="center">
   1169 <artwork align="center"><![CDATA[
   1170             rng
   1171 rng = rng - --- * (ft - fh[k]) .
   1172             ft
   1173 ]]></artwork>
   1174 </figure>
   1175 </t>
   1176 <t>
   1177 Using a special case for the first symbol (rather than the last symbol, as is
   1178  commonly done in other arithmetic coders) ensures that all the truncation
   1179  error from the finite precision arithmetic accumulates in symbol 0.
   1180 This makes the cost of coding a 0 slightly smaller, on average, than its
   1181  estimated probability indicates and makes the cost of coding any other symbol
   1182  slightly larger.
   1183 When contexts are designed so that 0 is the most probable symbol, which is
   1184  often the case, this strategy minimizes the inefficiency introduced by the
   1185  finite precision.
   1186 It also makes some of the special-case decoding routines in
   1187  <xref target="decoding-alternate"/> particularly simple.
   1188 </t>
   1189 <t>
   1190 After the updates, implemented by ec_dec_update() (entdec.c), the decoder
   1191  normalizes the range using the procedure in the next section, and returns the
   1192  index k.
   1193 </t>
   1194 
   1195 <section anchor="range-decoder-renorm" title="Renormalization">
   1196 <t>
   1197 To normalize the range, the decoder repeats the following process, implemented
   1198  by ec_dec_normalize() (entdec.c), until rng&nbsp;&gt;&nbsp;2**23.
   1199 If rng is already greater than 2**23, the entire process is skipped.
   1200 First, it sets rng to (rng&lt;&lt;8).
   1201 Then it reads the next byte of the Opus frame and forms an 8-bit value sym,
   1202  using the left-over bit buffered from the previous byte as the high bit
   1203  and the top 7 bits of the byte just read as the other 7 bits of sym.
   1204 The remaining bit in the byte just read is buffered for use in the next
   1205  iteration.
   1206 If no more input bytes remain, it uses zero bits instead.
   1207 See <xref target="range-decoder-init"/> for the initialization used to process
   1208  the first byte.
   1209 Then, it sets
   1210 <figure align="center">
   1211 <artwork align="center"><![CDATA[
   1212 val = ((val<<8) + (255-sym)) & 0x7FFFFFFF .
   1213 ]]></artwork>
   1214 </figure>
   1215 </t>
   1216 <t>
   1217 It is normal and expected that the range decoder will read several bytes
   1218  into the raw bits data (if any) at the end of the packet by the time the frame
   1219  is completely decoded, as illustrated in <xref target="finalize-example"/>.
   1220 This same data MUST also be returned as raw bits when requested.
   1221 The encoder is expected to terminate the stream in such a way that the decoder
   1222  will decode the intended values regardless of the data contained in the raw
   1223  bits.
   1224 <xref target="encoder-finalizing"/> describes a procedure for doing this.
   1225 If the range decoder consumes all of the bytes belonging to the current frame,
   1226  it MUST continue to use zero when any further input bytes are required, even
   1227  if there is additional data in the current packet from padding or other
   1228  frames.
   1229 </t>
   1230 
   1231 <figure anchor="finalize-example" title="Illustrative example of raw bits
   1232  overlapping range coder data">
   1233 <artwork align="center"><![CDATA[
   1234  n              n+1             n+2             n+3
   1235  0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
   1236 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   1237 :     | <----------- Overlap region ------------> |             :
   1238 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   1239       ^                                           ^
   1240       |   End of data buffered by the range coder |
   1241 ...-----------------------------------------------+
   1242       |
   1243       | End of data consumed by raw bits
   1244       +-------------------------------------------------------...
   1245 ]]></artwork>
   1246 </figure>
   1247 </section>
   1248 </section>
   1249 
   1250 <section anchor="decoding-alternate" title="Alternate Decoding Methods">
   1251 <t>
   1252 The reference implementation uses three additional decoding methods that are
   1253  exactly equivalent to the above, but make assumptions and simplifications that
   1254  allow for a more efficient implementation.
   1255 </t>
   1256 <section anchor="ec_decode_bin" title="ec_decode_bin()">
   1257 <t>
   1258 The first is ec_decode_bin() (entdec.c), defined using the parameter ftb
   1259  instead of ft.
   1260 It is mathematically equivalent to calling ec_decode() with
   1261  ft&nbsp;=&nbsp;(1&lt;&lt;ftb), but avoids one of the divisions.
   1262 </t>
   1263 </section>
   1264 <section anchor="ec_dec_bit_logp" title="ec_dec_bit_logp()">
   1265 <t>
   1266 The next is ec_dec_bit_logp() (entdec.c), which decodes a single binary symbol,
   1267  replacing both the ec_decode() and ec_dec_update() steps.
   1268 The context is described by a single parameter, logp, which is the absolute
   1269  value of the base-2 logarithm of the probability of a "1".
   1270 It is mathematically equivalent to calling ec_decode() with
   1271  ft&nbsp;=&nbsp;(1&lt;&lt;logp), followed by ec_dec_update() with
   1272  the 3-tuple (fl[k]&nbsp;=&nbsp;0,
   1273  fh[k]&nbsp;=&nbsp;(1&lt;&lt;logp)&nbsp;-&nbsp;1,
   1274  ft&nbsp;=&nbsp;(1&lt;&lt;logp)) if the returned value
   1275  of fs is less than (1&lt;&lt;logp)&nbsp;-&nbsp;1 (a "0" was decoded), and with
   1276  (fl[k]&nbsp;=&nbsp;(1&lt;&lt;logp)&nbsp;-&nbsp;1,
   1277  fh[k]&nbsp;=&nbsp;ft&nbsp;=&nbsp;(1&lt;&lt;logp)) otherwise (a "1" was
   1278  decoded).
   1279 The implementation requires no multiplications or divisions.
   1280 </t>
   1281 </section>
   1282 <section anchor="ec_dec_icdf" title="ec_dec_icdf()">
   1283 <t>
   1284 The last is ec_dec_icdf() (entdec.c), which decodes a single symbol with a
   1285  table-based context of up to 8 bits, also replacing both the ec_decode() and
   1286  ec_dec_update() steps, as well as the search for the decoded symbol in between.
   1287 The context is described by two parameters, an icdf
   1288  ("inverse" cumulative distribution function) table and ftb.
   1289 As with ec_decode_bin(), (1&lt;&lt;ftb) is equivalent to ft.
   1290 idcf[k], on the other hand, stores (1&lt;&lt;ftb)-fh[k], which is equal to
   1291  (1&lt;&lt;ftb)&nbsp;-&nbsp;fl[k+1].
   1292 fl[0] is assumed to be 0, and the table is terminated by a value of 0 (where
   1293  fh[k]&nbsp;==&nbsp;ft).
   1294 </t>
   1295 <t>
   1296 The function is mathematically equivalent to calling ec_decode() with
   1297  ft&nbsp;=&nbsp;(1&lt;&lt;ftb), using the returned value fs to search the table
   1298  for the first entry where fs&nbsp;&lt;&nbsp;(1&lt;&lt;ftb)-icdf[k], and
   1299  calling ec_dec_update() with
   1300  fl[k]&nbsp;=&nbsp;(1&lt;&lt;ftb)&nbsp;-&nbsp;icdf[k-1] (or 0
   1301  if k&nbsp;==&nbsp;0), fh[k]&nbsp;=&nbsp;(1&lt;&lt;ftb)&nbsp;-&nbsp;idcf[k],
   1302  and ft&nbsp;=&nbsp;(1&lt;&lt;ftb).
   1303 Combining the search with the update allows the division to be replaced by a
   1304  series of multiplications (which are usually much cheaper), and using an
   1305  inverse CDF allows the use of an ftb as large as 8 in an 8-bit table without
   1306  any special cases.
   1307 This is the primary interface with the range decoder in the SILK layer, though
   1308  it is used in a few places in the CELT layer as well.
   1309 </t>
   1310 <t>
   1311 Although icdf[k] is more convenient for the code, the frequency counts, f[k],
   1312  are a more natural representation of the probability distribution function
   1313  (PDF) for a given symbol.
   1314 Therefore this draft lists the latter, not the former, when describing the
   1315  context in which a symbol is coded as a list, e.g., {4, 4, 4, 4}/16 for a
   1316  uniform context with four possible values and ft&nbsp;=&nbsp;16.
   1317 The value of ft after the slash is always the sum of the entries in the PDF,
   1318  but is included for convenience.
   1319 Contexts with identical probabilities, f[k]/ft, but different values of ft
   1320  (or equivalently, ftb) are not the same, and cannot, in general, be used in
   1321  place of one another.
   1322 An icdf table is also not capable of representing a PDF where the first symbol
   1323  has 0 probability.
   1324 In such contexts, ec_dec_icdf() can decode the symbol by using a table that
   1325  drops the entries for any initial zero-probability values and adding the
   1326  constant offset of the first value with a non-zero probability to its return
   1327  value.
   1328 </t>
   1329 </section>
   1330 </section>
   1331 
   1332 <section anchor="decoding-bits" title="Decoding Raw Bits">
   1333 <t>
   1334 The raw bits used by the CELT layer are packed at the end of the packet, with
   1335  the least significant bit of the first value packed in the least significant
   1336  bit of the last byte, filling up to the most significant bit in the last byte,
   1337  continuing on to the least significant bit of the penultimate byte, and so on.
   1338 The reference implementation reads them using ec_dec_bits() (entdec.c).
   1339 Because the range decoder must read several bytes ahead in the stream, as
   1340  described in <xref target="range-decoder-renorm"/>, the input consumed by the
   1341  raw bits may overlap with the input consumed by the range coder, and a decoder
   1342  MUST allow this.
   1343 The format should render it impossible to attempt to read more raw bits than
   1344  there are actual bits in the frame, though a decoder may wish to check for
   1345  this and report an error.
   1346 </t>
   1347 </section>
   1348 
   1349 <section anchor="ec_dec_uint" title="Decoding Uniformly Distributed Integers">
   1350 <t>
   1351 The function ec_dec_uint() (entdec.c) decodes one of ft equiprobable values in
   1352  the range 0 to (ft&nbsp;-&nbsp;1), inclusive, each with a frequency of 1,
   1353  where ft may be as large as (2**32&nbsp;-&nbsp;1).
   1354 Because ec_decode() is limited to a total frequency of (2**16&nbsp;-&nbsp;1),
   1355  it splits up the value into a range coded symbol representing up to 8 of the
   1356  high bits, and, if necessary, raw bits representing the remainder of the
   1357  value.
   1358 The limit of 8 bits in the range coded symbol is a trade-off between
   1359  implementation complexity, modeling error (since the symbols no longer truly
   1360  have equal coding cost), and rounding error introduced by the range coder
   1361  itself (which gets larger as more bits are included).
   1362 Using raw bits reduces the maximum number of divisions required in the worst
   1363  case, but means that it may be possible to decode a value outside the range
   1364  0 to (ft&nbsp;-&nbsp;1), inclusive.
   1365 </t>
   1366 
   1367 <t>
   1368 ec_dec_uint() takes a single, positive parameter, ft, which is not necessarily
   1369  a power of two, and returns an integer, t, whose value lies between 0 and
   1370  (ft&nbsp;-&nbsp;1), inclusive.
   1371 Let ftb&nbsp;=&nbsp;ilog(ft&nbsp;-&nbsp;1), i.e., the number of bits required
   1372  to store (ft&nbsp;-&nbsp;1) in two's complement notation.
   1373 If ftb is 8 or less, then t is decoded with t&nbsp;=&nbsp;ec_decode(ft), and
   1374  the range coder state is updated using the three-tuple (t, t&nbsp;+&nbsp;1,
   1375  ft).
   1376 </t>
   1377 <t>
   1378 If ftb is greater than 8, then the top 8 bits of t are decoded using
   1379 <figure align="center">
   1380 <artwork align="center"><![CDATA[
   1381 t = ec_decode(((ft - 1) >> (ftb - 8)) + 1) ,
   1382 ]]></artwork>
   1383 </figure>
   1384  the decoder state is updated using the three-tuple
   1385  (t, t&nbsp;+&nbsp;1,
   1386  ((ft&nbsp;-&nbsp;1)&nbsp;&gt;&gt;&nbsp;(ftb&nbsp;-&nbsp;8))&nbsp;+&nbsp;1),
   1387  and the remaining bits are decoded as raw bits, setting
   1388 <figure align="center">
   1389 <artwork align="center"><![CDATA[
   1390 t = (t << (ftb - 8)) | ec_dec_bits(ftb - 8) .
   1391 ]]></artwork>
   1392 </figure>
   1393 If, at this point, t >= ft, then the current frame is corrupt.
   1394 In that case, the decoder should assume there has been an error in the coding,
   1395  decoding, or transmission and SHOULD take measures to conceal the
   1396  error and/or report to the application that the error has occurred.
   1397 </t>
   1398 
   1399 </section>
   1400 
   1401 <section anchor="decoder-tell" title="Current Bit Usage">
   1402 <t>
   1403 The bit allocation routines in the CELT decoder need a conservative upper bound
   1404  on the number of bits that have been used from the current frame thus far,
   1405  including both range coder bits and raw bits.
   1406 This drives allocation decisions that must match those made in the encoder.
   1407 The upper bound is computed in the reference implementation to whole-bit
   1408  precision by the function ec_tell() (entcode.h) and to fractional 1/8th bit
   1409  precision by the function ec_tell_frac() (entcode.c).
   1410 Like all operations in the range coder, it must be implemented in a bit-exact
   1411  manner, and must produce exactly the same value returned by the same functions
   1412  in the encoder after encoding the same symbols.
   1413 </t>
   1414 <t>
   1415 ec_tell() is guaranteed to return ceil(ec_tell_frac()/8.0).
   1416 In various places the codec will check to ensure there is enough room to
   1417  contain a symbol before attempting to decode it.
   1418 In practice, although the number of bits used so far is an upper bound,
   1419  decoding a symbol whose probability model suggests it has a worst-case cost of
   1420  p 1/8th bits may actually advance the return value of ec_tell_frac() by
   1421  p-1, p, or p+1 1/8th bits, due to approximation error in that upper bound,
   1422  truncation error in the range coder, and for large values of ft, modeling
   1423  error in ec_dec_uint().
   1424 </t>
   1425 <t>
   1426 However, this error is bounded, and periodic calls to ec_tell() or
   1427  ec_tell_frac() at precisely defined points in the decoding process prevent it
   1428  from accumulating.
   1429 For a range coder symbol that requires a whole number of bits (i.e.,
   1430  for which ft/(fh[k]&nbsp;-&nbsp;fl[k]) is a power of two), where there are at
   1431  least p 1/8th bits available, decoding the symbol will never cause ec_tell() or
   1432  ec_tell_frac() to exceed the size of the frame ("bust the budget").
   1433 In this case the return value of ec_tell_frac() will only advance by more than
   1434  p 1/8th bits if there was an additional, fractional number of bits remaining,
   1435  and it will never advance beyond the next whole-bit boundary, which is safe,
   1436  since frames always contain a whole number of bits.
   1437 However, when p is not a whole number of bits, an extra 1/8th bit is required
   1438  to ensure that decoding the symbol will not bust the budget.
   1439 </t>
   1440 <t>
   1441 The reference implementation keeps track of the total number of whole bits that
   1442  have been processed by the decoder so far in the variable nbits_total,
   1443  including the (possibly fractional) number of bits that are currently
   1444  buffered, but not consumed, inside the range coder.
   1445 nbits_total is initialized to 9 just before the initial range renormalization
   1446  process completes (or equivalently, it can be initialized to 33 after the
   1447  first renormalization).
   1448 The extra two bits over the actual amount buffered by the range coder
   1449  guarantees that it is an upper bound and that there is enough room for the
   1450  encoder to terminate the stream.
   1451 Each iteration through the range coder's renormalization loop increases
   1452  nbits_total by 8.
   1453 Reading raw bits increases nbits_total by the number of raw bits read.
   1454 </t>
   1455 
   1456 <section anchor="ec_tell" title="ec_tell()">
   1457 <t>
   1458 The whole number of bits buffered in rng may be estimated via lg = ilog(rng).
   1459 ec_tell() then becomes a simple matter of removing these bits from the total.
   1460 It returns (nbits_total - lg).
   1461 </t>
   1462 <t>
   1463 In a newly initialized decoder, before any symbols have been read, this reports
   1464  that 1 bit has been used.
   1465 This is the bit reserved for termination of the encoder.
   1466 </t>
   1467 </section>
   1468 
   1469 <section anchor="ec_tell_frac" title="ec_tell_frac()">
   1470 <t>
   1471 ec_tell_frac() estimates the number of bits buffered in rng to fractional
   1472  precision.
   1473 Since rng must be greater than 2**23 after renormalization, lg must be at least
   1474  24.
   1475 Let
   1476 <figure align="center">
   1477 <artwork align="center">
   1478 <![CDATA[
   1479 r_Q15 = rng >> (lg-16) ,
   1480 ]]></artwork>
   1481 </figure>
   1482  so that 32768 &lt;= r_Q15 &lt; 65536, an unsigned Q15 value representing the
   1483  fractional part of rng.
   1484 Then the following procedure can be used to add one bit of precision to lg.
   1485 First, update
   1486 <figure align="center">
   1487 <artwork align="center">
   1488 <![CDATA[
   1489 r_Q15 = (r_Q15*r_Q15) >> 15 .
   1490 ]]></artwork>
   1491 </figure>
   1492 Then add the 16th bit of r_Q15 to lg via
   1493 <figure align="center">
   1494 <artwork align="center">
   1495 <![CDATA[
   1496 lg = 2*lg + (r_Q15 >> 16) .
   1497 ]]></artwork>
   1498 </figure>
   1499 Finally, if this bit was a 1, reduce r_Q15 by a factor of two via
   1500 <figure align="center">
   1501 <artwork align="center">
   1502 <![CDATA[
   1503 r_Q15 = r_Q15 >> 1 ,
   1504 ]]></artwork>
   1505 </figure>
   1506  so that it once again lies in the range 32768 &lt;= r_Q15 &lt; 65536.
   1507 </t>
   1508 <t>
   1509 This procedure is repeated three times to extend lg to 1/8th bit precision.
   1510 ec_tell_frac() then returns (nbits_total*8 - lg).
   1511 </t>
   1512 </section>
   1513 
   1514 </section>
   1515 
   1516 </section>
   1517 
   1518 <section anchor="silk_decoder_outline" title="SILK Decoder">
   1519 <t>
   1520 The decoder's LP layer uses a modified version of the SILK codec (herein simply
   1521  called "SILK"), which runs a decoded excitation signal through adaptive
   1522  long-term and short-term prediction synthesis filters.
   1523 It runs at NB, MB, and WB sample rates internally.
   1524 When used in a SWB or FB Hybrid frame, the LP layer itself still only runs in
   1525  WB.
   1526 </t>
   1527 
   1528 <section title="SILK Decoder Modules">
   1529 <t>
   1530 An overview of the decoder is given in <xref target="silk_decoder_figure"/>.
   1531 </t>
   1532 <figure align="center" anchor="silk_decoder_figure" title="SILK Decoder">
   1533 <artwork align="center">
   1534 <![CDATA[
   1535    +---------+    +------------+
   1536 -->| Range   |--->| Decode     |---------------------------+
   1537  1 | Decoder | 2  | Parameters |----------+       5        |
   1538    +---------+    +------------+     4    |                |
   1539                        3 |                |                |
   1540                         \/               \/               \/
   1541                   +------------+   +------------+   +------------+
   1542                   | Generate   |-->| LTP        |-->| LPC        |
   1543                   | Excitation |   | Synthesis  |   | Synthesis  |
   1544                   +------------+   +------------+   +------------+
   1545                                           ^                |
   1546                                           |                |
   1547                       +-------------------+----------------+
   1548                       |                                      6
   1549                       |   +------------+   +-------------+
   1550                       +-->| Stereo     |-->| Sample Rate |-->
   1551                           | Unmixing   | 7 | Conversion  | 8
   1552                           +------------+   +-------------+
   1553 
   1554 1: Range encoded bitstream
   1555 2: Coded parameters
   1556 3: Pulses, LSBs, and signs
   1557 4: Pitch lags, Long-Term Prediction (LTP) coefficients
   1558 5: Linear Predictive Coding (LPC) coefficients and gains
   1559 6: Decoded signal (mono or mid-side stereo)
   1560 7: Unmixed signal (mono or left-right stereo)
   1561 8: Resampled signal
   1562 ]]>
   1563 </artwork>
   1564 </figure>
   1565 
   1566 <t>
   1567 The decoder feeds the bitstream (1) to the range decoder from
   1568  <xref target="range-decoder"/>, and then decodes the parameters in it (2)
   1569  using the procedures detailed in
   1570  Sections&nbsp;<xref format="counter" target="silk_header_bits"/>
   1571  through&nbsp;<xref format="counter" target="silk_signs"/>.
   1572 These parameters (3, 4, 5) are used to generate an excitation signal (see
   1573  <xref target="silk_excitation_reconstruction"/>), which is fed to an optional
   1574  long-term prediction (LTP) filter (voiced frames only, see
   1575  <xref target="silk_ltp_synthesis"/>) and then a short-term prediction filter
   1576  (see <xref target="silk_lpc_synthesis"/>), producing the decoded signal (6).
   1577 For stereo streams, the mid-side representation is converted to separate left
   1578  and right channels (7).
   1579 The result is finally resampled to the desired output sample rate (e.g.,
   1580  48&nbsp;kHz) so that the resampled signal (8) can be mixed with the CELT
   1581  layer.
   1582 </t>
   1583 
   1584 </section>
   1585 
   1586 <section anchor="silk_layer_organization" title="LP Layer Organization">
   1587 
   1588 <t>
   1589 Internally, the LP layer of a single Opus frame is composed of either a single
   1590  10&nbsp;ms regular SILK frame or between one and three 20&nbsp;ms regular SILK
   1591  frames.
   1592 A stereo Opus frame may double the number of regular SILK frames (up to a total
   1593  of six), since it includes separate frames for a mid channel and, optionally,
   1594  a side channel.
   1595 Optional Low Bit-Rate Redundancy (LBRR) frames, which are reduced-bitrate
   1596  encodings of previous SILK frames, may be included to aid in recovery from
   1597  packet loss.
   1598 If present, these appear before the regular SILK frames.
   1599 They are in most respects identical to regular, active SILK frames, except that
   1600  they are usually encoded with a lower bitrate.
   1601 This draft uses "SILK frame" to refer to either one and "regular SILK frame" if
   1602  it needs to draw a distinction between the two.
   1603 </t>
   1604 <t>
   1605 Logically, each SILK frame is in turn composed of either two or four 5&nbsp;ms
   1606  subframes.
   1607 Various parameters, such as the quantization gain of the excitation and the
   1608  pitch lag and filter coefficients can vary on a subframe-by-subframe basis.
   1609 Physically, the parameters for each subframe are interleaved in the bitstream,
   1610  as described in the relevant sections for each parameter.
   1611 </t>
   1612 <t>
   1613 All of these frames and subframes are decoded from the same range coder, with
   1614  no padding between them.
   1615 Thus packing multiple SILK frames in a single Opus frame saves, on average,
   1616  half a byte per SILK frame.
   1617 It also allows some parameters to be predicted from prior SILK frames in the
   1618  same Opus frame, since this does not degrade packet loss robustness (beyond
   1619  any penalty for merely using fewer, larger packets to store multiple frames).
   1620 </t>
   1621 
   1622 <t>
   1623 Stereo support in SILK uses a variant of mid-side coding, allowing a mono
   1624  decoder to simply decode the mid channel.
   1625 However, the data for the two channels is interleaved, so a mono decoder must
   1626  still unpack the data for the side channel.
   1627 It would be required to do so anyway for Hybrid Opus frames, or to support
   1628  decoding individual 20&nbsp;ms frames.
   1629 </t>
   1630 
   1631 <t>
   1632 <xref target="silk_symbols"/> summarizes the overall grouping of the contents of
   1633  the LP layer.
   1634 Figures&nbsp;<xref format="counter" target="silk_mono_60ms_frame"/>
   1635  and&nbsp;<xref format="counter" target="silk_stereo_60ms_frame"/> illustrate
   1636  the ordering of the various SILK frames for a 60&nbsp;ms Opus frame, for both
   1637  mono and stereo, respectively.
   1638 </t>
   1639 
   1640 <texttable anchor="silk_symbols"
   1641  title="Organization of the SILK layer of an Opus frame">
   1642 <ttcol align="center">Symbol(s)</ttcol>
   1643 <ttcol align="center">PDF(s)</ttcol>
   1644 <ttcol align="center">Condition</ttcol>
   1645 
   1646 <c>Voice Activity Detection (VAD) flags</c>
   1647 <c>{1, 1}/2</c>
   1648 <c/>
   1649 
   1650 <c>LBRR flag</c>
   1651 <c>{1, 1}/2</c>
   1652 <c/>
   1653 
   1654 <c>Per-frame LBRR flags</c>
   1655 <c><xref target="silk_lbrr_flag_pdfs"/></c>
   1656 <c><xref target="silk_lbrr_flags"/></c>
   1657 
   1658 <c>LBRR Frame(s)</c>
   1659 <c><xref target="silk_frame"/></c>
   1660 <c><xref target="silk_lbrr_flags"/></c>
   1661 
   1662 <c>Regular SILK Frame(s)</c>
   1663 <c><xref target="silk_frame"/></c>
   1664 <c/>
   1665 
   1666 </texttable>
   1667 
   1668 <figure align="center" anchor="silk_mono_60ms_frame"
   1669  title="A 60&nbsp;ms Mono Frame">
   1670 <artwork align="center"><![CDATA[
   1671 +---------------------------------+
   1672 |            VAD Flags            |
   1673 +---------------------------------+
   1674 |            LBRR Flag            |
   1675 +---------------------------------+
   1676 | Per-Frame LBRR Flags (Optional) |
   1677 +---------------------------------+
   1678 |     LBRR Frame 1 (Optional)     |
   1679 +---------------------------------+
   1680 |     LBRR Frame 2 (Optional)     |
   1681 +---------------------------------+
   1682 |     LBRR Frame 3 (Optional)     |
   1683 +---------------------------------+
   1684 |      Regular SILK Frame 1       |
   1685 +---------------------------------+
   1686 |      Regular SILK Frame 2       |
   1687 +---------------------------------+
   1688 |      Regular SILK Frame 3       |
   1689 +---------------------------------+
   1690 ]]></artwork>
   1691 </figure>
   1692 
   1693 <figure align="center" anchor="silk_stereo_60ms_frame"
   1694  title="A 60&nbsp;ms Stereo Frame">
   1695 <artwork align="center"><![CDATA[
   1696 +---------------------------------------+
   1697 |             Mid VAD Flags             |
   1698 +---------------------------------------+
   1699 |             Mid LBRR Flag             |
   1700 +---------------------------------------+
   1701 |             Side VAD Flags            |
   1702 +---------------------------------------+
   1703 |             Side LBRR Flag            |
   1704 +---------------------------------------+
   1705 |  Mid Per-Frame LBRR Flags (Optional)  |
   1706 +---------------------------------------+
   1707 | Side Per-Frame LBRR Flags (Optional)  |
   1708 +---------------------------------------+
   1709 |     Mid LBRR Frame 1 (Optional)       |
   1710 +---------------------------------------+
   1711 |     Side LBRR Frame 1 (Optional)      |
   1712 +---------------------------------------+
   1713 |     Mid LBRR Frame 2 (Optional)       |
   1714 +---------------------------------------+
   1715 |     Side LBRR Frame 2 (Optional)      |
   1716 +---------------------------------------+
   1717 |     Mid LBRR Frame 3 (Optional)       |
   1718 +---------------------------------------+
   1719 |     Side LBRR Frame 3 (Optional)      |
   1720 +---------------------------------------+
   1721 |      Mid Regular SILK Frame 1         |
   1722 +---------------------------------------+
   1723 | Side Regular SILK Frame 1 (Optional)  |
   1724 +---------------------------------------+
   1725 |      Mid Regular SILK Frame 2         |
   1726 +---------------------------------------+
   1727 | Side Regular SILK Frame 2 (Optional)  |
   1728 +---------------------------------------+
   1729 |      Mid Regular SILK Frame 3         |
   1730 +---------------------------------------+
   1731 | Side Regular SILK Frame 3 (Optional)  |
   1732 +---------------------------------------+
   1733 ]]></artwork>
   1734 </figure>
   1735 
   1736 </section>
   1737 
   1738 <section anchor="silk_header_bits" title="Header Bits">
   1739 <t>
   1740 The LP layer begins with two to eight header bits, decoded in silk_Decode()
   1741  (dec_API.c).
   1742 These consist of one Voice Activity Detection (VAD) bit per frame (up to 3),
   1743  followed by a single flag indicating the presence of LBRR frames.
   1744 For a stereo packet, these first flags correspond to the mid channel, and a
   1745  second set of flags is included for the side channel.
   1746 </t>
   1747 <t>
   1748 Because these are the first symbols decoded by the range coder and because they
   1749  are coded as binary values with uniform probability, they can be extracted
   1750  directly from the most significant bits of the first byte of compressed data.
   1751 Thus, a receiver can determine if an Opus frame contains any active SILK frames
   1752  without the overhead of using the range decoder.
   1753 </t>
   1754 </section>
   1755 
   1756 <section anchor="silk_lbrr_flags" title="Per-Frame LBRR Flags">
   1757 <t>
   1758 For Opus frames longer than 20&nbsp;ms, a set of LBRR flags is
   1759  decoded for each channel that has its LBRR flag set.
   1760 Each set contains one flag per 20&nbsp;ms SILK frame.
   1761 40&nbsp;ms Opus frames use the 2-frame LBRR flag PDF from
   1762  <xref target="silk_lbrr_flag_pdfs"/>, and 60&nbsp;ms Opus frames use the
   1763  3-frame LBRR flag PDF.
   1764 For each channel, the resulting 2- or 3-bit integer contains the corresponding
   1765  LBRR flag for each frame, packed in order from the LSB to the MSB.
   1766 </t>
   1767 
   1768 <texttable anchor="silk_lbrr_flag_pdfs" title="LBRR Flag PDFs">
   1769 <ttcol>Frame Size</ttcol>
   1770 <ttcol>PDF</ttcol>
   1771 <c>40&nbsp;ms</c> <c>{0, 53, 53, 150}/256</c>
   1772 <c>60&nbsp;ms</c> <c>{0, 41, 20, 29, 41, 15, 28, 82}/256</c>
   1773 </texttable>
   1774 
   1775 <t>
   1776 A 10&nbsp;or 20&nbsp;ms Opus frame does not contain any per-frame LBRR flags,
   1777  as there may be at most one LBRR frame per channel.
   1778 The global LBRR flag in the header bits (see <xref target="silk_header_bits"/>)
   1779  is already sufficient to indicate the presence of that single LBRR frame.
   1780 </t>
   1781 
   1782 </section>
   1783 
   1784 <section anchor="silk_lbrr_frames" title="LBRR Frames">
   1785 <t>
   1786 The LBRR frames, if present, contain an encoded representation of the signal
   1787  immediately prior to the current Opus frame as if it were encoded with the
   1788  current mode, frame size, audio bandwidth, and channel count, even if those
   1789  differ from the prior Opus frame.
   1790 When one of these parameters changes from one Opus frame to the next, this
   1791  implies that the LBRR frames of the current Opus frame may not be simple
   1792  drop-in replacements for the contents of the previous Opus frame.
   1793 </t>
   1794 
   1795 <t>
   1796 For example, when switching from 20&nbsp;ms to 60&nbsp;ms, the 60&nbsp;ms Opus
   1797  frame may contain LBRR frames covering up to three prior 20&nbsp;ms Opus
   1798  frames, even if those frames already contained LBRR frames covering some of
   1799  the same time periods.
   1800 When switching from 20&nbsp;ms to 10&nbsp;ms, the 10&nbsp;ms Opus frame can
   1801  contain an LBRR frame covering at most half the prior 20&nbsp;ms Opus frame,
   1802  potentially leaving a hole that needs to be concealed from even a single
   1803  packet loss (see <xref target="Packet Loss Concealment"/>).
   1804 When switching from mono to stereo, the LBRR frames in the first stereo Opus
   1805  frame MAY contain a non-trivial side channel.
   1806 </t>
   1807 
   1808 <t>
   1809 In order to properly produce LBRR frames under all conditions, an encoder might
   1810  need to buffer up to 60&nbsp;ms of audio and re-encode it during these
   1811  transitions.
   1812 However, the reference implementation opts to disable LBRR frames at the
   1813  transition point for simplicity.
   1814 Since transitions are relatively infrequent in normal usage, this does not have
   1815  a significant impact on packet loss robustness.
   1816 </t>
   1817 
   1818 <t>
   1819 The LBRR frames immediately follow the LBRR flags, prior to any regular SILK
   1820  frames.
   1821 <xref target="silk_frame"/> describes their exact contents.
   1822 LBRR frames do not include their own separate VAD flags.
   1823 LBRR frames are only meant to be transmitted for active speech, thus all LBRR
   1824  frames are treated as active.
   1825 </t>
   1826 
   1827 <t>
   1828 In a stereo Opus frame longer than 20&nbsp;ms, although the per-frame LBRR
   1829  flags for the mid channel are coded as a unit before the per-frame LBRR flags
   1830  for the side channel, the LBRR frames themselves are interleaved.
   1831 The decoder parses an LBRR frame for the mid channel of a given 20&nbsp;ms
   1832  interval (if present) and then immediately parses the corresponding LBRR
   1833  frame for the side channel (if present), before proceeding to the next
   1834  20&nbsp;ms interval.
   1835 </t>
   1836 </section>
   1837 
   1838 <section anchor="silk_regular_frames" title="Regular SILK Frames">
   1839 <t>
   1840 The regular SILK frame(s) follow the LBRR frames (if any).
   1841 <xref target="silk_frame"/> describes their contents, as well.
   1842 Unlike the LBRR frames, a regular SILK frame is coded for each time interval in
   1843  an Opus frame, even if the corresponding VAD flags are unset.
   1844 For stereo Opus frames longer than 20&nbsp;ms, the regular mid and side SILK
   1845  frames for each 20&nbsp;ms interval are interleaved, just as with the LBRR
   1846  frames.
   1847 The side frame may be skipped by coding an appropriate flag, as detailed in
   1848  <xref target="silk_mid_only_flag"/>.
   1849 </t>
   1850 </section>
   1851 
   1852 <section anchor="silk_frame" title="SILK Frame Contents">
   1853 <t>
   1854 Each SILK frame includes a set of side information that encodes
   1855 <list style="symbols">
   1856 <t>The frame type and quantization type (<xref target="silk_frame_type"/>),</t>
   1857 <t>Quantization gains (<xref target="silk_gains"/>),</t>
   1858 <t>Short-term prediction filter coefficients (<xref target="silk_nlsfs"/>),</t>
   1859 <t>A Line Spectral Frequencies (LSF) interpolation weight (<xref target="silk_nlsf_interpolation"/>),</t>
   1860 <t>
   1861 Long-term prediction filter lags and gains (<xref target="silk_ltp_params"/>),
   1862  and
   1863 </t>
   1864 <t>A linear congruential generator (LCG) seed (<xref target="silk_seed"/>).</t>
   1865 </list>
   1866 The quantized excitation signal (see <xref target="silk_excitation"/>) follows
   1867  these at the end of the frame.
   1868 <xref target="silk_frame_symbols"/> details the overall organization of a
   1869  SILK frame.
   1870 </t>
   1871 
   1872 <texttable anchor="silk_frame_symbols"
   1873  title="Order of the symbols in an individual SILK frame">
   1874 <ttcol align="center">Symbol(s)</ttcol>
   1875 <ttcol align="center">PDF(s)</ttcol>
   1876 <ttcol align="center">Condition</ttcol>
   1877 
   1878 <c>Stereo Prediction Weights</c>
   1879 <c><xref target="silk_stereo_pred_pdfs"/></c>
   1880 <c><xref target="silk_stereo_pred"/></c>
   1881 
   1882 <c>Mid-only Flag</c>
   1883 <c><xref target="silk_mid_only_pdf"/></c>
   1884 <c><xref target="silk_mid_only_flag"/></c>
   1885 
   1886 <c>Frame Type</c>
   1887 <c><xref target="silk_frame_type"/></c>
   1888 <c/>
   1889 
   1890 <c>Subframe Gains</c>
   1891 <c><xref target="silk_gains"/></c>
   1892 <c/>
   1893 
   1894 <c>Normalized LSF Stage-1 Index</c>
   1895 <c><xref target="silk_nlsf_stage1_pdfs"/></c>
   1896 <c/>
   1897 
   1898 <c>Normalized LSF Stage-2 Residual</c>
   1899 <c><xref target="silk_nlsf_stage2"/></c>
   1900 <c/>
   1901 
   1902 <c>Normalized LSF Interpolation Weight</c>
   1903 <c><xref target="silk_nlsf_interp_pdf"/></c>
   1904 <c>20&nbsp;ms frame</c>
   1905 
   1906 <c>Primary Pitch Lag</c>
   1907 <c><xref target="silk_ltp_lags"/></c>
   1908 <c>Voiced frame</c>
   1909 
   1910 <c>Subframe Pitch Contour</c>
   1911 <c><xref target="silk_pitch_contour_pdfs"/></c>
   1912 <c>Voiced frame</c>
   1913 
   1914 <c>Periodicity Index</c>
   1915 <c><xref target="silk_perindex_pdf"/></c>
   1916 <c>Voiced frame</c>
   1917 
   1918 <c>LTP Filter</c>
   1919 <c><xref target="silk_ltp_filter_pdfs"/></c>
   1920 <c>Voiced frame</c>
   1921 
   1922 <c>LTP Scaling</c>
   1923 <c><xref target="silk_ltp_scaling_pdf"/></c>
   1924 <c><xref target="silk_ltp_scaling"/></c>
   1925 
   1926 <c>LCG Seed</c>
   1927 <c><xref target="silk_seed_pdf"/></c>
   1928 <c/>
   1929 
   1930 <c>Excitation Rate Level</c>
   1931 <c><xref target="silk_rate_level_pdfs"/></c>
   1932 <c/>
   1933 
   1934 <c>Excitation Pulse Counts</c>
   1935 <c><xref target="silk_pulse_count_pdfs"/></c>
   1936 <c/>
   1937 
   1938 <c>Excitation Pulse Locations</c>
   1939 <c><xref target="silk_pulse_locations"/></c>
   1940 <c>Non-zero pulse count</c>
   1941 
   1942 <c>Excitation LSBs</c>
   1943 <c><xref target="silk_shell_lsb_pdf"/></c>
   1944 <c><xref target="silk_pulse_counts"/></c>
   1945 
   1946 <c>Excitation Signs</c>
   1947 <c><xref target="silk_sign_pdfs"/></c>
   1948 <c/>
   1949 
   1950 </texttable>
   1951 
   1952 <section anchor="silk_stereo_pred" toc="include"
   1953  title="Stereo Prediction Weights">
   1954 <t>
   1955 A SILK frame corresponding to the mid channel of a stereo Opus frame begins
   1956  with a pair of side channel prediction weights, designed such that zeros
   1957  indicate normal mid-side coupling.
   1958 Since these weights can change on every frame, the first portion of each frame
   1959  linearly interpolates between the previous weights and the current ones, using
   1960  zeros for the previous weights if none are available.
   1961 These prediction weights are never included in a mono Opus frame, and the
   1962  previous weights are reset to zeros on any transition from mono to stereo.
   1963 They are also not included in an LBRR frame for the side channel, even if the
   1964  LBRR flags indicate the corresponding mid channel was not coded.
   1965 In that case, the previous weights are used, again substituting in zeros if no
   1966  previous weights are available since the last decoder reset
   1967  (see <xref target="decoder-reset"/>).
   1968 </t>
   1969 
   1970 <t>
   1971 To summarize, these weights are coded if and only if
   1972 <list style="symbols">
   1973 <t>This is a stereo Opus frame (<xref target="toc_byte"/>), and</t>
   1974 <t>The current SILK frame corresponds to the mid channel.</t>
   1975 </list>
   1976 </t>
   1977 
   1978 <t>
   1979 The prediction weights are coded in three separate pieces, which are decoded
   1980  by silk_stereo_decode_pred() (decode_stereo_pred.c).
   1981 The first piece jointly codes the high-order part of a table index for both
   1982  weights.
   1983 The second piece codes the low-order part of each table index.
   1984 The third piece codes an offset used to linearly interpolate between table
   1985  indices.
   1986 The details are as follows.
   1987 </t>
   1988 
   1989 <t>
   1990 Let n be an index decoded with the 25-element stage-1 PDF in
   1991  <xref target="silk_stereo_pred_pdfs"/>.
   1992 Then let i0 and i1 be indices decoded with the stage-2 and stage-3 PDFs in
   1993  <xref target="silk_stereo_pred_pdfs"/>, respectively, and let i2 and i3
   1994  be two more indices decoded with the stage-2 and stage-3 PDFs, all in that
   1995  order.
   1996 </t>
   1997 
   1998 <texttable anchor="silk_stereo_pred_pdfs" title="Stereo Weight PDFs">
   1999 <ttcol align="left">Stage</ttcol>
   2000 <ttcol align="left">PDF</ttcol>
   2001 <c>Stage 1</c>
   2002 <c>{7,  2,  1,  1,  1,
   2003    10, 24,  8,  1,  1,
   2004     3, 23, 92, 23,  3,
   2005     1,  1,  8, 24, 10,
   2006     1,  1,  1,  2,  7}/256</c>
   2007 
   2008 <c>Stage 2</c>
   2009 <c>{85, 86, 85}/256</c>
   2010 
   2011 <c>Stage 3</c>
   2012 <c>{51, 51, 52, 51, 51}/256</c>
   2013 </texttable>
   2014 
   2015 <t>
   2016 Then use n, i0, and i2 to form two table indices, wi0 and wi1, according to
   2017 <figure align="center">
   2018 <artwork align="center"><![CDATA[
   2019 wi0 = i0 + 3*(n/5)
   2020 wi1 = i2 + 3*(n%5)
   2021 ]]></artwork>
   2022 </figure>
   2023  where the division is integer division.
   2024 The range of these indices is 0 to 14, inclusive.
   2025 Let w[i] be the i'th weight from <xref target="silk_stereo_weights_table"/>.
   2026 Then the two prediction weights, w0_Q13 and w1_Q13, are
   2027 <figure align="center">
   2028 <artwork align="center"><![CDATA[
   2029 w1_Q13 = w_Q13[wi1]
   2030          + ((w_Q13[wi1+1] - w_Q13[wi1])*6554) >> 16)*(2*i3 + 1)
   2031 
   2032 w0_Q13 = w_Q13[wi0]
   2033          + ((w_Q13[wi0+1] - w_Q13[wi0])*6554) >> 16)*(2*i1 + 1)
   2034          - w1_Q13
   2035 ]]></artwork>
   2036 </figure>
   2037 N.b., w1_Q13 is computed first here, because w0_Q13 depends on it.
   2038 The constant 6554 is approximately 0.1 in Q16.
   2039 Although wi0 and wi1 only have 15 possible values,
   2040  <xref target="silk_stereo_weights_table"/> contains 16 entries to allow
   2041  interpolation between entry wi0 and (wi0&nbsp;+&nbsp;1) (and likewise for wi1).
   2042 </t>
   2043 
   2044 <texttable anchor="silk_stereo_weights_table"
   2045  title="Stereo Weight Table">
   2046 <ttcol align="left">Index</ttcol>
   2047 <ttcol align="right">Weight (Q13)</ttcol>
   2048  <c>0</c> <c>-13732</c>
   2049  <c>1</c> <c>-10050</c>
   2050  <c>2</c>  <c>-8266</c>
   2051  <c>3</c>  <c>-7526</c>
   2052  <c>4</c>  <c>-6500</c>
   2053  <c>5</c>  <c>-5000</c>
   2054  <c>6</c>  <c>-2950</c>
   2055  <c>7</c>   <c>-820</c>
   2056  <c>8</c>    <c>820</c>
   2057  <c>9</c>   <c>2950</c>
   2058 <c>10</c>   <c>5000</c>
   2059 <c>11</c>   <c>6500</c>
   2060 <c>12</c>   <c>7526</c>
   2061 <c>13</c>   <c>8266</c>
   2062 <c>14</c>  <c>10050</c>
   2063 <c>15</c>  <c>13732</c>
   2064 </texttable>
   2065 
   2066 </section>
   2067 
   2068 <section anchor="silk_mid_only_flag" toc="include" title="Mid-only Flag">
   2069 <t>
   2070 A flag appears after the stereo prediction weights that indicates if only the
   2071  mid channel is coded for this time interval.
   2072 It appears only when
   2073 <list style="symbols">
   2074 <t>This is a stereo Opus frame (see <xref target="toc_byte"/>),</t>
   2075 <t>The current SILK frame corresponds to the mid channel, and</t>
   2076 <t>Either
   2077 <list style="symbols">
   2078 <t>This is a regular SILK frame where the VAD flags
   2079  (see <xref target="silk_header_bits"/>) indicate that the corresponding side
   2080  channel is not active.</t>
   2081 <t>
   2082 This is an LBRR frame where the LBRR flags
   2083  (see <xref target="silk_header_bits"/> and <xref target="silk_lbrr_flags"/>)
   2084  indicate that the corresponding side channel is not coded.
   2085 </t>
   2086 </list>
   2087 </t>
   2088 </list>
   2089 It is omitted when there are no stereo weights, for all of the same reasons.
   2090 It is also omitted for a regular SILK frame when the VAD flag of the
   2091  corresponding side channel frame is set (indicating it is active).
   2092 The side channel must be coded in this case, making the mid-only flag
   2093  redundant.
   2094 It is also omitted for an LBRR frame when the corresponding LBRR flags
   2095  indicate the side channel is coded.
   2096 </t>
   2097 
   2098 <t>
   2099 When the flag is present, the decoder reads a single value using the PDF in
   2100  <xref target="silk_mid_only_pdf"/>, as implemented in
   2101  silk_stereo_decode_mid_only() (decode_stereo_pred.c).
   2102 If the flag is set, then there is no corresponding SILK frame for the side
   2103  channel, the entire decoding process for the side channel is skipped, and
   2104  zeros are fed to the stereo unmixing process (see
   2105  <xref target="silk_stereo_unmixing"/>) instead.
   2106 As stated above, LBRR frames still include this flag when the LBRR flag
   2107  indicates that the side channel is not coded.
   2108 In that case, if this flag is zero (indicating that there should be a side
   2109  channel), then Packet Loss Concealment (PLC, see
   2110  <xref target="Packet Loss Concealment"/>) SHOULD be invoked to recover a
   2111  side channel signal.
   2112 Otherwise, the stereo image will collapse.
   2113 </t>
   2114 
   2115 <texttable anchor="silk_mid_only_pdf" title="Mid-only Flag PDF">
   2116 <ttcol align="left">PDF</ttcol>
   2117 <c>{192, 64}/256</c>
   2118 </texttable>
   2119 
   2120 </section>
   2121 
   2122 <section anchor="silk_frame_type" toc="include" title="Frame Type">
   2123 <t>
   2124 Each SILK frame contains a single "frame type" symbol that jointly codes the
   2125  signal type and quantization offset type of the corresponding frame.
   2126 If the current frame is a regular SILK frame whose VAD bit was not set (an
   2127  "inactive" frame), then the frame type symbol takes on a value of either 0 or
   2128  1 and is decoded using the first PDF in <xref target="silk_frame_type_pdfs"/>.
   2129 If the frame is an LBRR frame or a regular SILK frame whose VAD flag was set
   2130  (an "active" frame), then the value of the symbol may range from 2 to 5,
   2131  inclusive, and is decoded using the second PDF in
   2132  <xref target="silk_frame_type_pdfs"/>.
   2133 <xref target="silk_frame_type_table"/> translates between the value of the
   2134  frame type symbol and the corresponding signal type and quantization offset
   2135  type.
   2136 </t>
   2137 
   2138 <texttable anchor="silk_frame_type_pdfs" title="Frame Type PDFs">
   2139 <ttcol>VAD Flag</ttcol>
   2140 <ttcol>PDF</ttcol>
   2141 <c>Inactive</c> <c>{26, 230, 0, 0, 0, 0}/256</c>
   2142 <c>Active</c>   <c>{0, 0, 24, 74, 148, 10}/256</c>
   2143 </texttable>
   2144 
   2145 <texttable anchor="silk_frame_type_table"
   2146  title="Signal Type and Quantization Offset Type from Frame Type">
   2147 <ttcol>Frame Type</ttcol>
   2148 <ttcol>Signal Type</ttcol>
   2149 <ttcol align="right">Quantization Offset Type</ttcol>
   2150 <c>0</c> <c>Inactive</c> <c>Low</c>
   2151 <c>1</c> <c>Inactive</c> <c>High</c>
   2152 <c>2</c> <c>Unvoiced</c> <c>Low</c>
   2153 <c>3</c> <c>Unvoiced</c> <c>High</c>
   2154 <c>4</c> <c>Voiced</c>   <c>Low</c>
   2155 <c>5</c> <c>Voiced</c>   <c>High</c>
   2156 </texttable>
   2157 
   2158 </section>
   2159 
   2160 <section anchor="silk_gains" toc="include" title="Subframe Gains">
   2161 <t>
   2162 A separate quantization gain is coded for each 5&nbsp;ms subframe.
   2163 These gains control the step size between quantization levels of the excitation
   2164  signal and, therefore, the quality of the reconstruction.
   2165 They are independent of and unrelated to the pitch contours coded for voiced
   2166  frames.
   2167 The quantization gains are themselves uniformly quantized to 6&nbsp;bits on a
   2168  log scale, giving them a resolution of approximately 1.369&nbsp;dB and a range
   2169  of approximately 1.94&nbsp;dB to 88.21&nbsp;dB.
   2170 </t>
   2171 <t>
   2172 The subframe gains are either coded independently, or relative to the gain from
   2173  the most recent coded subframe in the same channel.
   2174 Independent coding is used if and only if
   2175 <list style="symbols">
   2176 <t>
   2177 This is the first subframe in the current SILK frame, and
   2178 </t>
   2179 <t>Either
   2180 <list style="symbols">
   2181 <t>
   2182 This is the first SILK frame of its type (LBRR or regular) for this channel in
   2183  the current Opus frame, or
   2184  </t>
   2185 <t>
   2186 The previous SILK frame of the same type (LBRR or regular) for this channel in
   2187  the same Opus frame was not coded.
   2188 </t>
   2189 </list>
   2190 </t>
   2191 </list>
   2192 </t>
   2193 
   2194 <t>
   2195 In an independently coded subframe gain, the 3 most significant bits of the
   2196  quantization gain are decoded using a PDF selected from
   2197  <xref target="silk_independent_gain_msb_pdfs"/> based on the decoded signal
   2198  type (see <xref target="silk_frame_type"/>).
   2199 </t>
   2200 
   2201 <texttable anchor="silk_independent_gain_msb_pdfs"
   2202  title="PDFs for Independent Quantization Gain MSB Coding">
   2203 <ttcol align="left">Signal Type</ttcol>
   2204 <ttcol align="left">PDF</ttcol>
   2205 <c>Inactive</c> <c>{32, 112, 68, 29, 12,  1,  1, 1}/256</c>
   2206 <c>Unvoiced</c>  <c>{2,  17, 45, 60, 62, 47, 19, 4}/256</c>
   2207 <c>Voiced</c>    <c>{1,   3, 26, 71, 94, 50,  9, 2}/256</c>
   2208 </texttable>
   2209 
   2210 <t>
   2211 The 3 least significant bits are decoded using a uniform PDF:
   2212 </t>
   2213 <texttable anchor="silk_independent_gain_lsb_pdf"
   2214  title="PDF for Independent Quantization Gain LSB Coding">
   2215 <ttcol align="left">PDF</ttcol>
   2216 <c>{32, 32, 32, 32, 32, 32, 32, 32}/256</c>
   2217 </texttable>
   2218 
   2219 <t>
   2220 These 6 bits are combined to form a value, gain_index, between 0 and 63.
   2221 When the gain for the previous subframe is available, then the current gain is
   2222  limited as follows:
   2223 <figure align="center">
   2224 <artwork align="center"><![CDATA[
   2225 log_gain = max(gain_index, previous_log_gain - 16) .
   2226 ]]></artwork>
   2227 </figure>
   2228 This may help some implementations limit the change in precision of their
   2229  internal LTP history.
   2230 The indices which this clamp applies to cannot simply be removed from the
   2231  codebook, because previous_log_gain will not be available after packet loss.
   2232 The clamping is skipped after a decoder reset, and in the side channel if the
   2233  previous frame in the side channel was not coded, since there is no value for
   2234  previous_log_gain available.
   2235 It MAY also be skipped after packet loss.
   2236 </t>
   2237 
   2238 <t>
   2239 For subframes which do not have an independent gain (including the first
   2240  subframe of frames not listed as using independent coding above), the
   2241  quantization gain is coded relative to the gain from the previous subframe (in
   2242  the same channel).
   2243 The PDF in <xref target="silk_delta_gain_pdf"/> yields a delta_gain_index value
   2244  between 0 and 40, inclusive.
   2245 </t>
   2246 <texttable anchor="silk_delta_gain_pdf"
   2247  title="PDF for Delta Quantization Gain Coding">
   2248 <ttcol align="left">PDF</ttcol>
   2249 <c>{6,   5,  11,  31, 132,  21,   8,   4,
   2250     3,   2,   2,   2,   1,   1,   1,   1,
   2251     1,   1,   1,   1,   1,   1,   1,   1,
   2252     1,   1,   1,   1,   1,   1,   1,   1,
   2253     1,   1,   1,   1,   1,   1,   1,   1,   1}/256</c>
   2254 </texttable>
   2255 <t>
   2256 The following formula translates this index into a quantization gain for the
   2257  current subframe using the gain from the previous subframe:
   2258 <figure align="center">
   2259 <artwork align="center"><![CDATA[
   2260 log_gain = clamp(0, max(2*delta_gain_index - 16,
   2261                    previous_log_gain + delta_gain_index - 4), 63) .
   2262 ]]></artwork>
   2263 </figure>
   2264 </t>
   2265 <t>
   2266 silk_gains_dequant() (gain_quant.c) dequantizes log_gain for the k'th subframe
   2267  and converts it into a linear Q16 scale factor via
   2268 <figure align="center">
   2269 <artwork align="center"><![CDATA[
   2270 gain_Q16[k] = silk_log2lin((0x1D1C71*log_gain>>16) + 2090)
   2271 ]]></artwork>
   2272 </figure>
   2273 </t>
   2274 <t>
   2275 The function silk_log2lin() (log2lin.c) computes an approximation of
   2276  2**(inLog_Q7/128.0), where inLog_Q7 is its Q7 input.
   2277 Let i = inLog_Q7&gt;&gt;7 be the integer part of inLogQ7 and
   2278  f = inLog_Q7&amp;127 be the fractional part.
   2279 Then
   2280 <figure align="center">
   2281 <artwork align="center"><![CDATA[
   2282 (1<<i) + ((-174*f*(128-f)>>16)+f)*((1<<i)>>7)
   2283 ]]></artwork>
   2284 </figure>
   2285  yields the approximate exponential.
   2286 The final Q16 gain values lies between 81920 and 1686110208, inclusive
   2287  (representing scale factors of 1.25 to 25728, respectively).
   2288 </t>
   2289 </section>
   2290 
   2291 <section anchor="silk_nlsfs" toc="include" title="Normalized Line Spectral
   2292  Frequency (LSF) and Linear Predictive Coding (LPC) Coefficients">
   2293 <t>
   2294 A set of normalized Line Spectral Frequency (LSF) coefficients follow the
   2295  quantization gains in the bitstream, and represent the Linear Predictive
   2296  Coding (LPC) coefficients for the current SILK frame.
   2297 Once decoded, the normalized LSFs form an increasing list of Q15 values between
   2298  0 and 1.
   2299 These represent the interleaved zeros on the upper half of the unit circle
   2300  (between 0 and pi, hence "normalized") in the standard decomposition
   2301  <xref target="line-spectral-pairs"/> of the LPC filter into a symmetric part
   2302  and an anti-symmetric part (P and Q in <xref target="silk_nlsf2lpc"/>).
   2303 Because of non-linear effects in the decoding process, an implementation SHOULD
   2304  match the fixed-point arithmetic described in this section exactly.
   2305 An encoder SHOULD also use the same process.
   2306 </t>
   2307 <t>
   2308 The normalized LSFs are coded using a two-stage vector quantizer (VQ)
   2309  (<xref target="silk_nlsf_stage1"/> and <xref target="silk_nlsf_stage2"/>).
   2310 NB and MB frames use an order-10 predictor, while WB frames use an order-16
   2311  predictor, and thus have different sets of tables.
   2312 After reconstructing the normalized LSFs
   2313  (<xref target="silk_nlsf_reconstruction"/>), the decoder runs them through a
   2314  stabilization process (<xref target="silk_nlsf_stabilization"/>), interpolates
   2315  them between frames (<xref target="silk_nlsf_interpolation"/>), converts them
   2316  back into LPC coefficients (<xref target="silk_nlsf2lpc"/>), and then runs
   2317  them through further processes to limit the range of the coefficients
   2318  (<xref target="silk_lpc_range_limit"/>) and the gain of the filter
   2319  (<xref target="silk_lpc_gain_limit"/>).
   2320 All of this is necessary to ensure the reconstruction process is stable.
   2321 </t>
   2322 
   2323 <section anchor="silk_nlsf_stage1" title="Normalized LSF Stage 1 Decoding">
   2324 <t>
   2325 The first VQ stage uses a 32-element codebook, coded with one of the PDFs in
   2326  <xref target="silk_nlsf_stage1_pdfs"/>, depending on the audio bandwidth and
   2327  the signal type of the current SILK frame.
   2328 This yields a single index, I1, for the entire frame, which
   2329 <list style="numbers">
   2330 <t>Indexes an element in a coarse codebook,</t>
   2331 <t>Selects the PDFs for the second stage of the VQ, and</t>
   2332 <t>Selects the prediction weights used to remove intra-frame redundancy from
   2333  the second stage.</t>
   2334 </list>
   2335 The actual codebook elements are listed in
   2336  <xref target="silk_nlsf_nbmb_codebook"/> and
   2337  <xref target="silk_nlsf_wb_codebook"/>, but they are not needed until the last
   2338  stages of reconstructing the LSF coefficients.
   2339 </t>
   2340 
   2341 <texttable anchor="silk_nlsf_stage1_pdfs"
   2342  title="PDFs for Normalized LSF Stage-1 Index Decoding">
   2343 <ttcol align="left">Audio Bandwidth</ttcol>
   2344 <ttcol align="left">Signal Type</ttcol>
   2345 <ttcol align="left">PDF</ttcol>
   2346 <c>NB or MB</c> <c>Inactive or unvoiced</c>
   2347 <c>
   2348 {44, 34, 30, 19, 21, 12, 11,  3,
   2349   3,  2, 16,  2,  2,  1,  5,  2,
   2350   1,  3,  3,  1,  1,  2,  2,  2,
   2351   3,  1,  9,  9,  2,  7,  2,  1}/256
   2352 </c>
   2353 <c>NB or MB</c> <c>Voiced</c>
   2354 <c>
   2355 {1, 10,  1,  8,  3,  8,  8, 14,
   2356 13, 14,  1, 14, 12, 13, 11, 11,
   2357 12, 11, 10, 10, 11,  8,  9,  8,
   2358  7,  8,  1,  1,  6,  1,  6,  5}/256
   2359 </c>
   2360 <c>WB</c> <c>Inactive or unvoiced</c>
   2361 <c>
   2362 {31, 21,  3, 17,  1,  8, 17,  4,
   2363   1, 18, 16,  4,  2,  3,  1, 10,
   2364   1,  3, 16, 11, 16,  2,  2,  3,
   2365   2, 11,  1,  4,  9,  8,  7,  3}/256
   2366 </c>
   2367 <c>WB</c> <c>Voiced</c>
   2368 <c>
   2369 {1,  4, 16,  5, 18, 11,  5, 14,
   2370 15,  1,  3, 12, 13, 14, 14,  6,
   2371 14, 12,  2,  6,  1, 12, 12, 11,
   2372 10,  3, 10,  5,  1,  1,  1,  3}/256
   2373 </c>
   2374 </texttable>
   2375 
   2376 </section>
   2377 
   2378 <section anchor="silk_nlsf_stage2" title="Normalized LSF Stage 2 Decoding">
   2379 <t>
   2380 A total of 16 PDFs are available for the LSF residual in the second stage: the
   2381  8 (a...h) for NB and MB frames given in
   2382  <xref target="silk_nlsf_stage2_nbmb_pdfs"/>, and the 8 (i...p) for WB frames
   2383  given in <xref target="silk_nlsf_stage2_wb_pdfs"/>.
   2384 Which PDF is used for which coefficient is driven by the index, I1,
   2385  decoded in the first stage.
   2386 <xref target="silk_nlsf_nbmb_stage2_cb_sel"/> lists the letter of the
   2387  corresponding PDF for each normalized LSF coefficient for NB and MB, and
   2388  <xref target="silk_nlsf_wb_stage2_cb_sel"/> lists the same information for WB.
   2389 </t>
   2390 
   2391 <texttable anchor="silk_nlsf_stage2_nbmb_pdfs"
   2392  title="PDFs for NB/MB Normalized LSF Stage-2 Index Decoding">
   2393 <ttcol align="left">Codebook</ttcol>
   2394 <ttcol align="left">PDF</ttcol>
   2395 <c>a</c> <c>{1,   1,   1,  15, 224,  11,   1,   1,   1}/256</c>
   2396 <c>b</c> <c>{1,   1,   2,  34, 183,  32,   1,   1,   1}/256</c>
   2397 <c>c</c> <c>{1,   1,   4,  42, 149,  55,   2,   1,   1}/256</c>
   2398 <c>d</c> <c>{1,   1,   8,  52, 123,  61,   8,   1,   1}/256</c>
   2399 <c>e</c> <c>{1,   3,  16,  53, 101,  74,   6,   1,   1}/256</c>
   2400 <c>f</c> <c>{1,   3,  17,  55,  90,  73,  15,   1,   1}/256</c>
   2401 <c>g</c> <c>{1,   7,  24,  53,  74,  67,  26,   3,   1}/256</c>
   2402 <c>h</c> <c>{1,   1,  18,  63,  78,  58,  30,   6,   1}/256</c>
   2403 </texttable>
   2404 
   2405 <texttable anchor="silk_nlsf_stage2_wb_pdfs"
   2406  title="PDFs for WB Normalized LSF Stage-2 Index Decoding">
   2407 <ttcol align="left">Codebook</ttcol>
   2408 <ttcol align="left">PDF</ttcol>
   2409 <c>i</c> <c>{1,   1,   1,   9, 232,   9,   1,   1,   1}/256</c>
   2410 <c>j</c> <c>{1,   1,   2,  28, 186,  35,   1,   1,   1}/256</c>
   2411 <c>k</c> <c>{1,   1,   3,  42, 152,  53,   2,   1,   1}/256</c>
   2412 <c>l</c> <c>{1,   1,  10,  49, 126,  65,   2,   1,   1}/256</c>
   2413 <c>m</c> <c>{1,   4,  19,  48, 100,  77,   5,   1,   1}/256</c>
   2414 <c>n</c> <c>{1,   1,  14,  54, 100,  72,  12,   1,   1}/256</c>
   2415 <c>o</c> <c>{1,   1,  15,  61,  87,  61,  25,   4,   1}/256</c>
   2416 <c>p</c> <c>{1,   7,  21,  50,  77,  81,  17,   1,   1}/256</c>
   2417 </texttable>
   2418 
   2419 <texttable anchor="silk_nlsf_nbmb_stage2_cb_sel"
   2420  title="Codebook Selection for NB/MB Normalized LSF Stage-2 Index Decoding">
   2421 <ttcol>I1</ttcol>
   2422 <ttcol>Coefficient</ttcol>
   2423 <c/>
   2424 <c><spanx style="vbare">0&nbsp;1&nbsp;2&nbsp;3&nbsp;4&nbsp;5&nbsp;6&nbsp;7&nbsp;8&nbsp;9</spanx></c>
   2425 <c> 0</c>
   2426 <c><spanx style="vbare">a&nbsp;a&nbsp;a&nbsp;a&nbsp;a&nbsp;a&nbsp;a&nbsp;a&nbsp;a&nbsp;a</spanx></c>
   2427 <c> 1</c>
   2428 <c><spanx style="vbare">b&nbsp;d&nbsp;b&nbsp;c&nbsp;c&nbsp;b&nbsp;c&nbsp;b&nbsp;b&nbsp;b</spanx></c>
   2429 <c> 2</c>
   2430 <c><spanx style="vbare">c&nbsp;b&nbsp;b&nbsp;b&nbsp;b&nbsp;b&nbsp;b&nbsp;b&nbsp;b&nbsp;b</spanx></c>
   2431 <c> 3</c>
   2432 <c><spanx style="vbare">b&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;b&nbsp;c&nbsp;b&nbsp;b&nbsp;b</spanx></c>
   2433 <c> 4</c>
   2434 <c><spanx style="vbare">c&nbsp;d&nbsp;d&nbsp;d&nbsp;d&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;c</spanx></c>
   2435 <c> 5</c>
   2436 <c><spanx style="vbare">a&nbsp;f&nbsp;d&nbsp;d&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;b&nbsp;b</spanx></c>
   2437 <c> g</c>
   2438 <c><spanx style="vbare">a&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;b</spanx></c>
   2439 <c> 7</c>
   2440 <c><spanx style="vbare">c&nbsp;d&nbsp;g&nbsp;e&nbsp;e&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;f</spanx></c>
   2441 <c> 8</c>
   2442 <c><spanx style="vbare">c&nbsp;e&nbsp;f&nbsp;f&nbsp;e&nbsp;f&nbsp;e&nbsp;g&nbsp;e&nbsp;e</spanx></c>
   2443 <c> 9</c>
   2444 <c><spanx style="vbare">c&nbsp;e&nbsp;e&nbsp;h&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;f&nbsp;e</spanx></c>
   2445 <c>10</c>
   2446 <c><spanx style="vbare">e&nbsp;d&nbsp;d&nbsp;d&nbsp;c&nbsp;d&nbsp;c&nbsp;c&nbsp;c&nbsp;c</spanx></c>
   2447 <c>11</c>
   2448 <c><spanx style="vbare">b&nbsp;f&nbsp;f&nbsp;g&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;f&nbsp;f</spanx></c>
   2449 <c>12</c>
   2450 <c><spanx style="vbare">c&nbsp;h&nbsp;e&nbsp;g&nbsp;f&nbsp;f&nbsp;f&nbsp;f&nbsp;f&nbsp;f</spanx></c>
   2451 <c>13</c>
   2452 <c><spanx style="vbare">c&nbsp;h&nbsp;f&nbsp;f&nbsp;f&nbsp;f&nbsp;f&nbsp;g&nbsp;f&nbsp;e</spanx></c>
   2453 <c>14</c>
   2454 <c><spanx style="vbare">d&nbsp;d&nbsp;f&nbsp;e&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;e&nbsp;e</spanx></c>
   2455 <c>15</c>
   2456 <c><spanx style="vbare">c&nbsp;d&nbsp;d&nbsp;f&nbsp;f&nbsp;e&nbsp;e&nbsp;e&nbsp;e&nbsp;e</spanx></c>
   2457 <c>16</c>
   2458 <c><spanx style="vbare">c&nbsp;e&nbsp;e&nbsp;g&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;f&nbsp;f</spanx></c>
   2459 <c>17</c>
   2460 <c><spanx style="vbare">c&nbsp;f&nbsp;e&nbsp;g&nbsp;f&nbsp;f&nbsp;f&nbsp;e&nbsp;f&nbsp;e</spanx></c>
   2461 <c>18</c>
   2462 <c><spanx style="vbare">c&nbsp;h&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;f&nbsp;f</spanx></c>
   2463 <c>19</c>
   2464 <c><spanx style="vbare">c&nbsp;f&nbsp;e&nbsp;g&nbsp;h&nbsp;g&nbsp;f&nbsp;g&nbsp;f&nbsp;e</spanx></c>
   2465 <c>20</c>
   2466 <c><spanx style="vbare">d&nbsp;g&nbsp;h&nbsp;e&nbsp;g&nbsp;f&nbsp;f&nbsp;g&nbsp;e&nbsp;f</spanx></c>
   2467 <c>21</c>
   2468 <c><spanx style="vbare">c&nbsp;h&nbsp;g&nbsp;e&nbsp;e&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;f</spanx></c>
   2469 <c>22</c>
   2470 <c><spanx style="vbare">e&nbsp;f&nbsp;f&nbsp;e&nbsp;g&nbsp;g&nbsp;f&nbsp;g&nbsp;f&nbsp;e</spanx></c>
   2471 <c>23</c>
   2472 <c><spanx style="vbare">c&nbsp;f&nbsp;f&nbsp;g&nbsp;f&nbsp;g&nbsp;e&nbsp;g&nbsp;e&nbsp;e</spanx></c>
   2473 <c>24</c>
   2474 <c><spanx style="vbare">e&nbsp;f&nbsp;f&nbsp;f&nbsp;d&nbsp;h&nbsp;e&nbsp;f&nbsp;f&nbsp;e</spanx></c>
   2475 <c>25</c>
   2476 <c><spanx style="vbare">c&nbsp;d&nbsp;e&nbsp;f&nbsp;f&nbsp;g&nbsp;e&nbsp;f&nbsp;f&nbsp;e</spanx></c>
   2477 <c>26</c>
   2478 <c><spanx style="vbare">c&nbsp;d&nbsp;c&nbsp;d&nbsp;d&nbsp;e&nbsp;c&nbsp;d&nbsp;d&nbsp;d</spanx></c>
   2479 <c>27</c>
   2480 <c><spanx style="vbare">b&nbsp;b&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;c&nbsp;d&nbsp;c&nbsp;c</spanx></c>
   2481 <c>28</c>
   2482 <c><spanx style="vbare">e&nbsp;f&nbsp;f&nbsp;g&nbsp;g&nbsp;g&nbsp;f&nbsp;g&nbsp;e&nbsp;f</spanx></c>
   2483 <c>29</c>
   2484 <c><spanx style="vbare">d&nbsp;f&nbsp;f&nbsp;e&nbsp;e&nbsp;e&nbsp;e&nbsp;d&nbsp;d&nbsp;c</spanx></c>
   2485 <c>30</c>
   2486 <c><spanx style="vbare">c&nbsp;f&nbsp;d&nbsp;h&nbsp;f&nbsp;f&nbsp;e&nbsp;e&nbsp;f&nbsp;e</spanx></c>
   2487 <c>31</c>
   2488 <c><spanx style="vbare">e&nbsp;e&nbsp;f&nbsp;e&nbsp;f&nbsp;g&nbsp;f&nbsp;g&nbsp;f&nbsp;e</spanx></c>
   2489 </texttable>
   2490 
   2491 <texttable anchor="silk_nlsf_wb_stage2_cb_sel"
   2492  title="Codebook Selection for WB Normalized LSF Stage-2 Index Decoding">
   2493 <ttcol>I1</ttcol>
   2494 <ttcol>Coefficient</ttcol>
   2495 <c/>
   2496 <c><spanx style="vbare">0&nbsp;&nbsp;1&nbsp;&nbsp;2&nbsp;&nbsp;3&nbsp;&nbsp;4&nbsp;&nbsp;5&nbsp;&nbsp;6&nbsp;&nbsp;7&nbsp;&nbsp;8&nbsp;&nbsp;9&nbsp;10&nbsp;11&nbsp;12&nbsp;13&nbsp;14&nbsp;15</spanx></c>
   2497 <c> 0</c>
   2498 <c><spanx style="vbare">i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i</spanx></c>
   2499 <c> 1</c>
   2500 <c><spanx style="vbare">k&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;l</spanx></c>
   2501 <c> 2</c>
   2502 <c><spanx style="vbare">k&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;p&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;k&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l</spanx></c>
   2503 <c> 3</c>
   2504 <c><spanx style="vbare">i&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;j</spanx></c>
   2505 <c> 4</c>
   2506 <c><spanx style="vbare">i&nbsp;&nbsp;o&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;o&nbsp;&nbsp;m&nbsp;&nbsp;p&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;l</spanx></c>
   2507 <c> 5</c>
   2508 <c><spanx style="vbare">i&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;m</spanx></c>
   2509 <c> 6</c>
   2510 <c><spanx style="vbare">i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i</spanx></c>
   2511 <c> 7</c>
   2512 <c><spanx style="vbare">i&nbsp;&nbsp;k&nbsp;&nbsp;o&nbsp;&nbsp;l&nbsp;&nbsp;p&nbsp;&nbsp;k&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;l</spanx></c>
   2513 <c> 8</c>
   2514 <c><spanx style="vbare">i&nbsp;&nbsp;o&nbsp;&nbsp;k&nbsp;&nbsp;o&nbsp;&nbsp;o&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;o&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l</spanx></c>
   2515 <c> 9</c>
   2516 <c><spanx style="vbare">k&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i</spanx></c>
   2517 <c>10</c>
   2518 <c><spanx style="vbare">i&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;j</spanx></c>
   2519 <c>11</c>
   2520 <c><spanx style="vbare">k&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;l</spanx></c>
   2521 <c>12</c>
   2522 <c><spanx style="vbare">k&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;l</spanx></c>
   2523 <c>13</c>
   2524 <c><spanx style="vbare">l&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;o&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;m</spanx></c>
   2525 <c>14</c>
   2526 <c><spanx style="vbare">i&nbsp;&nbsp;o&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;p&nbsp;&nbsp;n&nbsp;&nbsp;k&nbsp;&nbsp;o&nbsp;&nbsp;n&nbsp;&nbsp;p&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;l</spanx></c>
   2527 <c>15</c>
   2528 <c><spanx style="vbare">i&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;j&nbsp;&nbsp;i</spanx></c>
   2529 <c>16</c>
   2530 <c><spanx style="vbare">j&nbsp;&nbsp;o&nbsp;&nbsp;n&nbsp;&nbsp;p&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;m</spanx></c>
   2531 <c>17</c>
   2532 <c><spanx style="vbare">j&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;m</spanx></c>
   2533 <c>18</c>
   2534 <c><spanx style="vbare">k&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;m</spanx></c>
   2535 <c>19</c>
   2536 <c><spanx style="vbare">i&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i</spanx></c>
   2537 <c>20</c>
   2538 <c><spanx style="vbare">l&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;m</spanx></c>
   2539 <c>21</c>
   2540 <c><spanx style="vbare">k&nbsp;&nbsp;o&nbsp;&nbsp;l&nbsp;&nbsp;p&nbsp;&nbsp;p&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;l</spanx></c>
   2541 <c>22</c>
   2542 <c><spanx style="vbare">k&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;o&nbsp;&nbsp;o&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;m</spanx></c>
   2543 <c>23</c>
   2544 <c><spanx style="vbare">j&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;j</spanx></c>
   2545 <c>24</c>
   2546 <c><spanx style="vbare">k&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;o&nbsp;&nbsp;o&nbsp;&nbsp;m&nbsp;&nbsp;p&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l</spanx></c>
   2547 <c>25</c>
   2548 <c><spanx style="vbare">i&nbsp;&nbsp;o&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i</spanx></c>
   2549 <c>26</c>
   2550 <c><spanx style="vbare">i&nbsp;&nbsp;o&nbsp;&nbsp;o&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;k&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;p&nbsp;&nbsp;p&nbsp;&nbsp;m&nbsp;&nbsp;m&nbsp;&nbsp;m</spanx></c>
   2551 <c>27</c>
   2552 <c><spanx style="vbare">l&nbsp;&nbsp;l&nbsp;&nbsp;p&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;l</spanx></c>
   2553 <c>28</c>
   2554 <c><spanx style="vbare">i&nbsp;&nbsp;i&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;j&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;j</spanx></c>
   2555 <c>29</c>
   2556 <c><spanx style="vbare">i&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;j</spanx></c>
   2557 <c>30</c>
   2558 <c><spanx style="vbare">l&nbsp;&nbsp;n&nbsp;&nbsp;n&nbsp;&nbsp;m&nbsp;&nbsp;p&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;i&nbsp;&nbsp;j&nbsp;&nbsp;i</spanx></c>
   2559 <c>31</c>
   2560 <c><spanx style="vbare">k&nbsp;&nbsp;l&nbsp;&nbsp;n&nbsp;&nbsp;l&nbsp;&nbsp;m&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;l&nbsp;&nbsp;k&nbsp;&nbsp;j&nbsp;&nbsp;k&nbsp;&nbsp;o&nbsp;&nbsp;m&nbsp;&nbsp;i&nbsp;&nbsp;i&nbsp;&nbsp;i</spanx></c>
   2561 </texttable>
   2562 
   2563 <t>
   2564 Decoding the second stage residual proceeds as follows.
   2565 For each coefficient, the decoder reads a symbol using the PDF corresponding to
   2566  I1 from either <xref target="silk_nlsf_nbmb_stage2_cb_sel"/> or
   2567  <xref target="silk_nlsf_wb_stage2_cb_sel"/>, and subtracts 4 from the result
   2568  to give an index in the range -4 to 4, inclusive.
   2569 If the index is either -4 or 4, it reads a second symbol using the PDF in
   2570  <xref target="silk_nlsf_ext_pdf"/>, and adds the value of this second symbol
   2571  to the index, using the same sign.
   2572 This gives the index, I2[k], a total range of -10 to 10, inclusive.
   2573 </t>
   2574 
   2575 <texttable anchor="silk_nlsf_ext_pdf"
   2576  title="PDF for Normalized LSF Index Extension Decoding">
   2577 <ttcol align="left">PDF</ttcol>
   2578 <c>{156, 60, 24,  9,  4,  2,  1}/256</c>
   2579 </texttable>
   2580 
   2581 <t>
   2582 The decoded indices from both stages are translated back into normalized LSF
   2583  coefficients in silk_NLSF_decode() (NLSF_decode.c).
   2584 The stage-2 indices represent residuals after both the first stage of the VQ
   2585  and a separate backwards-prediction step.
   2586 The backwards prediction process in the encoder subtracts a prediction from
   2587  each residual formed by a multiple of the coefficient that follows it.
   2588 The decoder must undo this process.
   2589 <xref target="silk_nlsf_pred_weights"/> contains lists of prediction weights
   2590  for each coefficient.
   2591 There are two lists for NB and MB, and another two lists for WB, giving two
   2592  possible prediction weights for each coefficient.
   2593 </t>
   2594 
   2595 <texttable anchor="silk_nlsf_pred_weights"
   2596  title="Prediction Weights for Normalized LSF Decoding">
   2597 <ttcol align="left">Coefficient</ttcol>
   2598 <ttcol align="right">A</ttcol>
   2599 <ttcol align="right">B</ttcol>
   2600 <ttcol align="right">C</ttcol>
   2601 <ttcol align="right">D</ttcol>
   2602  <c>0</c> <c>179</c> <c>116</c> <c>175</c>  <c>68</c>
   2603  <c>1</c> <c>138</c>  <c>67</c> <c>148</c>  <c>62</c>
   2604  <c>2</c> <c>140</c>  <c>82</c> <c>160</c>  <c>66</c>
   2605  <c>3</c> <c>148</c>  <c>59</c> <c>176</c>  <c>60</c>
   2606  <c>4</c> <c>151</c>  <c>92</c> <c>178</c>  <c>72</c>
   2607  <c>5</c> <c>149</c>  <c>72</c> <c>173</c> <c>117</c>
   2608  <c>6</c> <c>153</c> <c>100</c> <c>174</c>  <c>85</c>
   2609  <c>7</c> <c>151</c>  <c>89</c> <c>164</c>  <c>90</c>
   2610  <c>8</c> <c>163</c>  <c>92</c> <c>177</c> <c>118</c>
   2611  <c>9</c> <c/>        <c/>      <c>174</c> <c>136</c>
   2612 <c>10</c> <c/>        <c/>      <c>196</c> <c>151</c>
   2613 <c>11</c> <c/>        <c/>      <c>182</c> <c>142</c>
   2614 <c>12</c> <c/>        <c/>      <c>198</c> <c>160</c>
   2615 <c>13</c> <c/>        <c/>      <c>192</c> <c>142</c>
   2616 <c>14</c> <c/>        <c/>      <c>182</c> <c>155</c>
   2617 </texttable>
   2618 
   2619 <t>
   2620 The prediction is undone using the procedure implemented in
   2621  silk_NLSF_residual_dequant() (NLSF_decode.c), which is as follows.
   2622 Each coefficient selects its prediction weight from one of the two lists based
   2623  on the stage-1 index, I1.
   2624 <xref target="silk_nlsf_nbmb_weight_sel"/> gives the selections for each
   2625  coefficient for NB and MB, and <xref target="silk_nlsf_wb_weight_sel"/> gives
   2626  the selections for WB.
   2627 Let d_LPC be the order of the codebook, i.e., 10 for NB and MB, and 16 for WB,
   2628  and let pred_Q8[k] be the weight for the k'th coefficient selected by this
   2629  process for 0&nbsp;&lt;=&nbsp;k&nbsp;&lt;&nbsp;d_LPC-1.
   2630 Then, the stage-2 residual for each coefficient is computed via
   2631 <figure align="center">
   2632 <artwork align="center"><![CDATA[
   2633 res_Q10[k] = (k+1 < d_LPC ? (res_Q10[k+1]*pred_Q8[k])>>8 : 0)
   2634              + ((((I2[k]<<10) - sign(I2[k])*102)*qstep)>>16) ,
   2635 ]]></artwork>
   2636 </figure>
   2637  where qstep is the Q16 quantization step size, which is 11796 for NB and MB
   2638  and 9830 for WB (representing step sizes of approximately 0.18 and 0.15,
   2639  respectively).
   2640 </t>
   2641 
   2642 <texttable anchor="silk_nlsf_nbmb_weight_sel"
   2643  title="Prediction Weight Selection for NB/MB Normalized LSF Decoding">
   2644 <ttcol>I1</ttcol>
   2645 <ttcol>Coefficient</ttcol>
   2646 <c/>
   2647 <c><spanx style="vbare">0&nbsp;1&nbsp;2&nbsp;3&nbsp;4&nbsp;5&nbsp;6&nbsp;7&nbsp;8</spanx></c>
   2648 <c> 0</c>
   2649 <c><spanx style="vbare">A&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2650 <c> 1</c>
   2651 <c><spanx style="vbare">B&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2652 <c> 2</c>
   2653 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2654 <c> 3</c>
   2655 <c><spanx style="vbare">B&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;B&nbsp;A</spanx></c>
   2656 <c> 4</c>
   2657 <c><spanx style="vbare">A&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2658 <c> 5</c>
   2659 <c><spanx style="vbare">A&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2660 <c> 6</c>
   2661 <c><spanx style="vbare">B&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;B&nbsp;A</spanx></c>
   2662 <c> 7</c>
   2663 <c><spanx style="vbare">A&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;A</spanx></c>
   2664 <c> 8</c>
   2665 <c><spanx style="vbare">A&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;A&nbsp;B&nbsp;B</spanx></c>
   2666 <c> 9</c>
   2667 <c><spanx style="vbare">A&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;B&nbsp;B&nbsp;B</spanx></c>
   2668 <c>10</c>
   2669 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2670 <c>11</c>
   2671 <c><spanx style="vbare">A&nbsp;B&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;A</spanx></c>
   2672 <c>12</c>
   2673 <c><spanx style="vbare">A&nbsp;B&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;A</spanx></c>
   2674 <c>13</c>
   2675 <c><spanx style="vbare">A&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;A</spanx></c>
   2676 <c>14</c>
   2677 <c><spanx style="vbare">B&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;B</spanx></c>
   2678 <c>15</c>
   2679 <c><spanx style="vbare">A&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;A</spanx></c>
   2680 <c>16</c>
   2681 <c><spanx style="vbare">A&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;A&nbsp;B&nbsp;A</spanx></c>
   2682 <c>17</c>
   2683 <c><spanx style="vbare">A&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;B&nbsp;B</spanx></c>
   2684 <c>18</c>
   2685 <c><spanx style="vbare">A&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;A</spanx></c>
   2686 <c>19</c>
   2687 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;A</spanx></c>
   2688 <c>20</c>
   2689 <c><spanx style="vbare">A&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;B&nbsp;A&nbsp;B&nbsp;A</spanx></c>
   2690 <c>21</c>
   2691 <c><spanx style="vbare">A&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;B&nbsp;B&nbsp;A</spanx></c>
   2692 <c>22</c>
   2693 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;B</spanx></c>
   2694 <c>23</c>
   2695 <c><spanx style="vbare">A&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;B&nbsp;B</spanx></c>
   2696 <c>24</c>
   2697 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;B&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;B</spanx></c>
   2698 <c>25</c>
   2699 <c><spanx style="vbare">A&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;B&nbsp;A</spanx></c>
   2700 <c>26</c>
   2701 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2702 <c>27</c>
   2703 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2704 <c>28</c>
   2705 <c><spanx style="vbare">A&nbsp;A&nbsp;B&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;A</spanx></c>
   2706 <c>29</c>
   2707 <c><spanx style="vbare">B&nbsp;A&nbsp;A&nbsp;B&nbsp;A&nbsp;A&nbsp;A&nbsp;A&nbsp;A</spanx></c>
   2708 <c>30</c>
   2709 <c><spanx style="vbare">A&nbsp;A&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;A&nbsp;B</spanx></c>
   2710 <c>31</c>
   2711 <c><spanx style="vbare">B&nbsp;A&nbsp;B&nbsp;B&nbsp;A&nbsp;B&nbsp;B&nbsp;B&nbsp;B</spanx></c>
   2712 </texttable>
   2713 
   2714 <texttable anchor="silk_nlsf_wb_weight_sel"
   2715  title="Prediction Weight Selection for WB Normalized LSF Decoding">
   2716 <ttcol>I1</ttcol>
   2717 <ttcol>Coefficient</ttcol>
   2718 <c/>
   2719 <c><spanx style="vbare">0&nbsp;&nbsp;1&nbsp;&nbsp;2&nbsp;&nbsp;3&nbsp;&nbsp;4&nbsp;&nbsp;5&nbsp;&nbsp;6&nbsp;&nbsp;7&nbsp;&nbsp;8&nbsp;&nbsp;9&nbsp;10&nbsp;11&nbsp;12&nbsp;13&nbsp;14</spanx></c>
   2720 <c> 0</c>
   2721 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D</spanx></c>
   2722 <c> 1</c>
   2723 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2724 <c> 2</c>
   2725 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2726 <c> 3</c>
   2727 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2728 <c> 4</c>
   2729 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C</spanx></c>
   2730 <c> 5</c>
   2731 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2732 <c> 6</c>
   2733 <c><spanx style="vbare">D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C</spanx></c>
   2734 <c> 7</c>
   2735 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D</spanx></c>
   2736 <c> 8</c>
   2737 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D</spanx></c>
   2738 <c> 9</c>
   2739 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D</spanx></c>
   2740 <c>10</c>
   2741 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2742 <c>11</c>
   2743 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2744 <c>12</c>
   2745 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2746 <c>13</c>
   2747 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2748 <c>14</c>
   2749 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D</spanx></c>
   2750 <c>15</c>
   2751 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C</spanx></c>
   2752 <c>16</c>
   2753 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2754 <c>17</c>
   2755 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2756 <c>18</c>
   2757 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D</spanx></c>
   2758 <c>19</c>
   2759 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2760 <c>20</c>
   2761 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2762 <c>21</c>
   2763 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C</spanx></c>
   2764 <c>22</c>
   2765 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2766 <c>23</c>
   2767 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C</spanx></c>
   2768 <c>24</c>
   2769 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D</spanx></c>
   2770 <c>25</c>
   2771 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D</spanx></c>
   2772 <c>26</c>
   2773 <c><spanx style="vbare">C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D</spanx></c>
   2774 <c>27</c>
   2775 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D</spanx></c>
   2776 <c>28</c>
   2777 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D</spanx></c>
   2778 <c>29</c>
   2779 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D</spanx></c>
   2780 <c>30</c>
   2781 <c><spanx style="vbare">D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;C</spanx></c>
   2782 <c>31</c>
   2783 <c><spanx style="vbare">C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C&nbsp;&nbsp;C&nbsp;&nbsp;D&nbsp;&nbsp;C</spanx></c>
   2784 </texttable>
   2785 
   2786 </section>
   2787 
   2788 <section anchor="silk_nlsf_reconstruction"
   2789  title="Reconstructing the Normalized LSF Coefficients">
   2790 <t>
   2791 Once the stage-1 index I1 and the stage-2 residual res_Q10[] have been decoded,
   2792  the final normalized LSF coefficients can be reconstructed.
   2793 </t>
   2794 <t>
   2795 The spectral distortion introduced by the quantization of each LSF coefficient
   2796  varies, so the stage-2 residual is weighted accordingly, using the
   2797  low-complexity Inverse Harmonic Mean Weighting (IHMW) function proposed in
   2798  <xref target="laroia-icassp"/>.
   2799 The weights are derived directly from the stage-1 codebook vector.
   2800 Let cb1_Q8[k] be the k'th entry of the stage-1 codebook vector from
   2801  <xref target="silk_nlsf_nbmb_codebook"/> or
   2802  <xref target="silk_nlsf_wb_codebook"/>.
   2803 Then for 0&nbsp;&lt;=&nbsp;k&nbsp;&lt;&nbsp;d_LPC the following expression
   2804  computes the square of the weight as a Q18 value:
   2805 <figure align="center">
   2806 <artwork align="center">
   2807 <![CDATA[
   2808 w2_Q18[k] = (1024/(cb1_Q8[k] - cb1_Q8[k-1])
   2809              + 1024/(cb1_Q8[k+1] - cb1_Q8[k])) << 16 ,
   2810 ]]>
   2811 </artwork>
   2812 </figure>
   2813  where cb1_Q8[-1]&nbsp;=&nbsp;0 and cb1_Q8[d_LPC]&nbsp;=&nbsp;256, and the
   2814  division is integer division.
   2815 This is reduced to an unsquared, Q9 value using the following square-root
   2816  approximation:
   2817 <figure align="center">
   2818 <artwork align="center"><![CDATA[
   2819 i = ilog(w2_Q18[k])
   2820 f = (w2_Q18[k]>>(i-8)) & 127
   2821 y = ((i&1) ? 32768 : 46214) >> ((32-i)>>1)
   2822 w_Q9[k] = y + ((213*f*y)>>16)
   2823 ]]></artwork>
   2824 </figure>
   2825 The constant 46214 here is approximately the square root of 2 in Q15.
   2826 The cb1_Q8[] vector completely determines these weights, and they may be
   2827  tabulated and stored as 13-bit unsigned values (with a range of 1819 to 5227,
   2828  inclusive) to avoid computing them when decoding.
   2829 The reference implementation already requires code to compute these weights on
   2830  unquantized coefficients in the encoder, in silk_NLSF_VQ_weights_laroia()
   2831  (NLSF_VQ_weights_laroia.c) and its callers, so it reuses that code in the
   2832  decoder instead of using a pre-computed table to reduce the amount of ROM
   2833  required.
   2834 </t>
   2835 
   2836 <texttable anchor="silk_nlsf_nbmb_codebook"
   2837            title="NB/MB Normalized LSF Stage-1 Codebook Vectors">
   2838 <ttcol>I1</ttcol>
   2839 <ttcol>Codebook (Q8)</ttcol>
   2840 <c/>
   2841 <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;&nbsp;1&nbsp;&nbsp;&nbsp;2&nbsp;&nbsp;&nbsp;3&nbsp;&nbsp;&nbsp;4&nbsp;&nbsp;&nbsp;5&nbsp;&nbsp;&nbsp;6&nbsp;&nbsp;&nbsp;7&nbsp;&nbsp;&nbsp;8&nbsp;&nbsp;&nbsp;9</spanx></c>
   2842 <c>0</c>
   2843 <c><spanx style="vbare">12&nbsp;&nbsp;35&nbsp;&nbsp;60&nbsp;&nbsp;83&nbsp;108&nbsp;132&nbsp;157&nbsp;180&nbsp;206&nbsp;228</spanx></c>
   2844 <c>1</c>
   2845 <c><spanx style="vbare">15&nbsp;&nbsp;32&nbsp;&nbsp;55&nbsp;&nbsp;77&nbsp;101&nbsp;125&nbsp;151&nbsp;175&nbsp;201&nbsp;225</spanx></c>
   2846 <c>2</c>
   2847 <c><spanx style="vbare">19&nbsp;&nbsp;42&nbsp;&nbsp;66&nbsp;&nbsp;89&nbsp;114&nbsp;137&nbsp;162&nbsp;184&nbsp;209&nbsp;230</spanx></c>
   2848 <c>3</c>
   2849 <c><spanx style="vbare">12&nbsp;&nbsp;25&nbsp;&nbsp;50&nbsp;&nbsp;72&nbsp;&nbsp;97&nbsp;120&nbsp;147&nbsp;172&nbsp;200&nbsp;223</spanx></c>
   2850 <c>4</c>
   2851 <c><spanx style="vbare">26&nbsp;&nbsp;44&nbsp;&nbsp;69&nbsp;&nbsp;90&nbsp;114&nbsp;135&nbsp;159&nbsp;180&nbsp;205&nbsp;225</spanx></c>
   2852 <c>5</c>
   2853 <c><spanx style="vbare">13&nbsp;&nbsp;22&nbsp;&nbsp;53&nbsp;&nbsp;80&nbsp;106&nbsp;130&nbsp;156&nbsp;180&nbsp;205&nbsp;228</spanx></c>
   2854 <c>6</c>
   2855 <c><spanx style="vbare">15&nbsp;&nbsp;25&nbsp;&nbsp;44&nbsp;&nbsp;64&nbsp;&nbsp;90&nbsp;115&nbsp;142&nbsp;168&nbsp;196&nbsp;222</spanx></c>
   2856 <c>7</c>
   2857 <c><spanx style="vbare">19&nbsp;&nbsp;24&nbsp;&nbsp;62&nbsp;&nbsp;82&nbsp;100&nbsp;120&nbsp;145&nbsp;168&nbsp;190&nbsp;214</spanx></c>
   2858 <c>8</c>
   2859 <c><spanx style="vbare">22&nbsp;&nbsp;31&nbsp;&nbsp;50&nbsp;&nbsp;79&nbsp;103&nbsp;120&nbsp;151&nbsp;170&nbsp;203&nbsp;227</spanx></c>
   2860 <c>9</c>
   2861 <c><spanx style="vbare">21&nbsp;&nbsp;29&nbsp;&nbsp;45&nbsp;&nbsp;65&nbsp;106&nbsp;124&nbsp;150&nbsp;171&nbsp;196&nbsp;224</spanx></c>
   2862 <c>10</c>
   2863 <c><spanx style="vbare">30&nbsp;&nbsp;49&nbsp;&nbsp;75&nbsp;&nbsp;97&nbsp;121&nbsp;142&nbsp;165&nbsp;186&nbsp;209&nbsp;229</spanx></c>
   2864 <c>11</c>
   2865 <c><spanx style="vbare">19&nbsp;&nbsp;25&nbsp;&nbsp;52&nbsp;&nbsp;70&nbsp;&nbsp;93&nbsp;116&nbsp;143&nbsp;166&nbsp;192&nbsp;219</spanx></c>
   2866 <c>12</c>
   2867 <c><spanx style="vbare">26&nbsp;&nbsp;34&nbsp;&nbsp;62&nbsp;&nbsp;75&nbsp;&nbsp;97&nbsp;118&nbsp;145&nbsp;167&nbsp;194&nbsp;217</spanx></c>
   2868 <c>13</c>
   2869 <c><spanx style="vbare">25&nbsp;&nbsp;33&nbsp;&nbsp;56&nbsp;&nbsp;70&nbsp;&nbsp;91&nbsp;113&nbsp;143&nbsp;165&nbsp;196&nbsp;223</spanx></c>
   2870 <c>14</c>
   2871 <c><spanx style="vbare">21&nbsp;&nbsp;34&nbsp;&nbsp;51&nbsp;&nbsp;72&nbsp;&nbsp;97&nbsp;117&nbsp;145&nbsp;171&nbsp;196&nbsp;222</spanx></c>
   2872 <c>15</c>
   2873 <c><spanx style="vbare">20&nbsp;&nbsp;29&nbsp;&nbsp;50&nbsp;&nbsp;67&nbsp;&nbsp;90&nbsp;117&nbsp;144&nbsp;168&nbsp;197&nbsp;221</spanx></c>
   2874 <c>16</c>
   2875 <c><spanx style="vbare">22&nbsp;&nbsp;31&nbsp;&nbsp;48&nbsp;&nbsp;66&nbsp;&nbsp;95&nbsp;117&nbsp;146&nbsp;168&nbsp;196&nbsp;222</spanx></c>
   2876 <c>17</c>
   2877 <c><spanx style="vbare">24&nbsp;&nbsp;33&nbsp;&nbsp;51&nbsp;&nbsp;77&nbsp;116&nbsp;134&nbsp;158&nbsp;180&nbsp;200&nbsp;224</spanx></c>
   2878 <c>18</c>
   2879 <c><spanx style="vbare">21&nbsp;&nbsp;28&nbsp;&nbsp;70&nbsp;&nbsp;87&nbsp;106&nbsp;124&nbsp;149&nbsp;170&nbsp;194&nbsp;217</spanx></c>
   2880 <c>19</c>
   2881 <c><spanx style="vbare">26&nbsp;&nbsp;33&nbsp;&nbsp;53&nbsp;&nbsp;64&nbsp;&nbsp;83&nbsp;117&nbsp;152&nbsp;173&nbsp;204&nbsp;225</spanx></c>
   2882 <c>20</c>
   2883 <c><spanx style="vbare">27&nbsp;&nbsp;34&nbsp;&nbsp;65&nbsp;&nbsp;95&nbsp;108&nbsp;129&nbsp;155&nbsp;174&nbsp;210&nbsp;225</spanx></c>
   2884 <c>21</c>
   2885 <c><spanx style="vbare">20&nbsp;&nbsp;26&nbsp;&nbsp;72&nbsp;&nbsp;99&nbsp;113&nbsp;131&nbsp;154&nbsp;176&nbsp;200&nbsp;219</spanx></c>
   2886 <c>22</c>
   2887 <c><spanx style="vbare">34&nbsp;&nbsp;43&nbsp;&nbsp;61&nbsp;&nbsp;78&nbsp;&nbsp;93&nbsp;114&nbsp;155&nbsp;177&nbsp;205&nbsp;229</spanx></c>
   2888 <c>23</c>
   2889 <c><spanx style="vbare">23&nbsp;&nbsp;29&nbsp;&nbsp;54&nbsp;&nbsp;97&nbsp;124&nbsp;138&nbsp;163&nbsp;179&nbsp;209&nbsp;229</spanx></c>
   2890 <c>24</c>
   2891 <c><spanx style="vbare">30&nbsp;&nbsp;38&nbsp;&nbsp;56&nbsp;&nbsp;89&nbsp;118&nbsp;129&nbsp;158&nbsp;178&nbsp;200&nbsp;231</spanx></c>
   2892 <c>25</c>
   2893 <c><spanx style="vbare">21&nbsp;&nbsp;29&nbsp;&nbsp;49&nbsp;&nbsp;63&nbsp;&nbsp;85&nbsp;111&nbsp;142&nbsp;163&nbsp;193&nbsp;222</spanx></c>
   2894 <c>26</c>
   2895 <c><spanx style="vbare">27&nbsp;&nbsp;48&nbsp;&nbsp;77&nbsp;103&nbsp;133&nbsp;158&nbsp;179&nbsp;196&nbsp;215&nbsp;232</spanx></c>
   2896 <c>27</c>
   2897 <c><spanx style="vbare">29&nbsp;&nbsp;47&nbsp;&nbsp;74&nbsp;&nbsp;99&nbsp;124&nbsp;151&nbsp;176&nbsp;198&nbsp;220&nbsp;237</spanx></c>
   2898 <c>28</c>
   2899 <c><spanx style="vbare">33&nbsp;&nbsp;42&nbsp;&nbsp;61&nbsp;&nbsp;76&nbsp;&nbsp;93&nbsp;121&nbsp;155&nbsp;174&nbsp;207&nbsp;225</spanx></c>
   2900 <c>29</c>
   2901 <c><spanx style="vbare">29&nbsp;&nbsp;53&nbsp;&nbsp;87&nbsp;112&nbsp;136&nbsp;154&nbsp;170&nbsp;188&nbsp;208&nbsp;227</spanx></c>
   2902 <c>30</c>
   2903 <c><spanx style="vbare">24&nbsp;&nbsp;30&nbsp;&nbsp;52&nbsp;&nbsp;84&nbsp;131&nbsp;150&nbsp;166&nbsp;186&nbsp;203&nbsp;229</spanx></c>
   2904 <c>31</c>
   2905 <c><spanx style="vbare">37&nbsp;&nbsp;48&nbsp;&nbsp;64&nbsp;&nbsp;84&nbsp;104&nbsp;118&nbsp;156&nbsp;177&nbsp;201&nbsp;230</spanx></c>
   2906 </texttable>
   2907 
   2908 <texttable anchor="silk_nlsf_wb_codebook"
   2909            title="WB Normalized LSF Stage-1 Codebook Vectors">
   2910 <ttcol>I1</ttcol>
   2911 <ttcol>Codebook (Q8)</ttcol>
   2912 <c/>
   2913 <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;1&nbsp;&nbsp;2&nbsp;&nbsp;3&nbsp;&nbsp;4&nbsp;&nbsp;&nbsp;5&nbsp;&nbsp;&nbsp;6&nbsp;&nbsp;&nbsp;7&nbsp;&nbsp;&nbsp;8&nbsp;&nbsp;&nbsp;9&nbsp;&nbsp;10&nbsp;&nbsp;11&nbsp;&nbsp;12&nbsp;&nbsp;13&nbsp;&nbsp;14&nbsp;&nbsp;15</spanx></c>
   2914 <c>0</c>
   2915 <c><spanx style="vbare">&nbsp;7&nbsp;23&nbsp;38&nbsp;54&nbsp;69&nbsp;&nbsp;85&nbsp;100&nbsp;116&nbsp;131&nbsp;147&nbsp;162&nbsp;178&nbsp;193&nbsp;208&nbsp;223&nbsp;239</spanx></c>
   2916 <c>1</c>
   2917 <c><spanx style="vbare">13&nbsp;25&nbsp;41&nbsp;55&nbsp;69&nbsp;&nbsp;83&nbsp;&nbsp;98&nbsp;112&nbsp;127&nbsp;142&nbsp;157&nbsp;171&nbsp;187&nbsp;203&nbsp;220&nbsp;236</spanx></c>
   2918 <c>2</c>
   2919 <c><spanx style="vbare">15&nbsp;21&nbsp;34&nbsp;51&nbsp;61&nbsp;&nbsp;78&nbsp;&nbsp;92&nbsp;106&nbsp;126&nbsp;136&nbsp;152&nbsp;167&nbsp;185&nbsp;205&nbsp;225&nbsp;240</spanx></c>
   2920 <c>3</c>
   2921 <c><spanx style="vbare">10&nbsp;21&nbsp;36&nbsp;50&nbsp;63&nbsp;&nbsp;79&nbsp;&nbsp;95&nbsp;110&nbsp;126&nbsp;141&nbsp;157&nbsp;173&nbsp;189&nbsp;205&nbsp;221&nbsp;237</spanx></c>
   2922 <c>4</c>
   2923 <c><spanx style="vbare">17&nbsp;20&nbsp;37&nbsp;51&nbsp;59&nbsp;&nbsp;78&nbsp;&nbsp;89&nbsp;107&nbsp;123&nbsp;134&nbsp;150&nbsp;164&nbsp;184&nbsp;205&nbsp;224&nbsp;240</spanx></c>
   2924 <c>5</c>
   2925 <c><spanx style="vbare">10&nbsp;15&nbsp;32&nbsp;51&nbsp;67&nbsp;&nbsp;81&nbsp;&nbsp;96&nbsp;112&nbsp;129&nbsp;142&nbsp;158&nbsp;173&nbsp;189&nbsp;204&nbsp;220&nbsp;236</spanx></c>
   2926 <c>6</c>
   2927 <c><spanx style="vbare">&nbsp;8&nbsp;21&nbsp;37&nbsp;51&nbsp;65&nbsp;&nbsp;79&nbsp;&nbsp;98&nbsp;113&nbsp;126&nbsp;138&nbsp;155&nbsp;168&nbsp;179&nbsp;192&nbsp;209&nbsp;218</spanx></c>
   2928 <c>7</c>
   2929 <c><spanx style="vbare">12&nbsp;15&nbsp;34&nbsp;55&nbsp;63&nbsp;&nbsp;78&nbsp;&nbsp;87&nbsp;108&nbsp;118&nbsp;131&nbsp;148&nbsp;167&nbsp;185&nbsp;203&nbsp;219&nbsp;236</spanx></c>
   2930 <c>8</c>
   2931 <c><spanx style="vbare">16&nbsp;19&nbsp;32&nbsp;36&nbsp;56&nbsp;&nbsp;79&nbsp;&nbsp;91&nbsp;108&nbsp;118&nbsp;136&nbsp;154&nbsp;171&nbsp;186&nbsp;204&nbsp;220&nbsp;237</spanx></c>
   2932 <c>9</c>
   2933 <c><spanx style="vbare">11&nbsp;28&nbsp;43&nbsp;58&nbsp;74&nbsp;&nbsp;89&nbsp;105&nbsp;120&nbsp;135&nbsp;150&nbsp;165&nbsp;180&nbsp;196&nbsp;211&nbsp;226&nbsp;241</spanx></c>
   2934 <c>10</c>
   2935 <c><spanx style="vbare">&nbsp;6&nbsp;16&nbsp;33&nbsp;46&nbsp;60&nbsp;&nbsp;75&nbsp;&nbsp;92&nbsp;107&nbsp;123&nbsp;137&nbsp;156&nbsp;169&nbsp;185&nbsp;199&nbsp;214&nbsp;225</spanx></c>
   2936 <c>11</c>
   2937 <c><spanx style="vbare">11&nbsp;19&nbsp;30&nbsp;44&nbsp;57&nbsp;&nbsp;74&nbsp;&nbsp;89&nbsp;105&nbsp;121&nbsp;135&nbsp;152&nbsp;169&nbsp;186&nbsp;202&nbsp;218&nbsp;234</spanx></c>
   2938 <c>12</c>
   2939 <c><spanx style="vbare">12&nbsp;19&nbsp;29&nbsp;46&nbsp;57&nbsp;&nbsp;71&nbsp;&nbsp;88&nbsp;100&nbsp;120&nbsp;132&nbsp;148&nbsp;165&nbsp;182&nbsp;199&nbsp;216&nbsp;233</spanx></c>
   2940 <c>13</c>
   2941 <c><spanx style="vbare">17&nbsp;23&nbsp;35&nbsp;46&nbsp;56&nbsp;&nbsp;77&nbsp;&nbsp;92&nbsp;106&nbsp;123&nbsp;134&nbsp;152&nbsp;167&nbsp;185&nbsp;204&nbsp;222&nbsp;237</spanx></c>
   2942 <c>14</c>
   2943 <c><spanx style="vbare">14&nbsp;17&nbsp;45&nbsp;53&nbsp;63&nbsp;&nbsp;75&nbsp;&nbsp;89&nbsp;107&nbsp;115&nbsp;132&nbsp;151&nbsp;171&nbsp;188&nbsp;206&nbsp;221&nbsp;240</spanx></c>
   2944 <c>15</c>
   2945 <c><spanx style="vbare">&nbsp;9&nbsp;16&nbsp;29&nbsp;40&nbsp;56&nbsp;&nbsp;71&nbsp;&nbsp;88&nbsp;103&nbsp;119&nbsp;137&nbsp;154&nbsp;171&nbsp;189&nbsp;205&nbsp;222&nbsp;237</spanx></c>
   2946 <c>16</c>
   2947 <c><spanx style="vbare">16&nbsp;19&nbsp;36&nbsp;48&nbsp;57&nbsp;&nbsp;76&nbsp;&nbsp;87&nbsp;105&nbsp;118&nbsp;132&nbsp;150&nbsp;167&nbsp;185&nbsp;202&nbsp;218&nbsp;236</spanx></c>
   2948 <c>17</c>
   2949 <c><spanx style="vbare">12&nbsp;17&nbsp;29&nbsp;54&nbsp;71&nbsp;&nbsp;81&nbsp;&nbsp;94&nbsp;104&nbsp;126&nbsp;136&nbsp;149&nbsp;164&nbsp;182&nbsp;201&nbsp;221&nbsp;237</spanx></c>
   2950 <c>18</c>
   2951 <c><spanx style="vbare">15&nbsp;28&nbsp;47&nbsp;62&nbsp;79&nbsp;&nbsp;97&nbsp;115&nbsp;129&nbsp;142&nbsp;155&nbsp;168&nbsp;180&nbsp;194&nbsp;208&nbsp;223&nbsp;238</spanx></c>
   2952 <c>19</c>
   2953 <c><spanx style="vbare">&nbsp;8&nbsp;14&nbsp;30&nbsp;45&nbsp;62&nbsp;&nbsp;78&nbsp;&nbsp;94&nbsp;111&nbsp;127&nbsp;143&nbsp;159&nbsp;175&nbsp;192&nbsp;207&nbsp;223&nbsp;239</spanx></c>
   2954 <c>20</c>
   2955 <c><spanx style="vbare">17&nbsp;30&nbsp;49&nbsp;62&nbsp;79&nbsp;&nbsp;92&nbsp;107&nbsp;119&nbsp;132&nbsp;145&nbsp;160&nbsp;174&nbsp;190&nbsp;204&nbsp;220&nbsp;235</spanx></c>
   2956 <c>21</c>
   2957 <c><spanx style="vbare">14&nbsp;19&nbsp;36&nbsp;45&nbsp;61&nbsp;&nbsp;76&nbsp;&nbsp;91&nbsp;108&nbsp;121&nbsp;138&nbsp;154&nbsp;172&nbsp;189&nbsp;205&nbsp;222&nbsp;238</spanx></c>
   2958 <c>22</c>
   2959 <c><spanx style="vbare">12&nbsp;18&nbsp;31&nbsp;45&nbsp;60&nbsp;&nbsp;76&nbsp;&nbsp;91&nbsp;107&nbsp;123&nbsp;138&nbsp;154&nbsp;171&nbsp;187&nbsp;204&nbsp;221&nbsp;236</spanx></c>
   2960 <c>23</c>
   2961 <c><spanx style="vbare">13&nbsp;17&nbsp;31&nbsp;43&nbsp;53&nbsp;&nbsp;70&nbsp;&nbsp;83&nbsp;103&nbsp;114&nbsp;131&nbsp;149&nbsp;167&nbsp;185&nbsp;203&nbsp;220&nbsp;237</spanx></c>
   2962 <c>24</c>
   2963 <c><spanx style="vbare">17&nbsp;22&nbsp;35&nbsp;42&nbsp;58&nbsp;&nbsp;78&nbsp;&nbsp;93&nbsp;110&nbsp;125&nbsp;139&nbsp;155&nbsp;170&nbsp;188&nbsp;206&nbsp;224&nbsp;240</spanx></c>
   2964 <c>25</c>
   2965 <c><spanx style="vbare">&nbsp;8&nbsp;15&nbsp;34&nbsp;50&nbsp;67&nbsp;&nbsp;83&nbsp;&nbsp;99&nbsp;115&nbsp;131&nbsp;146&nbsp;162&nbsp;178&nbsp;193&nbsp;209&nbsp;224&nbsp;239</spanx></c>
   2966 <c>26</c>
   2967 <c><spanx style="vbare">13&nbsp;16&nbsp;41&nbsp;66&nbsp;73&nbsp;&nbsp;86&nbsp;&nbsp;95&nbsp;111&nbsp;128&nbsp;137&nbsp;150&nbsp;163&nbsp;183&nbsp;206&nbsp;225&nbsp;241</spanx></c>
   2968 <c>27</c>
   2969 <c><spanx style="vbare">17&nbsp;25&nbsp;37&nbsp;52&nbsp;63&nbsp;&nbsp;75&nbsp;&nbsp;92&nbsp;102&nbsp;119&nbsp;132&nbsp;144&nbsp;160&nbsp;175&nbsp;191&nbsp;212&nbsp;231</spanx></c>
   2970 <c>28</c>
   2971 <c><spanx style="vbare">19&nbsp;31&nbsp;49&nbsp;65&nbsp;83&nbsp;100&nbsp;117&nbsp;133&nbsp;147&nbsp;161&nbsp;174&nbsp;187&nbsp;200&nbsp;213&nbsp;227&nbsp;242</spanx></c>
   2972 <c>29</c>
   2973 <c><spanx style="vbare">18&nbsp;31&nbsp;52&nbsp;68&nbsp;88&nbsp;103&nbsp;117&nbsp;126&nbsp;138&nbsp;149&nbsp;163&nbsp;177&nbsp;192&nbsp;207&nbsp;223&nbsp;239</spanx></c>
   2974 <c>30</c>
   2975 <c><spanx style="vbare">16&nbsp;29&nbsp;47&nbsp;61&nbsp;76&nbsp;&nbsp;90&nbsp;106&nbsp;119&nbsp;133&nbsp;147&nbsp;161&nbsp;176&nbsp;193&nbsp;209&nbsp;224&nbsp;240</spanx></c>
   2976 <c>31</c>
   2977 <c><spanx style="vbare">15&nbsp;21&nbsp;35&nbsp;50&nbsp;61&nbsp;&nbsp;73&nbsp;&nbsp;86&nbsp;&nbsp;97&nbsp;110&nbsp;119&nbsp;129&nbsp;141&nbsp;175&nbsp;198&nbsp;218&nbsp;237</spanx></c>
   2978 </texttable>
   2979 
   2980 <t>
   2981 Given the stage-1 codebook entry cb1_Q8[], the stage-2 residual res_Q10[], and
   2982  their corresponding weights, w_Q9[], the reconstructed normalized LSF
   2983  coefficients are
   2984 <figure align="center">
   2985 <artwork align="center"><![CDATA[
   2986 NLSF_Q15[k] = clamp(0,
   2987                (cb1_Q8[k]<<7) + (res_Q10[k]<<14)/w_Q9[k], 32767) ,
   2988 ]]></artwork>
   2989 </figure>
   2990  where the division is integer division.
   2991 However, nothing in either the reconstruction process or the
   2992  quantization process in the encoder thus far guarantees that the coefficients
   2993  are monotonically increasing and separated well enough to ensure a stable
   2994  filter <xref target="Kabal86"/>.
   2995 When using the reference encoder, roughly 2% of frames violate this constraint.
   2996 The next section describes a stabilization procedure used to make these
   2997  guarantees.
   2998 </t>
   2999 
   3000 </section>
   3001 
   3002 <section anchor="silk_nlsf_stabilization" title="Normalized LSF Stabilization">
   3003 <t>
   3004 The normalized LSF stabilization procedure is implemented in
   3005  silk_NLSF_stabilize() (NLSF_stabilize.c).
   3006 This process ensures that consecutive values of the normalized LSF
   3007  coefficients, NLSF_Q15[], are spaced some minimum distance apart
   3008  (predetermined to be the 0.01 percentile of a large training set).
   3009 <xref target="silk_nlsf_min_spacing"/> gives the minimum spacings for NB and MB
   3010  and those for WB, where row k is the minimum allowed value of
   3011  NLSF_Q[k]-NLSF_Q[k-1].
   3012 For the purposes of computing this spacing for the first and last coefficient,
   3013  NLSF_Q15[-1] is taken to be 0, and NLSF_Q15[d_LPC] is taken to be 32768.
   3014 </t>
   3015 
   3016 <texttable anchor="silk_nlsf_min_spacing"
   3017            title="Minimum Spacing for Normalized LSF Coefficients">
   3018 <ttcol>Coefficient</ttcol>
   3019 <ttcol align="right">NB and MB</ttcol>
   3020 <ttcol align="right">WB</ttcol>
   3021  <c>0</c> <c>250</c> <c>100</c>
   3022  <c>1</c>   <c>3</c>   <c>3</c>
   3023  <c>2</c>   <c>6</c>  <c>40</c>
   3024  <c>3</c>   <c>3</c>   <c>3</c>
   3025  <c>4</c>   <c>3</c>   <c>3</c>
   3026  <c>5</c>   <c>3</c>   <c>3</c>
   3027  <c>6</c>   <c>4</c>   <c>5</c>
   3028  <c>7</c>   <c>3</c>  <c>14</c>
   3029  <c>8</c>   <c>3</c>  <c>14</c>
   3030  <c>9</c>   <c>3</c>  <c>10</c>
   3031 <c>10</c> <c>461</c>  <c>11</c>
   3032 <c>11</c>       <c/>   <c>3</c>
   3033 <c>12</c>       <c/>   <c>8</c>
   3034 <c>13</c>       <c/>   <c>9</c>
   3035 <c>14</c>       <c/>   <c>7</c>
   3036 <c>15</c>       <c/>   <c>3</c>
   3037 <c>16</c>       <c/> <c>347</c>
   3038 </texttable>
   3039 
   3040 <t>
   3041 The procedure starts off by trying to make small adjustments which attempt to
   3042  minimize the amount of distortion introduced.
   3043 After 20 such adjustments, it falls back to a more direct method which
   3044  guarantees the constraints are enforced but may require large adjustments.
   3045 </t>
   3046 <t>
   3047 Let NDeltaMin_Q15[k] be the minimum required spacing for the current audio
   3048  bandwidth from <xref target="silk_nlsf_min_spacing"/>.
   3049 First, the procedure finds the index i where
   3050  NLSF_Q15[i]&nbsp;-&nbsp;NLSF_Q15[i-1]&nbsp;-&nbsp;NDeltaMin_Q15[i] is the
   3051  smallest, breaking ties by using the lower value of i.
   3052 If this value is non-negative, then the stabilization stops; the coefficients
   3053  satisfy all the constraints.
   3054 Otherwise, if i&nbsp;==&nbsp;0, it sets NLSF_Q15[0] to NDeltaMin_Q15[0], and if
   3055  i&nbsp;==&nbsp;d_LPC, it sets NLSF_Q15[d_LPC-1] to
   3056  (32768&nbsp;-&nbsp;NDeltaMin_Q15[d_LPC]).
   3057 For all other values of i, both NLSF_Q15[i-1] and NLSF_Q15[i] are updated as
   3058  follows:
   3059 <figure align="center">
   3060 <artwork align="center"><![CDATA[
   3061                                           i-1
   3062                                           __
   3063  min_center_Q15 = (NDeltaMin_Q15[i]>>1) + \  NDeltaMin_Q15[k]
   3064                                           /_
   3065                                           k=0
   3066                                                  d_LPC
   3067                                                   __
   3068  max_center_Q15 = 32768 - (NDeltaMin_Q15[i]>>1) - \  NDeltaMin_Q15[k]
   3069                                                   /_
   3070                                                  k=i+1
   3071 center_freq_Q15 = clamp(min_center_Q15[i],
   3072                         (NLSF_Q15[i-1] + NLSF_Q15[i] + 1)>>1,
   3073                         max_center_Q15[i])
   3074 
   3075  NLSF_Q15[i-1] = center_freq_Q15 - (NDeltaMin_Q15[i]>>1)
   3076 
   3077    NLSF_Q15[i] = NLSF_Q15[i-1] + NDeltaMin_Q15[i] .
   3078 ]]></artwork>
   3079 </figure>
   3080 Then the procedure repeats again, until it has either executed 20 times or
   3081  has stopped because the coefficients satisfy all the constraints.
   3082 </t>
   3083 <t>
   3084 After the 20th repetition of the above procedure, the following fallback
   3085  procedure executes once.
   3086 First, the values of NLSF_Q15[k] for 0&nbsp;&lt;=&nbsp;k&nbsp;&lt;&nbsp;d_LPC
   3087  are sorted in ascending order.
   3088 Then for each value of k from 0 to d_LPC-1, NLSF_Q15[k] is set to
   3089 <figure align="center">
   3090 <artwork align="center"><![CDATA[
   3091 max(NLSF_Q15[k], NLSF_Q15[k-1] + NDeltaMin_Q15[k]) .
   3092 ]]></artwork>
   3093 </figure>
   3094 Next, for each value of k from d_LPC-1 down to 0, NLSF_Q15[k] is set to
   3095 <figure align="center">
   3096 <artwork align="center"><![CDATA[
   3097 min(NLSF_Q15[k], NLSF_Q15[k+1] - NDeltaMin_Q15[k+1]) .
   3098 ]]></artwork>
   3099 </figure>
   3100 </t>
   3101 
   3102 </section>
   3103 
   3104 <section anchor="silk_nlsf_interpolation" title="Normalized LSF Interpolation">
   3105 <t>
   3106 For 20&nbsp;ms SILK frames, the first half of the frame (i.e., the first two
   3107  subframes) may use normalized LSF coefficients that are interpolated between
   3108  the decoded LSFs for the most recent coded frame (in the same channel) and the
   3109  current frame.
   3110 A Q2 interpolation factor follows the LSF coefficient indices in the bitstream,
   3111  which is decoded using the PDF in <xref target="silk_nlsf_interp_pdf"/>.
   3112 This happens in silk_decode_indices() (decode_indices.c).
   3113 After either
   3114 <list style="symbols">
   3115 <t>An uncoded regular SILK frame in the side channel, or</t>
   3116 <t>A decoder reset (see <xref target="decoder-reset"/>),</t>
   3117 </list>
   3118  the decoder still decodes this factor, but ignores its value and always uses
   3119  4 instead.
   3120 For 10&nbsp;ms SILK frames, this factor is not stored at all.
   3121 </t>
   3122 
   3123 <texttable anchor="silk_nlsf_interp_pdf"
   3124            title="PDF for Normalized LSF Interpolation Index">
   3125 <ttcol>PDF</ttcol>
   3126 <c>{13, 22, 29, 11, 181}/256</c>
   3127 </texttable>
   3128 
   3129 <t>
   3130 Let n2_Q15[k] be the normalized LSF coefficients decoded by the procedure in
   3131  <xref target="silk_nlsfs"/>, n0_Q15[k] be the LSF coefficients
   3132  decoded for the prior frame, and w_Q2 be the interpolation factor.
   3133 Then the normalized LSF coefficients used for the first half of a 20&nbsp;ms
   3134  frame, n1_Q15[k], are
   3135 <figure align="center">
   3136 <artwork align="center"><![CDATA[
   3137 n1_Q15[k] = n0_Q15[k] + (w_Q2*(n2_Q15[k] - n0_Q15[k]) >> 2) .
   3138 ]]></artwork>
   3139 </figure>
   3140 This interpolation is performed in silk_decode_parameters()
   3141  (decode_parameters.c).
   3142 </t>
   3143 </section>
   3144 
   3145 <section anchor="silk_nlsf2lpc"
   3146  title="Converting Normalized LSFs to LPC Coefficients">
   3147 <t>
   3148 Any LPC filter A(z) can be split into a symmetric part P(z) and an
   3149  anti-symmetric part Q(z) such that
   3150 <figure align="center">
   3151 <artwork align="center"><![CDATA[
   3152           d_LPC
   3153            __         -k   1
   3154 A(z) = 1 - \  a[k] * z   = - * (P(z) + Q(z))
   3155            /_              2
   3156            k=1
   3157 ]]></artwork>
   3158 </figure>
   3159 with
   3160 <figure align="center">
   3161 <artwork align="center"><![CDATA[
   3162                -d_LPC-1      -1
   3163 P(z) = A(z) + z         * A(z  )
   3164 
   3165                -d_LPC-1      -1
   3166 Q(z) = A(z) - z         * A(z  ) .
   3167 ]]></artwork>
   3168 </figure>
   3169 The even normalized LSF coefficients correspond to a pair of conjugate roots of
   3170  P(z), while the odd coefficients correspond to a pair of conjugate roots of
   3171  Q(z), all of which lie on the unit circle.
   3172 In addition, P(z) has a root at pi and Q(z) has a root at 0.
   3173 Thus, they may be reconstructed mathematically from a set of normalized LSF
   3174  coefficients, n[k], as
   3175 <figure align="center">
   3176 <artwork align="center"><![CDATA[
   3177                  d_LPC/2-1
   3178              -1     ___                        -1    -2
   3179 P(z) = (1 + z  ) *  | |  (1 - 2*cos(pi*n[2*k])*z  + z  )
   3180                     k=0
   3181 
   3182                  d_LPC/2-1
   3183              -1     ___                          -1    -2
   3184 Q(z) = (1 - z  ) *  | |  (1 - 2*cos(pi*n[2*k+1])*z  + z  )
   3185                     k=0
   3186 ]]></artwork>
   3187 </figure>
   3188 </t>
   3189 <t>
   3190 However, SILK performs this reconstruction using a fixed-point approximation so
   3191  that all decoders can reproduce it in a bit-exact manner to avoid prediction
   3192  drift.
   3193 The function silk_NLSF2A() (NLSF2A.c) implements this procedure.
   3194 </t>
   3195 <t>
   3196 To start, it approximates cos(pi*n[k]) using a table lookup with linear
   3197  interpolation.
   3198 The encoder SHOULD use the inverse of this piecewise linear approximation,
   3199  rather than the true inverse of the cosine function, when deriving the
   3200  normalized LSF coefficients.
   3201 These values are also re-ordered to improve numerical accuracy when
   3202  constructing the LPC polynomials.
   3203 </t>
   3204 
   3205 <texttable anchor="silk_nlsf_orderings"
   3206            title="LSF Ordering for Polynomial Evaluation">
   3207 <ttcol>Coefficient</ttcol>
   3208 <ttcol align="right">NB and MB</ttcol>
   3209 <ttcol align="right">WB</ttcol>
   3210  <c>0</c>  <c>0</c>  <c>0</c>
   3211  <c>1</c>  <c>9</c> <c>15</c>
   3212  <c>2</c>  <c>6</c>  <c>8</c>
   3213  <c>3</c>  <c>3</c>  <c>7</c>
   3214  <c>4</c>  <c>4</c>  <c>4</c>
   3215  <c>5</c>  <c>5</c> <c>11</c>
   3216  <c>6</c>  <c>8</c> <c>12</c>
   3217  <c>7</c>  <c>1</c>  <c>3</c>
   3218  <c>8</c>  <c>2</c>  <c>2</c>
   3219  <c>9</c>  <c>7</c> <c>13</c>
   3220 <c>10</c>      <c/> <c>10</c>
   3221 <c>11</c>      <c/>  <c>5</c>
   3222 <c>12</c>      <c/>  <c>6</c>
   3223 <c>13</c>      <c/>  <c>9</c>
   3224 <c>14</c>      <c/> <c>14</c>
   3225 <c>15</c>      <c/>  <c>1</c>
   3226 </texttable>
   3227 
   3228 <t>
   3229 The top 7 bits of each normalized LSF coefficient index a value in the table,
   3230  and the next 8 bits interpolate between it and the next value.
   3231 Let i&nbsp;=&nbsp;(n[k]&nbsp;&gt;&gt;&nbsp;8) be the integer index and
   3232  f&nbsp;=&nbsp;(n[k]&nbsp;&amp;&nbsp;255) be the fractional part of a given
   3233  coefficient.
   3234 Then the re-ordered, approximated cosine, c_Q17[ordering[k]], is
   3235 <figure align="center">
   3236 <artwork align="center"><![CDATA[
   3237 c_Q17[ordering[k]] = (cos_Q12[i]*256
   3238                       + (cos_Q12[i+1]-cos_Q12[i])*f + 4) >> 3 ,
   3239 ]]></artwork>
   3240 </figure>
   3241  where ordering[k] is the k'th entry of the column of
   3242  <xref target="silk_nlsf_orderings"/> corresponding to the current audio
   3243  bandwidth and cos_Q12[i] is the i'th entry of <xref target="silk_cos_table"/>.
   3244 </t>
   3245 
   3246 <texttable anchor="silk_cos_table"
   3247            title="Q12 Cosine Table for LSF Conversion">
   3248 <ttcol align="right">i</ttcol>
   3249 <ttcol align="right">+0</ttcol>
   3250 <ttcol align="right">+1</ttcol>
   3251 <ttcol align="right">+2</ttcol>
   3252 <ttcol align="right">+3</ttcol>
   3253 <c>0</c>
   3254  <c>4096</c> <c>4095</c> <c>4091</c> <c>4085</c>
   3255 <c>4</c>
   3256  <c>4076</c> <c>4065</c> <c>4052</c> <c>4036</c>
   3257 <c>8</c>
   3258  <c>4017</c> <c>3997</c> <c>3973</c> <c>3948</c>
   3259 <c>12</c>
   3260  <c>3920</c> <c>3889</c> <c>3857</c> <c>3822</c>
   3261 <c>16</c>
   3262  <c>3784</c> <c>3745</c> <c>3703</c> <c>3659</c>
   3263 <c>20</c>
   3264  <c>3613</c> <c>3564</c> <c>3513</c> <c>3461</c>
   3265 <c>24</c>
   3266  <c>3406</c> <c>3349</c> <c>3290</c> <c>3229</c>
   3267 <c>28</c>
   3268  <c>3166</c> <c>3102</c> <c>3035</c> <c>2967</c>
   3269 <c>32</c>
   3270  <c>2896</c> <c>2824</c> <c>2751</c> <c>2676</c>
   3271 <c>36</c>
   3272  <c>2599</c> <c>2520</c> <c>2440</c> <c>2359</c>
   3273 <c>40</c>
   3274  <c>2276</c> <c>2191</c> <c>2106</c> <c>2019</c>
   3275 <c>44</c>
   3276  <c>1931</c> <c>1842</c> <c>1751</c> <c>1660</c>
   3277 <c>48</c>
   3278  <c>1568</c> <c>1474</c> <c>1380</c> <c>1285</c>
   3279 <c>52</c>
   3280  <c>1189</c> <c>1093</c>  <c>995</c>  <c>897</c>
   3281 <c>56</c>
   3282   <c>799</c>  <c>700</c>  <c>601</c>  <c>501</c>
   3283 <c>60</c>
   3284   <c>401</c>  <c>301</c>  <c>201</c>  <c>101</c>
   3285 <c>64</c>
   3286     <c>0</c> <c>-101</c> <c>-201</c> <c>-301</c>
   3287 <c>68</c>
   3288  <c>-401</c> <c>-501</c> <c>-601</c> <c>-700</c>
   3289 <c>72</c>
   3290  <c>-799</c> <c>-897</c> <c>-995</c> <c>-1093</c>
   3291 <c>76</c>
   3292 <c>-1189</c><c>-1285</c><c>-1380</c><c>-1474</c>
   3293 <c>80</c>
   3294 <c>-1568</c><c>-1660</c><c>-1751</c><c>-1842</c>
   3295 <c>84</c>
   3296 <c>-1931</c><c>-2019</c><c>-2106</c><c>-2191</c>
   3297 <c>88</c>
   3298 <c>-2276</c><c>-2359</c><c>-2440</c><c>-2520</c>
   3299 <c>92</c>
   3300 <c>-2599</c><c>-2676</c><c>-2751</c><c>-2824</c>
   3301 <c>96</c>
   3302 <c>-2896</c><c>-2967</c><c>-3035</c><c>-3102</c>
   3303 <c>100</c>
   3304 <c>-3166</c><c>-3229</c><c>-3290</c><c>-3349</c>
   3305 <c>104</c>
   3306 <c>-3406</c><c>-3461</c><c>-3513</c><c>-3564</c>
   3307 <c>108</c>
   3308 <c>-3613</c><c>-3659</c><c>-3703</c><c>-3745</c>
   3309 <c>112</c>
   3310 <c>-3784</c><c>-3822</c><c>-3857</c><c>-3889</c>
   3311 <c>116</c>
   3312 <c>-3920</c><c>-3948</c><c>-3973</c><c>-3997</c>
   3313 <c>120</c>
   3314 <c>-4017</c><c>-4036</c><c>-4052</c><c>-4065</c>
   3315 <c>124</c>
   3316 <c>-4076</c><c>-4085</c><c>-4091</c><c>-4095</c>
   3317 <c>128</c>
   3318 <c>-4096</c>        <c/>        <c/>        <c/>
   3319 </texttable>
   3320 
   3321 <t>
   3322 Given the list of cosine values, silk_NLSF2A_find_poly() (NLSF2A.c)
   3323  computes the coefficients of P and Q, described here via a simple recurrence.
   3324 Let p_Q16[k][j] and q_Q16[k][j] be the coefficients of the products of the
   3325  first (k+1) root pairs for P and Q, with j indexing the coefficient number.
   3326 Only the first (k+2) coefficients are needed, as the products are symmetric.
   3327 Let p_Q16[0][0]&nbsp;=&nbsp;q_Q16[0][0]&nbsp;=&nbsp;1&lt;&lt;16,
   3328  p_Q16[0][1]&nbsp;=&nbsp;-c_Q17[0], q_Q16[0][1]&nbsp;=&nbsp;-c_Q17[1], and
   3329  d2&nbsp;=&nbsp;d_LPC/2.
   3330 As boundary conditions, assume
   3331  p_Q16[k][j]&nbsp;=&nbsp;q_Q16[k][j]&nbsp;=&nbsp;0 for all
   3332  j&nbsp;&lt;&nbsp;0.
   3333 Also, assume p_Q16[k][k+2]&nbsp;=&nbsp;p_Q16[k][k] and
   3334  q_Q16[k][k+2]&nbsp;=&nbsp;q_Q16[k][k] (because of the symmetry).
   3335 Then, for 0&nbsp;&lt;&nbsp;k&nbsp;&lt;&nbsp;d2 and 0&nbsp;&lt;=&nbsp;j&nbsp;&lt;=&nbsp;k+1,
   3336 <figure align="center">
   3337 <artwork align="center"><![CDATA[
   3338 p_Q16[k][j] = p_Q16[k-1][j] + p_Q16[k-1][j-2]
   3339               - ((c_Q17[2*k]*p_Q16[k-1][j-1] + 32768)>>16) ,
   3340 
   3341 q_Q16[k][j] = q_Q16[k-1][j] + q_Q16[k-1][j-2]
   3342               - ((c_Q17[2*k+1]*q_Q16[k-1][j-1] + 32768)>>16) .
   3343 ]]></artwork>
   3344 </figure>
   3345 The use of Q17 values for the cosine terms in an otherwise Q16 expression
   3346  implicitly scales them by a factor of 2.
   3347 The multiplications in this recurrence may require up to 48 bits of precision
   3348  in the result to avoid overflow.
   3349 In practice, each row of the recurrence only depends on the previous row, so an
   3350  implementation does not need to store all of them.
   3351 </t>
   3352 <t>
   3353 silk_NLSF2A() uses the values from the last row of this recurrence to
   3354  reconstruct a 32-bit version of the LPC filter (without the leading 1.0
   3355  coefficient), a32_Q17[k], 0&nbsp;&lt;=&nbsp;k&nbsp;&lt;&nbsp;d2:
   3356 <figure align="center">
   3357 <artwork align="center"><![CDATA[
   3358 a32_Q17[k]         = -(q_Q16[d2-1][k+1] - q_Q16[d2-1][k])
   3359                      - (p_Q16[d2-1][k+1] + p_Q16[d2-1][k])) ,
   3360 
   3361 a32_Q17[d_LPC-k-1] =  (q_Q16[d2-1][k+1] - q_Q16[d2-1][k])
   3362                      - (p_Q16[d2-1][k+1] + p_Q16[d2-1][k])) .
   3363 ]]></artwork>
   3364 </figure>
   3365 The sum and difference of two terms from each of the p_Q16 and q_Q16
   3366  coefficient lists reflect the (1&nbsp;+&nbsp;z**-1) and
   3367  (1&nbsp;-&nbsp;z**-1) factors of P and Q, respectively.
   3368 The promotion of the expression from Q16 to Q17 implicitly scales the result
   3369  by 1/2.
   3370 </t>
   3371 </section>
   3372 
   3373 <section anchor="silk_lpc_range_limit"
   3374  title="Limiting the Range of the LPC Coefficients">
   3375 <t>
   3376 The a32_Q17[] coefficients are too large to fit in a 16-bit value, which
   3377  significantly increases the cost of applying this filter in fixed-point
   3378  decoders.
   3379 Reducing them to Q12 precision doesn't incur any significant quality loss,
   3380  but still does not guarantee they will fit.
   3381 silk_NLSF2A() applies up to 10 rounds of bandwidth expansion to limit
   3382  the dynamic range of these coefficients.
   3383 Even floating-point decoders SHOULD perform these steps, to avoid mismatch.
   3384 </t>
   3385 <t>
   3386 For each round, the process first finds the index k such that abs(a32_Q17[k])
   3387  is largest, breaking ties by choosing the lowest value of k.
   3388 Then, it computes the corresponding Q12 precision value, maxabs_Q12, subject to
   3389  an upper bound to avoid overflow in subsequent computations:
   3390 <figure align="center">
   3391 <artwork align="center"><![CDATA[
   3392 maxabs_Q12 = min((maxabs_Q17 + 16) >> 5, 163838) .
   3393 ]]></artwork>
   3394 </figure>
   3395 If this is larger than 32767, the procedure derives the chirp factor,
   3396  sc_Q16[0], to use in the bandwidth expansion as
   3397 <figure align="center">
   3398 <artwork align="center"><![CDATA[
   3399                     (maxabs_Q12 - 32767) << 14
   3400 sc_Q16[0] = 65470 - -------------------------- ,
   3401                     (maxabs_Q12 * (k+1)) >> 2
   3402 ]]></artwork>
   3403 </figure>
   3404  where the division here is integer division.
   3405 This is an approximation of the chirp factor needed to reduce the target
   3406  coefficient to 32767, though it is both less than 0.999 and, for
   3407  k&nbsp;&gt;&nbsp;0 when maxabs_Q12 is much greater than 32767, still slightly
   3408  too large.
   3409 The upper bound on maxabs_Q12, 163838, was chosen because it is equal to
   3410  ((2**31&nbsp;-&nbsp;1)&nbsp;&gt;&gt;&nbsp;14)&nbsp;+&nbsp;32767, i.e., the
   3411  largest value of maxabs_Q12 that would not overflow the numerator in the
   3412  equation above when stored in a signed 32-bit integer.
   3413 </t>
   3414 <t>
   3415 silk_bwexpander_32() (bwexpander_32.c) performs the bandwidth expansion (again,
   3416  only when maxabs_Q12 is greater than 32767) using the following recurrence:
   3417 <figure align="center">
   3418 <artwork align="center"><![CDATA[
   3419  a32_Q17[k] = (a32_Q17[k]*sc_Q16[k]) >> 16
   3420 
   3421 sc_Q16[k+1] = (sc_Q16[0]*sc_Q16[k] + 32768) >> 16
   3422 ]]></artwork>
   3423 </figure>
   3424 The first multiply may require up to 48 bits of precision in the result to
   3425  avoid overflow.
   3426 The second multiply must be unsigned to avoid overflow with only 32 bits of
   3427  precision.
   3428 The reference implementation uses a slightly more complex formulation that
   3429  avoids the 32-bit overflow using signed multiplication, but is otherwise
   3430  equivalent.
   3431 </t>
   3432 <t>
   3433 After 10 rounds of bandwidth expansion are performed, they are simply saturated
   3434  to 16 bits:
   3435 <figure align="center">
   3436 <artwork align="center"><![CDATA[
   3437 a32_Q17[k] = clamp(-32768, (a32_Q17[k] + 16) >> 5, 32767) << 5 .
   3438 ]]></artwork>
   3439 </figure>
   3440 Because this performs the actual saturation in the Q12 domain, but converts the
   3441  coefficients back to the Q17 domain for the purposes of prediction gain
   3442  limiting, this step must be performed after the 10th round of bandwidth
   3443  expansion, regardless of whether or not the Q12 version of any coefficient
   3444  still overflows a 16-bit integer.
   3445 This saturation is not performed if maxabs_Q12 drops to 32767 or less prior to
   3446  the 10th round.
   3447 </t>
   3448 </section>
   3449 
   3450 <section anchor="silk_lpc_gain_limit"
   3451  title="Limiting the Prediction Gain of the LPC Filter">
   3452 <t>
   3453 The prediction gain of an LPC synthesis filter is the square-root of the output
   3454  energy when the filter is excited by a unit-energy impulse.
   3455 Even if the Q12 coefficients would fit, the resulting filter may still have a
   3456  significant gain (especially for voiced sounds), making the filter unstable.
   3457 silk_NLSF2A() applies up to 18 additional rounds of bandwidth expansion to
   3458  limit the prediction gain.
   3459 Instead of controlling the amount of bandwidth expansion using the prediction
   3460  gain itself (which may diverge to infinity for an unstable filter),
   3461  silk_NLSF2A() uses silk_LPC_inverse_pred_gain_QA() (LPC_inv_pred_gain.c) to
   3462  compute the reflection coefficients associated with the filter.
   3463 The filter is stable if and only if the magnitude of these coefficients is
   3464  sufficiently less than one.
   3465 The reflection coefficients, rc[k], can be computed using a simple Levinson
   3466  recurrence, initialized with the LPC coefficients
   3467  a[d_LPC-1][n]&nbsp;=&nbsp;a[n], and then updated via
   3468 <figure align="center">
   3469 <artwork align="center"><![CDATA[
   3470     rc[k] = -a[k][k] ,
   3471 
   3472             a[k][n] - a[k][k-n-1]*rc[k]
   3473 a[k-1][n] = --------------------------- .
   3474                              2
   3475                     1 - rc[k]
   3476 ]]></artwork>
   3477 </figure>
   3478 </t>
   3479 <t>
   3480 However, silk_LPC_inverse_pred_gain_QA() approximates this using fixed-point
   3481  arithmetic to guarantee reproducible results across platforms and
   3482  implementations.
   3483 Since small changes in the coefficients can make a stable filter unstable, it
   3484  takes the real Q12 coefficients that will be used during reconstruction as
   3485  input.
   3486 Thus, let
   3487 <figure align="center">
   3488 <artwork align="center"><![CDATA[
   3489 a32_Q12[n] = (a32_Q17[n] + 16) >> 5
   3490 ]]></artwork>
   3491 </figure>
   3492  be the Q12 version of the LPC coefficients that will eventually be used.
   3493 As a simple initial check, the decoder computes the DC response as
   3494 <figure align="center">
   3495 <artwork align="center"><![CDATA[
   3496         d_PLC-1
   3497           __
   3498 DC_resp = \   a32_Q12[n]
   3499           /_
   3500           n=0
   3501 ]]></artwork>
   3502 </figure>
   3503  and if DC_resp&nbsp;&gt;&nbsp;4096, the filter is unstable.
   3504 </t>
   3505 <t>
   3506 Increasing the precision of these Q12 coefficients to Q24 for intermediate
   3507  computations allows more accurate computation of the reflection coefficients,
   3508  so the decoder initializes the recurrence via
   3509 <figure align="center">
   3510 <artwork align="center"><![CDATA[
   3511 a32_Q24[d_LPC-1][n] = a32_Q12[n] << 12 .
   3512 ]]></artwork>
   3513 </figure>
   3514 Then for each k from d_LPC-1 down to 0, if
   3515  abs(a32_Q24[k][k])&nbsp;&gt;&nbsp;16773022, the filter is unstable and the
   3516  recurrence stops.
   3517 The constant 16773022 here is approximately 0.99975 in Q24.
   3518 Otherwise, row k-1 of a32_Q24 is computed from row k as
   3519 <figure align="center">
   3520 <artwork align="center"><![CDATA[
   3521       rc_Q31[k] = -a32_Q24[k][k] << 7 ,
   3522 
   3523      div_Q30[k] = (1<<30) - (rc_Q31[k]*rc_Q31[k] >> 32) ,
   3524 
   3525           b1[k] = ilog(div_Q30[k]) ,
   3526 
   3527           b2[k] = b1[k] - 16 ,
   3528 
   3529                         (1<<29) - 1
   3530      inv_Qb2[k] = ----------------------- ,
   3531                   div_Q30[k] >> (b2[k]+1)
   3532 
   3533      err_Q29[k] = (1<<29)
   3534                   - ((div_Q30[k]<<(15-b2[k]))*inv_Qb2[k] >> 16) ,
   3535 
   3536     gain_Qb1[k] = ((inv_Qb2[k] << 16)
   3537                    + (err_Q29[k]*inv_Qb2[k] >> 13)) ,
   3538 
   3539 num_Q24[k-1][n] = a32_Q24[k][n]
   3540                   - ((a32_Q24[k][k-n-1]*rc_Q31[k] + (1<<30)) >> 31) ,
   3541 
   3542 a32_Q24[k-1][n] = (num_Q24[k-1][n]*gain_Qb1[k]
   3543                    + (1<<(b1[k]-1))) >> b1[k] ,
   3544 ]]></artwork>
   3545 </figure>
   3546  where 0&nbsp;&lt;=&nbsp;n&nbsp;&lt;&nbsp;k.
   3547 Here, rc_Q30[k] are the reflection coefficients.
   3548 div_Q30[k] is the denominator for each iteration, and gain_Qb1[k] is its
   3549  multiplicative inverse (with b1[k] fractional bits, where b1[k] ranges from
   3550  20 to 31).
   3551 inv_Qb2[k], which ranges from 16384 to 32767, is a low-precision version of
   3552  that inverse (with b2[k] fractional bits).
   3553 err_Q29[k] is the residual error, ranging from -32763 to 32392, which is used
   3554  to improve the accuracy.
   3555 The values t_Q24[k-1][n] for each n are the numerators for the next row of
   3556  coefficients in the recursion, and a32_Q24[k-1][n] is the final version of
   3557  that row.
   3558 Every multiply in this procedure except the one used to compute gain_Qb1[k]
   3559  requires more than 32 bits of precision, but otherwise all intermediate
   3560  results fit in 32 bits or less.
   3561 In practice, because each row only depends on the next one, an implementation
   3562  does not need to store them all.
   3563 </t>
   3564 <t>
   3565 If abs(a32_Q24[k][k])&nbsp;&lt;=&nbsp;16773022 for
   3566  0&nbsp;&lt;=&nbsp;k&nbsp;&lt;&nbsp;d_LPC, then the filter is considered stable.
   3567 However, the problem of determining stability is ill-conditioned when the
   3568  filter contains several reflection coefficients whose magnitude is very close
   3569  to one.
   3570 This fixed-point algorithm is not mathematically guaranteed to correctly
   3571  classify filters as stable or unstable in this case, though it does very well
   3572  in practice.
   3573 </t>
   3574 <t>
   3575 On round i, 1&nbsp;&lt;=&nbsp;i&nbsp;&lt;=&nbsp;18, if the filter passes these
   3576  stability checks, then this procedure stops, and the final LPC coefficients to
   3577  use for reconstruction in <xref target="silk_lpc_synthesis"/> are
   3578 <figure align="center">
   3579 <artwork align="center"><![CDATA[
   3580 a_Q12[k] = (a32_Q17[k] + 16) >> 5 .
   3581 ]]></artwork>
   3582 </figure>
   3583 Otherwise, a round of bandwidth expansion is applied using the same procedure
   3584  as in <xref target="silk_lpc_range_limit"/>, with
   3585 <figure align="center">
   3586 <artwork align="center"><![CDATA[
   3587 sc_Q16[0] = 65536 - (2<<i) .
   3588 ]]></artwork>
   3589 </figure>
   3590 During the 15th round, sc_Q16[0] becomes 0 in the above equation, so a_Q12[k]
   3591  is set to 0 for all k, guaranteeing a stable filter.
   3592 </t>
   3593 </section>
   3594 
   3595 </section>
   3596 
   3597 <section anchor="silk_ltp_params" toc="include"
   3598  title="Long-Term Prediction (LTP) Parameters">
   3599 <t>
   3600 After the normalized LSF indices and, for 20&nbsp;ms frames, the LSF
   3601  interpolation index, voiced frames (see <xref target="silk_frame_type"/>)
   3602  include additional LTP parameters.
   3603 There is one primary lag index for each SILK frame, but this is refined to
   3604  produce a separate lag index per subframe using a vector quantizer.
   3605 Each subframe also gets its own prediction gain coefficient.
   3606 </t>
   3607 
   3608 <section anchor="silk_ltp_lags" title="Pitch Lags">
   3609 <t>
   3610 The primary lag index is coded either relative to the primary lag of the prior
   3611  frame in the same channel, or as an absolute index.
   3612 Absolute coding is used if and only if
   3613 <list style="symbols">
   3614 <t>
   3615 This is the first SILK frame of its type (LBRR or regular) for this channel in
   3616  the current Opus frame,
   3617 </t>
   3618 <t>
   3619 The previous SILK frame of the same type (LBRR or regular) for this channel in
   3620  the same Opus frame was not coded, or
   3621 </t>
   3622 <t>
   3623 That previous SILK frame was coded, but was not voiced (see
   3624  <xref target="silk_frame_type"/>).
   3625 </t>
   3626 </list>
   3627 </t>
   3628 
   3629 <t>
   3630 With absolute coding, the primary pitch lag may range from 2&nbsp;ms
   3631  (inclusive) up to 18&nbsp;ms (exclusive), corresponding to pitches from
   3632  500&nbsp;Hz down to 55.6&nbsp;Hz, respectively.
   3633 It is comprised of a high part and a low part, where the decoder reads the high
   3634  part using the 32-entry codebook in <xref target="silk_abs_pitch_high_pdf"/>
   3635  and the low part using the codebook corresponding to the current audio
   3636  bandwidth from <xref target="silk_abs_pitch_low_pdf"/>.
   3637 The final primary pitch lag is then
   3638 <figure align="center">
   3639 <artwork align="center"><![CDATA[
   3640 lag = lag_high*lag_scale + lag_low + lag_min
   3641 ]]></artwork>
   3642 </figure>
   3643  where lag_high is the high part, lag_low is the low part, and lag_scale
   3644  and lag_min are the values from the "Scale" and "Minimum Lag" columns of
   3645  <xref target="silk_abs_pitch_low_pdf"/>, respectively.
   3646 </t>
   3647 
   3648 <texttable anchor="silk_abs_pitch_high_pdf"
   3649  title="PDF for High Part of Primary Pitch Lag">
   3650 <ttcol align="left">PDF</ttcol>
   3651 <c>{3,   3,   6,  11,  21,  30,  32,  19,
   3652    11,  10,  12,  13,  13,  12,  11,   9,
   3653     8,   7,   6,   4,   2,   2,   2,   1,
   3654     1,   1,   1,   1,   1,   1,   1,   1}/256</c>
   3655 </texttable>
   3656 
   3657 <texttable anchor="silk_abs_pitch_low_pdf"
   3658  title="PDF for Low Part of Primary Pitch Lag">
   3659 <ttcol>Audio Bandwidth</ttcol>
   3660 <ttcol>PDF</ttcol>
   3661 <ttcol>Scale</ttcol>
   3662 <ttcol>Minimum Lag</ttcol>
   3663 <ttcol>Maximum Lag</ttcol>
   3664 <c>NB</c> <c>{64, 64, 64, 64}/256</c>                 <c>4</c> <c>16</c> <c>144</c>
   3665 <c>MB</c> <c>{43, 42, 43, 43, 42, 43}/256</c>         <c>6</c> <c>24</c> <c>216</c>
   3666 <c>WB</c> <c>{32, 32, 32, 32, 32, 32, 32, 32}/256</c> <c>8</c> <c>32</c> <c>288</c>
   3667 </texttable>
   3668 
   3669 <t>
   3670 All frames that do not use absolute coding for the primary lag index use
   3671  relative coding instead.
   3672 The decoder reads a single delta value using the 21-entry PDF in
   3673  <xref target="silk_rel_pitch_pdf"/>.
   3674 If the resulting value is zero, it falls back to the absolute coding procedure
   3675  from the prior paragraph.
   3676 Otherwise, the final primary pitch lag is then
   3677 <figure align="center">
   3678 <artwork align="center"><![CDATA[
   3679 lag = previous_lag + (delta_lag_index - 9)
   3680 ]]></artwork>
   3681 </figure>
   3682  where previous_lag is the primary pitch lag from the most recent frame in the
   3683  same channel and delta_lag_index is the value just decoded.
   3684 This allows a per-frame change in the pitch lag of -8 to +11 samples.
   3685 The decoder does no clamping at this point, so this value can fall outside the
   3686  range of 2&nbsp;ms to 18&nbsp;ms, and the decoder must use this unclamped
   3687  value when using relative coding in the next SILK frame (if any).
   3688 However, because an Opus frame can use relative coding for at most two
   3689  consecutive SILK frames, integer overflow should not be an issue.
   3690 </t>
   3691 
   3692 <texttable anchor="silk_rel_pitch_pdf"
   3693  title="PDF for Primary Pitch Lag Change">
   3694 <ttcol align="left">PDF</ttcol>
   3695 <c>{46,  2,  2,  3,  4,  6, 10, 15,
   3696     26, 38, 30, 22, 15, 10,  7,  6,
   3697      4,  4,  2,  2,  2}/256</c>
   3698 </texttable>
   3699 
   3700 <t>
   3701 After the primary pitch lag, a "pitch contour", stored as a single entry from
   3702  one of four small VQ codebooks, gives lag offsets for each subframe in the
   3703  current SILK frame.
   3704 The codebook index is decoded using one of the PDFs in
   3705  <xref target="silk_pitch_contour_pdfs"/> depending on the current frame size
   3706  and audio bandwidth.
   3707 Tables&nbsp;<xref format="counter" target="silk_pitch_contour_cb_nb10ms"/>
   3708  through&nbsp;<xref format="counter" target="silk_pitch_contour_cb_mbwb20ms"/>
   3709  give the corresponding offsets to apply to the primary pitch lag for each
   3710  subframe given the decoded codebook index.
   3711 </t>
   3712 
   3713 <texttable anchor="silk_pitch_contour_pdfs"
   3714  title="PDFs for Subframe Pitch Contour">
   3715 <ttcol>Audio Bandwidth</ttcol>
   3716 <ttcol>SILK Frame Size</ttcol>
   3717 <ttcol align="right">Codebook Size</ttcol>
   3718 <ttcol>PDF</ttcol>
   3719 <c>NB</c>       <c>10&nbsp;ms</c>  <c>3</c>
   3720 <c>{143, 50, 63}/256</c>
   3721 <c>NB</c>       <c>20&nbsp;ms</c> <c>11</c>
   3722 <c>{68, 12, 21, 17, 19, 22, 30, 24,
   3723     17, 16, 10}/256</c>
   3724 <c>MB or WB</c> <c>10&nbsp;ms</c> <c>12</c>
   3725 <c>{91, 46, 39, 19, 14, 12,  8,  7,
   3726      6,  5,  5,  4}/256</c>
   3727 <c>MB or WB</c> <c>20&nbsp;ms</c> <c>34</c>
   3728 <c>{33, 22, 18, 16, 15, 14, 14, 13,
   3729     13, 10,  9,  9,  8,  6,  6,  6,
   3730      5,  4,  4,  4,  3,  3,  3,  2,
   3731      2,  2,  2,  2,  2,  2,  1,  1,
   3732      1,  1}/256</c>
   3733 </texttable>
   3734 
   3735 <texttable anchor="silk_pitch_contour_cb_nb10ms"
   3736  title="Codebook Vectors for Subframe Pitch Contour: NB, 10&nbsp;ms Frames">
   3737 <ttcol>Index</ttcol>
   3738 <ttcol align="right">Subframe Offsets</ttcol>
   3739 <c>0</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3740 <c>1</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;0</spanx></c>
   3741 <c>2</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;1</spanx></c>
   3742 </texttable>
   3743 
   3744 <texttable anchor="silk_pitch_contour_cb_nb20ms"
   3745  title="Codebook Vectors for Subframe Pitch Contour: NB, 20&nbsp;ms Frames">
   3746 <ttcol>Index</ttcol>
   3747 <ttcol align="right">Subframe Offsets</ttcol>
   3748  <c>0</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3749  <c>1</c> <c><spanx style="vbare">&nbsp;2&nbsp;&nbsp;1&nbsp;&nbsp;0&nbsp;-1</spanx></c>
   3750  <c>2</c> <c><spanx style="vbare">-1&nbsp;&nbsp;0&nbsp;&nbsp;1&nbsp;&nbsp;2</spanx></c>
   3751  <c>3</c> <c><spanx style="vbare">-1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;1</spanx></c>
   3752  <c>4</c> <c><spanx style="vbare">-1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3753  <c>5</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;1</spanx></c>
   3754  <c>6</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;1&nbsp;&nbsp;1</spanx></c>
   3755  <c>7</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;1&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3756  <c>8</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3757  <c>9</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;-1</spanx></c>
   3758 <c>10</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;-1</spanx></c>
   3759 </texttable>
   3760 
   3761 <texttable anchor="silk_pitch_contour_cb_mbwb10ms"
   3762  title="Codebook Vectors for Subframe Pitch Contour: MB or WB, 10&nbsp;ms Frames">
   3763 <ttcol>Index</ttcol>
   3764 <ttcol align="right">Subframe Offsets</ttcol>
   3765  <c>0</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3766  <c>1</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;1</spanx></c>
   3767  <c>2</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;0</spanx></c>
   3768  <c>3</c> <c><spanx style="vbare">-1&nbsp;&nbsp;1</spanx></c>
   3769  <c>4</c> <c><spanx style="vbare">&nbsp;1&nbsp;-1</spanx></c>
   3770  <c>5</c> <c><spanx style="vbare">-1&nbsp;&nbsp;2</spanx></c>
   3771  <c>6</c> <c><spanx style="vbare">&nbsp;2&nbsp;-1</spanx></c>
   3772  <c>7</c> <c><spanx style="vbare">-2&nbsp;&nbsp;2</spanx></c>
   3773  <c>8</c> <c><spanx style="vbare">&nbsp;2&nbsp;-2</spanx></c>
   3774  <c>9</c> <c><spanx style="vbare">-2&nbsp;&nbsp;3</spanx></c>
   3775 <c>10</c> <c><spanx style="vbare">&nbsp;3&nbsp;-2</spanx></c>
   3776 <c>11</c> <c><spanx style="vbare">-3&nbsp;&nbsp;3</spanx></c>
   3777 </texttable>
   3778 
   3779 <texttable anchor="silk_pitch_contour_cb_mbwb20ms"
   3780  title="Codebook Vectors for Subframe Pitch Contour: MB or WB, 20&nbsp;ms Frames">
   3781 <ttcol>Index</ttcol>
   3782 <ttcol align="right">Subframe Offsets</ttcol>
   3783  <c>0</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3784  <c>1</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;1&nbsp;&nbsp;1</spanx></c>
   3785  <c>2</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;1&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3786  <c>3</c> <c><spanx style="vbare">-1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3787  <c>4</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;1</spanx></c>
   3788  <c>5</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0</spanx></c>
   3789  <c>6</c> <c><spanx style="vbare">-1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;1</spanx></c>
   3790  <c>7</c> <c><spanx style="vbare">&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;-1</spanx></c>
   3791  <c>8</c> <c><spanx style="vbare">-1&nbsp;&nbsp;0&nbsp;&nbsp;1&nbsp;&nbsp;2</spanx></c>
   3792  <c>9</c> <c><spanx style="vbare">&nbsp;1&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;-1</spanx></c>
   3793 <c>10</c> <c><spanx style="vbare">-2&nbsp;-1&nbsp;&nbsp;1&nbsp;&nbsp;2</spanx></c>
   3794 <c>11</c> <c><spanx style="vbare">&nbsp;2&nbsp;&nbsp;1&nbsp;&nbsp;0&nbsp;-1</spanx></c>
   3795 <c>12</c> <c><spanx style="vbare">-2&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;&nbsp;2</spanx></c>
   3796 <c>13</c> <c><spanx style="vbare">-2&nbsp;&nbsp;0&nbsp;&nbsp;1&nbsp;&nbsp;3</spanx></c>
   3797 <c>14</c> <c><spanx style="vbare">&nbsp;2&nbsp;&nbsp;1&nbsp;-1&nbsp;-2</spanx></c>
   3798 <c>15</c> <c><spanx style="vbare">-3&nbsp;-1&nbsp;&nbsp;1&nbsp;&nbsp;3</spanx></c>
   3799 <c>16</c> <c><spanx style="vbare">&nbsp;2&nbsp;&nbsp;0&nbsp;&nbsp;0&nbsp;-2</spanx></c>
   3800 <c>17</c> <c><spanx style="vbare">&nbsp;3&nbsp;&nbsp;1&nbsp;&nbsp;0&nbsp;-2</spanx></c>
   3801 <c>18</c> <c><spanx style="vbare">-3&nbsp;-1&nbsp;&nbsp;2&nbsp;&nbsp;4</spanx></c>
   3802 <c>19</c> <c><spanx style="vbare">-4&nbsp;-1&nbsp;&nbsp;1&nbsp;&nbsp;4</spanx></c>
   3803 <c>20</c> <c><spanx style="vbare">&nbsp;3&nbsp;&nbsp;1&nbsp;-1&nbsp;-3</spanx></c>
   3804 <c>21</c> <c><spanx style="vbare">-4&nbsp;-1&nbsp;&nbsp;2&nbsp;&nbsp;5</spanx></c>
   3805 <c>22</c> <c><spanx style="vbare">&nbsp;4&nbsp;&nbsp;2&nbsp;-1&nbsp;-3</spanx></c>
   3806 <c>23</c> <c><spanx style="vbare">&nbsp;4&nbsp;&nbsp;1&nbsp;-1&nbsp;-4</spanx></c>
   3807 <c>24</c> <c><spanx style="vbare">-5&nbsp;-1&nbsp;&nbsp;2&nbsp;&nbsp;6</spanx></c>
   3808 <c>25</c> <c><spanx style="vbare">&nbsp;5&nbsp;&nbsp;2&nbsp;-1&nbsp;-4</spanx></c>
   3809 <c>26</c> <c><spanx style="vbare">-6&nbsp;-2&nbsp;&nbsp;2&nbsp;&nbsp;6</spanx></c>
   3810 <c>27</c> <c><spanx style="vbare">-5&nbsp;-2&nbsp;&nbsp;2&nbsp;&nbsp;5</spanx></c>
   3811 <c>28</c> <c><spanx style="vbare">&nbsp;6&nbsp;&nbsp;2&nbsp;-1&nbsp;-5</spanx></c>
   3812 <c>29</c> <c><spanx style="vbare">-7&nbsp;-2&nbsp;&nbsp;3&nbsp;&nbsp;8</spanx></c>
   3813 <c>30</c> <c><spanx style="vbare">&nbsp;6&nbsp;&nbsp;2&nbsp;-2&nbsp;-6</spanx></c>
   3814 <c>31</c> <c><spanx style="vbare">&nbsp;5&nbsp;&nbsp;2&nbsp;-2&nbsp;-5</spanx></c>
   3815 <c>32</c> <c><spanx style="vbare">&nbsp;8&nbsp;&nbsp;3&nbsp;-2&nbsp;-7</spanx></c>
   3816 <c>33</c> <c><spanx style="vbare">-9&nbsp;-3&nbsp;&nbsp;3&nbsp;&nbsp;9</spanx></c>
   3817 </texttable>
   3818 
   3819 <t>
   3820 The final pitch lag for each subframe is assembled in silk_decode_pitch()
   3821  (decode_pitch.c).
   3822 Let lag be the primary pitch lag for the current SILK frame, contour_index be
   3823  index of the VQ codebook, and lag_cb[contour_index][k] be the corresponding
   3824  entry of the codebook from the appropriate table given above for the k'th
   3825  subframe.
   3826 Then the final pitch lag for that subframe is
   3827 <figure align="center">
   3828 <artwork align="center"><![CDATA[
   3829 pitch_lags[k] = clamp(lag_min, lag + lag_cb[contour_index][k],
   3830                       lag_max)
   3831 ]]></artwork>
   3832 </figure>
   3833  where lag_min and lag_max are the values from the "Minimum Lag" and
   3834  "Maximum Lag" columns of <xref target="silk_abs_pitch_low_pdf"/>,
   3835  respectively.
   3836 </t>
   3837 
   3838 </section>
   3839 
   3840 <section anchor="silk_ltp_filter" title="LTP Filter Coefficients">
   3841 <t>
   3842 SILK uses a separate 5-tap pitch filter for each subframe, selected from one
   3843  of three codebooks.
   3844 The three codebooks each represent different rate-distortion trade-offs, with
   3845  average rates of 1.61&nbsp;bits/subframe, 3.68&nbsp;bits/subframe, and
   3846  4.85&nbsp;bits/subframe, respectively.
   3847 </t>
   3848 
   3849 <t>
   3850 The importance of the filter coefficients generally depends on two factors: the
   3851  periodicity of the signal and relative energy between the current subframe and
   3852  the signal from one period earlier.
   3853 Greater periodicity and decaying energy both lead to more important filter
   3854  coefficients, and thus should be coded with lower distortion and higher rate.
   3855 These properties are relatively stable over the duration of a single SILK
   3856  frame, hence all of the subframes in a SILK frame choose their filter from the
   3857  same codebook.
   3858 This is signaled with an explicitly-coded "periodicity index".
   3859 This immediately follows the subframe pitch lags, and is coded using the
   3860  3-entry PDF from <xref target="silk_perindex_pdf"/>.
   3861 </t>
   3862 
   3863 <texttable anchor="silk_perindex_pdf" title="Periodicity Index PDF">
   3864 <ttcol>PDF</ttcol>
   3865 <c>{77, 80, 99}/256</c>
   3866 </texttable>
   3867 
   3868 <t>
   3869 The indices of the filters for each subframe follow.
   3870 They are all coded using the PDF from <xref target="silk_ltp_filter_pdfs"/>
   3871  corresponding to the periodicity index.
   3872 Tables&nbsp;<xref format="counter" target="silk_ltp_filter_coeffs0"/>
   3873  through&nbsp;<xref format="counter" target="silk_ltp_filter_coeffs2"/>
   3874  contain the corresponding filter taps as signed Q7 integers.
   3875 </t>
   3876 
   3877 <texttable anchor="silk_ltp_filter_pdfs" title="LTP Filter PDFs">
   3878 <ttcol>Periodicity Index</ttcol>
   3879 <ttcol align="right">Codebook Size</ttcol>
   3880 <ttcol>PDF</ttcol>
   3881 <c>0</c>  <c>8</c> <c>{185, 15, 13, 13, 9, 9, 6, 6}/256</c>
   3882 <c>1</c> <c>16</c> <c>{57, 34, 21, 20, 15, 13, 12, 13,
   3883                        10, 10,  9, 10,  9,  8,  7,  8}/256</c>
   3884 <c>2</c> <c>32</c> <c>{15, 16, 14, 12, 12, 12, 11, 11,
   3885                        11, 10,  9,  9,  9,  9,  8,  8,
   3886                         8,  8,  7,  7,  6,  6,  5,  4,
   3887                         5,  4,  4,  4,  3,  4,  3,  2}/256</c>
   3888 </texttable>
   3889 
   3890 <texttable anchor="silk_ltp_filter_coeffs0"
   3891  title="Codebook Vectors for LTP Filter, Periodicity Index 0">
   3892 <ttcol>Index</ttcol>
   3893 <ttcol align="right">Filter Taps (Q7)</ttcol>
   3894  <c>0</c>
   3895 <c><spanx style="vbare">&nbsp;&nbsp;4&nbsp;&nbsp;&nbsp;6&nbsp;&nbsp;24&nbsp;&nbsp;&nbsp;7&nbsp;&nbsp;&nbsp;5</spanx></c>
   3896  <c>1</c>
   3897 <c><spanx style="vbare">&nbsp;&nbsp;0&nbsp;&nbsp;&nbsp;0&nbsp;&nbsp;&nbsp;2&nbsp;&nbsp;&nbsp;0&nbsp;&nbsp;&nbsp;0</spanx></c>
   3898  <c>2</c>
   3899 <c><spanx style="vbare">&nbsp;12&nbsp;&nbsp;28&nbsp;&nbsp;41&nbsp;&nbsp;13&nbsp;&nbsp;-4</spanx></c>
   3900  <c>3</c>
   3901 <c><spanx style="vbare">&nbsp;-9&nbsp;&nbsp;15&nbsp;&nbsp;42&nbsp;&nbsp;25&nbsp;&nbsp;14</spanx></c>
   3902  <c>4</c>
   3903 <c><spanx style="vbare">&nbsp;&nbsp;1&nbsp;&nbsp;-2&nbsp;&nbsp;62&nbsp;&nbsp;41&nbsp;&nbsp;-9</spanx></c>
   3904  <c>5</c>
   3905 <c><spanx style="vbare">-10&nbsp;&nbsp;37&nbsp;&nbsp;65&nbsp;&nbsp;-4&nbsp;&nbsp;&nbsp;3</spanx></c>
   3906  <c>6</c>
   3907 <c><spanx style="vbare">&nbsp;-6&nbsp;&nbsp;&nbsp;4&nbsp;&nbsp;66&nbsp;&nbsp;&nbsp;7&nbsp;&nbsp;-8</spanx></c>
   3908  <c>7</c>
   3909 <c><spanx style="vbare">&nbsp;16&nbsp;&nbsp;14&nbsp;&nbsp;38&nbsp;&nbsp;-3&nbsp;&nbsp;33</spanx></c>
   3910 </texttable>
   3911 
   3912 <texttable anchor="silk_ltp_filter_coeffs1"
   3913  title="Codebook Vectors for LTP Filter, Periodicity Index 1">
   3914 <ttcol>Index</ttcol>
   3915 <ttcol align="right">Filter Taps (Q7)</ttcol>
   3916 
   3917  <c>0</c>
   3918 <c><spanx style="vbare">&nbsp;13&nbsp;&nbsp;22&nbsp;&nbsp;39&nbsp;&nbsp;23&nbsp;&nbsp;12</spanx></c>
   3919  <c>1</c>
   3920 <c><spanx style="vbare">&nbsp;-1&nbsp;&nbsp;36&nbsp;&nbsp;64&nbsp;&nbsp;27&nbsp;&nbsp;-6</spanx></c>
   3921  <c>2</c>
   3922 <c><spanx style="vbare">&nbsp;-7&nbsp;&nbsp;10&nbsp;&nbsp;55&nbsp;&nbsp;43&nbsp;&nbsp;17</spanx></c>
   3923  <c>3</c>
   3924 <c><spanx style="vbare">&nbsp;&nbsp;1&nbsp;&nbsp;&nbsp;1&nbsp;&nbsp;&nbsp;8&nbsp;&nbsp;&nbsp;1&nbsp;&nbsp;&nbsp;1</spanx></c>
   3925  <c>4</c>
   3926 <c><spanx style="vbare">&nbsp;&nbsp;6&nbsp;-11&nbsp;&nbsp;74&nbsp;&nbsp;53&nbsp;&nbsp;-9</spanx></c>
   3927  <c>5</c>
   3928 <c><spanx style="vbare">-12&nbsp;&nbsp;55&nbsp;&nbsp;76&nbsp;-12&nbsp;&nbsp;&nbsp;8</spanx></c>
   3929  <c>6</c>
   3930 <c><spanx style="vbare">&nbsp;-3&nbsp;&nbsp;&nbsp;3&nbsp;&nbsp;93&nbsp;&nbsp;27&nbsp;&nbsp;-4</spanx></c>
   3931  <c>7</c>
   3932 <c><spanx style="vbare">&nbsp;26&nbsp;&nbsp;39&nbsp;&nbsp;59&nbsp;&nbsp;&nbsp;3&nbsp;&nbsp;-8</spanx></c>
   3933  <c>8</c>
   3934 <c><spanx style="vbare">&nbsp;&nbsp;2&nbsp;&nbsp;&nbsp;0&nbsp;&nbsp;77&nbsp;&nbsp;11&nbsp;&nbsp;&nbsp;9</spanx></c>
   3935  <c>9</c>
   3936 <c><spanx style="vbare">&nbsp;-8&nbsp;&nbsp;22&nbsp;&nbsp;44&nbsp;&nbsp;-6&nbsp;&nbsp;&nbsp;7</spanx></c>
   3937 <c>10</c>
   3938 <c><spanx style="vbare">&nbsp;40&nbsp;&nbsp;&nbsp;9&nbsp;&nbsp;26&nbsp;&nbsp;&nbsp;3&nbsp;&nbsp;&nbsp;9</spanx></c>
   3939 <c>11</c>
   3940 <c><spanx style="vbare">&nbsp;-7&nbsp;&nbsp;20&nbsp;101&nbsp;&nbsp;-7&nbsp;&nbsp;&nbsp;4</spanx></c>
   3941 <c>12</c>
   3942 <c><spanx style="vbare">&nbsp;&nbsp;3&nbsp;&nbsp;-8&nbsp;&nbsp;42&nbsp;&nbsp;26&nbsp;&nbsp;&nbsp;0</spanx></c>
   3943 <c>13</c>
   3944 <c><spanx style="vbare">-15&nbsp;&nbsp;33&nbsp;&nbsp;68&nbsp;&nbsp;&nbsp;2&nbsp;&nbsp;23</spanx></c>
   3945 <c>14</c>
   3946 <c><spanx style="vbare">&nbsp;-2&nbsp;&nbsp;55&nbsp;&nbsp;46&nbsp;&nbsp;-2&nbsp;&nbsp;15</spanx></c>
   3947 <c>15</c>
   3948 <c><spanx style="vbare">&nbsp;&nbsp;3&nbsp;&nbsp;-1&nbsp;&nbsp;21&nbsp;&nbsp;16&nbsp;&nbsp;41</spanx></c>
   3949 </texttable>
   3950 
   3951 <texttable anchor="silk_ltp_filter_coeffs2"
   3952  title="Codebook Vectors for LTP Filter, Periodicity Index 2">
   3953 <ttcol>Index</ttcol>
   3954 <ttcol align="right">Filter Taps (Q7)</ttcol>
   3955  <c>0</c>
   3956 <c><spanx style="vbare">&nbsp;-6&nbsp;&nbsp;27&nbsp;&nbsp;61&nbsp;&nbsp;39&nbsp;&nbsp;&nbsp;5</spanx></c>
   3957  <c>1</c>
   3958 <c><spanx style="vbare">-11&nbsp;&nbsp;42&nbsp;&nbsp;88&nbsp;&nbsp;&nbsp;4&nbsp;&nbsp;&nbsp;1</spanx></c>
   3959  <c>2</c>
   3960 <c><spanx style="vbare">&nbsp;-2&nbsp;&nbsp;60&nbsp;&nbsp;65&nbsp;&nbsp;&nbsp;6&nbsp;&nbsp;-4</spanx></c>
   3961  <c>3</c>
   3962 <c><spanx style="vbare">&nbsp;-1&nbsp;&nbsp;-5&nbsp;&nbsp;73&nbsp;&nbsp;56&nbsp;&nbsp;&nbsp;1</spanx></c>
   3963  <c>4</c>
   3964 <c><spanx style="vbare">&nbsp;-9&nbsp;&nbsp;19&nbsp;&nbsp;94&nbsp;&nbsp;29&nbsp;&nbsp;-9</spanx></c>
   3965  <c>5</c>
   3966 <c><spanx style="vbare">&nbsp;&nbsp;0&nbsp;&nbsp;12&nbsp;&nbsp;99&nbsp;&nbsp;&nbsp;6&nbsp;&nbsp;&nbsp;4</spanx></c>
   3967  <c>6</c>
   3968 <c><spanx style="vbare">&nbsp;&nbsp;8&nbsp;-19&nbsp;102&nbsp;&nbsp;46&nbsp;-13</spanx></c>
   3969  <c>7</c>
   3970 <c><spanx style="vbare">&nbsp;&nbsp;3&nbsp;&nbsp;&nbsp;2&nbsp;&nbsp;13&nbsp;&nbsp;&nbsp;3&nbsp;&nbsp;&nbsp;2</spanx></c>
   3971  <c>8</c>
   3972 <c><spanx style="vbare">&nbsp;&nbsp;9&nbsp;-21&nbsp;&nbsp;84&nbsp;&nbsp;72&nbsp;-18</spanx></c>
   3973  <c>9</c>
   3974 <c><spanx style="vbare">-11&nbsp;&nbsp;46&nbsp;104&nbsp;-22&nbsp;&nbsp;&nbsp;8</spanx></c>
   3975 <c>10</c>
   3976 <c><spanx style="vbare">&nbsp;18&nbsp;&nbsp;38&nbsp;&nbsp;48&nbsp;&nbsp;23&nbsp;&nbsp;&nbsp;0</spanx></c>
   3977 <c>11</c>
   3978 <c><spanx style="vbare">-16&nbsp;&nbsp;70&nbsp;&nbsp;83&nbsp;-21&nbsp;&nbsp;11</spanx></c>
   3979 <c>12</c>
   3980 <c><spanx style="vbare">&nbsp;&nbsp;5&nbsp;-11&nbsp;117&nbsp;&nbsp;22&nbsp;&nbsp;-8</spanx></c>
   3981 <c>13</c>
   3982 <c><spanx style="vbare">&nbsp;-6&nbsp;&nbsp;23&nbsp;117&nbsp;-12&nbsp;&nbsp;&nbsp;3</spanx></c>
   3983 <c>14</c>
   3984 <c><spanx style="vbare">&nbsp;&nbsp;3&nbsp;&nbsp;-8&nbsp;&nbsp;95&nbsp;&nbsp;28&nbsp;&nbsp;&nbsp;4</spanx></c>
   3985 <c>15</c>
   3986 <c><spanx style="vbare">-10&nbsp;&nbsp;15&nbsp;&nbsp;77&nbsp;&nbsp;60&nbsp;-15</spanx></c>
   3987 <c>16</c>
   3988 <c><spanx style="vbare">&nbsp;-1&nbsp;&nbsp;&nbsp;4&nbsp;124&nbsp;&nbsp;&nbsp;2&nbsp;&nbsp;-4</spanx></c>
   3989 <c>17</c>
   3990 <c><spanx style="vbare">&nbsp;&nbsp;3&nbsp;&nbsp;38&nbsp;&nbsp;84&nbsp;&nbsp;24&nbsp;-25</spanx></c>
   3991 <c>18</c>
   3992 <c><spanx style="vbare">&nbsp;&nbsp;2&nbsp;&nbsp;13&nbsp;&nbsp;42&nbsp;&nbsp;13&nbsp;&nbsp;31</spanx></c>
   3993 <c>19</c>
   3994 <c><spanx style="vbare">&nbsp;21&nbsp;&nbsp;-4&nbsp;&nbsp;56&nbsp;&nbsp;46&nbsp;&nbsp;-1</spanx></c>
   3995 <c>20</c>
   3996 <c><spanx style="vbare">&nbsp;-1&nbsp;&nbsp;35&nbsp;&nbsp;79&nbsp;-13&nbsp;&nbsp;19</spanx></c>
   3997 <c>21</c>
   3998 <c><spanx style="vbare">&nbsp;-7&nbsp;&nbsp;65&nbsp;&nbsp;88&nbsp;&nbsp;-9&nbsp;-14</spanx></c>
   3999 <c>22</c>
   4000 <c><spanx style="vbare">&nbsp;20&nbsp;&nbsp;&nbsp;4&nbsp;&nbsp;81&nbsp;&nbsp;49&nbsp;-29</spanx></c>
   4001 <c>23</c>
   4002 <c><spanx style="vbare">&nbsp;20&nbsp;&nbsp;&nbsp;0&nbsp;&nbsp;75&nbsp;&nbsp;&nbsp;3&nbsp;-17</spanx></c>
   4003 <c>24</c>
   4004 <c><spanx style="vbare">&nbsp;&nbsp;5&nbsp;&nbsp;-9&nbsp;&nbsp;44&nbsp;&nbsp;92&nbsp;&nbsp;-8</spanx></c>
   4005 <c>25</c>
   4006 <c><spanx style="vbare">&nbsp;&nbsp;1&nbsp;&nbsp;-3&nbsp;&nbsp;22&nbsp;&nbsp;69&nbsp;&nbsp;31</spanx></c>
   4007 <c>26</c>
   4008 <c><spanx style="vbare">&nbsp;-6&nbsp;&nbsp;95&nbsp;&nbsp;41&nbsp;-12&nbsp;&nbsp;&nbsp;5</spanx></c>
   4009 <c>27</c>
   4010 <c><spanx style="vbare">&nbsp;39&nbsp;&nbsp;67&nbsp;&nbsp;16&nbsp;&nbsp;-4&nbsp;&nbsp;&nbsp;1</spanx></c>
   4011 <c>28</c>
   4012 <c><spanx style="vbare">&nbsp;&nbsp;0&nbsp;&nbsp;-6&nbsp;120&nbsp;&nbsp;55&nbsp;-36</spanx></c>
   4013 <c>29</c>
   4014 <c><spanx style="vbare">-13&nbsp;&nbsp;44&nbsp;122&nbsp;&nbsp;&nbsp;4&nbsp;-24</spanx></c>
   4015 <c>30</c>
   4016 <c><spanx style="vbare">&nbsp;81&nbsp;&nbsp;&nbsp;5&nbsp;&nbsp;11&nbsp;&nbsp;&nbsp;3&nbsp;&nbsp;&nbsp;7</spanx></c>
   4017 <c>31</c>
   4018 <c><spanx style="vbare">&nbsp;&nbsp;2&nbsp;&nbsp;&nbsp;0&nbsp;&nbsp;&nbsp;9&nbsp;&nbsp;10&nbsp;&nbsp;88</spanx></c>
   4019 </texttable>
   4020 
   4021 </section>
   4022 
   4023 <section anchor="silk_ltp_scaling" title="LTP Scaling Parameter">
   4024 <t>
   4025 An LTP scaling parameter appears after the LTP filter coefficients if and only
   4026  if
   4027 <list style="symbols">
   4028 <t>This is a voiced frame (see <xref target="silk_frame_type"/>), and</t>
   4029 <t>Either
   4030 <list style="symbols">
   4031 <t>
   4032 This SILK frame corresponds to the first time interval of the
   4033  current Opus frame for its type (LBRR or regular), or
   4034 </t>
   4035 <t>
   4036 This is an LBRR frame where the LBRR flags (see
   4037  <xref target="silk_lbrr_flags"/>) indicate the previous LBRR frame in the same
   4038  channel is not coded.
   4039 </t>
   4040 </list>
   4041 </t>
   4042 </list>
   4043 This allows the encoder to trade off the prediction gain between
   4044  packets against the recovery time after packet loss.
   4045 Unlike absolute-coding for pitch lags, regular SILK frames that are not at the
   4046  start of an Opus frame (i.e., that do not correspond to the first 20&nbsp;ms
   4047  time interval in Opus frames of 40&nbsp;or 60&nbsp;ms) do not include this
   4048  field, even if the prior frame was not voiced, or (in the case of the side
   4049  channel) not even coded.
   4050 After an uncoded frame in the side channel, the LTP buffer (see
   4051  <xref target="silk_ltp_synthesis"/>) is cleared to zero, and is thus in a
   4052  known state.
   4053 In contrast, LBRR frames do include this field when the prior frame was not
   4054  coded, since the LTP buffer contains the output of the PLC, which is
   4055  non-normative.
   4056 </t>
   4057 <t>
   4058 If present, the decoder reads a value using the 3-entry PDF in
   4059  <xref target="silk_ltp_scaling_pdf"/>.
   4060 The three possible values represent Q14 scale factors of 15565, 12288, and
   4061  8192, respectively (corresponding to approximately 0.95, 0.75, and 0.5).
   4062 Frames that do not code the scaling parameter use the default factor of 15565
   4063  (approximately 0.95).
   4064 </t>
   4065 
   4066 <texttable anchor="silk_ltp_scaling_pdf"
   4067  title="PDF for LTP Scaling Parameter">
   4068 <ttcol align="left">PDF</ttcol>
   4069 <c>{128, 64, 64}/256</c>
   4070 </texttable>
   4071 
   4072 </section>
   4073 
   4074 </section>
   4075 
   4076 <section anchor="silk_seed" toc="include"
   4077  title="Linear Congruential Generator (LCG) Seed">
   4078 <t>
   4079 As described in <xref target="silk_excitation_reconstruction"/>, SILK uses a
   4080  linear congruential generator (LCG) to inject pseudorandom noise into the
   4081  quantized excitation.
   4082 To ensure synchronization of this process between the encoder and decoder, each
   4083  SILK frame stores a 2-bit seed after the LTP parameters (if any).
   4084 The encoder may consider the choice of seed during quantization, and the
   4085  flexibility of this choice lets it reduce distortion, helping to pay for the
   4086  bit cost required to signal it.
   4087 The decoder reads the seed using the uniform 4-entry PDF in
   4088  <xref target="silk_seed_pdf"/>, yielding a value between 0 and 3, inclusive.
   4089 </t>
   4090 
   4091 <texttable anchor="silk_seed_pdf"
   4092  title="PDF for LCG Seed">
   4093 <ttcol align="left">PDF</ttcol>
   4094 <c>{64, 64, 64, 64}/256</c>
   4095 </texttable>
   4096 
   4097 </section>
   4098 
   4099 <section anchor="silk_excitation" toc="include" title="Excitation">
   4100 <t>
   4101 SILK codes the excitation using a modified version of the Pyramid Vector
   4102  Quantization (PVQ) codebook <xref target="PVQ"/>.
   4103 The PVQ codebook is designed for Laplace-distributed values and consists of all
   4104  sums of K signed, unit pulses in a vector of dimension N, where two pulses at
   4105  the same position are required to have the same sign.
   4106 Thus the codebook includes all integer codevectors y of dimension N that
   4107  satisfy
   4108 <figure align="center">
   4109 <artwork align="center"><![CDATA[
   4110 N-1
   4111 __
   4112 \  abs(y[j]) = K .
   4113 /_
   4114 j=0
   4115 ]]></artwork>
   4116 </figure>
   4117 Unlike regular PVQ, SILK uses a variable-length, rather than fixed-length,
   4118  encoding.
   4119 This encoding is better suited to the more Gaussian-like distribution of the
   4120  coefficient magnitudes and the non-uniform distribution of their signs (caused
   4121  by the quantization offset described below).
   4122 SILK also handles large codebooks by coding the least significant bits (LSBs)
   4123  of each coefficient directly.
   4124 This adds a small coding efficiency loss, but greatly reduces the computation
   4125  time and ROM size required for decoding, as implemented in
   4126  silk_decode_pulses() (decode_pulses.c).
   4127 </t>
   4128 
   4129 <t>
   4130 SILK fixes the dimension of the codebook to N&nbsp;=&nbsp;16.
   4131 The excitation is made up of a number of "shell blocks", each 16 samples in
   4132  size.
   4133 <xref target="silk_shell_block_table"/> lists the number of shell blocks
   4134  required for a SILK frame for each possible audio bandwidth and frame size.
   4135 10&nbsp;ms MB frames nominally contain 120&nbsp;samples (10&nbsp;ms at
   4136  12&nbsp;kHz), which is not a multiple of 16.
   4137 This is handled by coding 8 shell blocks (128 samples) and discarding the final
   4138  8 samples of the last block.
   4139 The decoder contains no special case that prevents an encoder from placing
   4140  pulses in these samples, and they must be correctly parsed from the bitstream
   4141  if present, but they are otherwise ignored.
   4142 </t>
   4143 
   4144 <texttable anchor="silk_shell_block_table"
   4145  title="Number of Shell Blocks Per SILK Frame">
   4146 <ttcol>Audio Bandwidth</ttcol>
   4147 <ttcol>Frame Size</ttcol>
   4148 <ttcol align="right">Number of Shell Blocks</ttcol>
   4149 <c>NB</c> <c>10&nbsp;ms</c>  <c>5</c>
   4150 <c>MB</c> <c>10&nbsp;ms</c>  <c>8</c>
   4151 <c>WB</c> <c>10&nbsp;ms</c> <c>10</c>
   4152 <c>NB</c> <c>20&nbsp;ms</c> <c>10</c>
   4153 <c>MB</c> <c>20&nbsp;ms</c> <c>15</c>
   4154 <c>WB</c> <c>20&nbsp;ms</c> <c>20</c>
   4155 </texttable>
   4156 
   4157 <section anchor="silk_rate_level" title="Rate Level">
   4158 <t>
   4159 The first symbol in the excitation is a "rate level", which is an index from 0
   4160  to 8, inclusive, coded using the PDF in <xref target="silk_rate_level_pdfs"/>
   4161  corresponding to the signal type of the current frame (from
   4162  <xref target="silk_frame_type"/>).
   4163 The rate level selects the PDF used to decode the number of pulses in
   4164  the individual shell blocks.
   4165 It does not directly convey any information about the bitrate or the number of
   4166  pulses itself, but merely changes the probability of the symbols in
   4167  <xref target="silk_pulse_counts"/>.
   4168 Level&nbsp;0 provides a more efficient encoding at low rates generally, and
   4169  level&nbsp;8 provides a more efficient encoding at high rates generally,
   4170  though the most efficient level for a particular SILK frame may depend on the
   4171  exact distribution of the coded symbols.
   4172 An encoder should, but is not required to, use the most efficient rate level.
   4173 </t>
   4174 
   4175 <texttable anchor="silk_rate_level_pdfs"
   4176  title="PDFs for the Rate Level">
   4177 <ttcol>Signal Type</ttcol>
   4178 <ttcol>PDF</ttcol>
   4179 <c>Inactive or Unvoiced</c>
   4180 <c>{15, 51, 12, 46, 45, 13, 33, 27, 14}/256</c>
   4181 <c>Voiced</c>
   4182 <c>{33, 30, 36, 17, 34, 49, 18, 21, 18}/256</c>
   4183 </texttable>
   4184 
   4185 </section>
   4186 
   4187 <section anchor="silk_pulse_counts" title="Pulses Per Shell Block">
   4188 <t>
   4189 The total number of pulses in each of the shell blocks follows the rate level.
   4190 The pulse counts for all of the shell blocks are coded consecutively, before
   4191  the content of any of the blocks.
   4192 Each block may have anywhere from 0 to 16 pulses, inclusive, coded using the
   4193  18-entry PDF in <xref target="silk_pulse_count_pdfs"/> corresponding to the
   4194  rate level from <xref target="silk_rate_level"/>.
   4195 The special value 17 indicates that this block has one or more additional
   4196  LSBs to decode for each coefficient.
   4197 If the decoder encounters this value, it decodes another value for the actual
   4198  pulse count of the block, but uses the PDF corresponding to the special rate
   4199  level&nbsp;9 instead of the normal rate level.
   4200 This process repeats until the decoder reads a value less than 17, and it then
   4201  sets the number of extra LSBs used to the number of 17's decoded for that
   4202  block.
   4203 If it reads the value 17 ten times, then the next iteration uses the special
   4204  rate level&nbsp;10 instead of 9.
   4205 The probability of decoding a 17 when using the PDF for rate level&nbsp;10 is
   4206  zero, ensuring that the number of LSBs for a block will not exceed 10.
   4207 The cumulative distribution for rate level&nbsp;10 is just a shifted version of
   4208  that for 9 and thus does not require any additional storage.
   4209 </t>
   4210 
   4211 <texttable anchor="silk_pulse_count_pdfs"
   4212  title="PDFs for the Pulse Count">
   4213 <ttcol>Rate Level</ttcol>
   4214 <ttcol>PDF</ttcol>
   4215 <c>0</c>
   4216 <c>{131, 74, 25, 8, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
   4217 <c>1</c>
   4218 <c>{58, 93, 60, 23, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
   4219 <c>2</c>
   4220 <c>{43, 51, 46, 33, 24, 16, 11, 8, 6, 3, 3, 3, 2, 1, 1, 2, 1, 2}/256</c>
   4221 <c>3</c>
   4222 <c>{17, 52, 71, 57, 31, 12, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}/256</c>
   4223 <c>4</c>
   4224 <c>{6, 21, 41, 53, 49, 35, 21, 11, 6, 3, 2, 2, 1, 1, 1, 1, 1, 1}/256</c>
   4225 <c>5</c>
   4226 <c>{7, 14, 22, 28, 29, 28, 25, 20, 17, 13, 11, 9, 7, 5, 4, 4, 3, 10}/256</c>
   4227 <c>6</c>
   4228 <c>{2, 5, 14, 29, 42, 46, 41, 31, 19, 11, 6, 3, 2, 1, 1, 1, 1, 1}/256</c>
   4229 <c>7</c>
   4230 <c>{1, 2, 4, 10, 19, 29, 35, 37, 34, 28, 20, 14, 8, 5, 4, 2, 2, 2}/256</c>
   4231 <c>8</c>
   4232 <c>{1, 2, 2, 5, 9, 14, 20, 24, 27, 28, 26, 23, 20, 15, 11, 8, 6, 15}/256</c>
   4233 <c>9</c>
   4234 <c>{1, 1, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2, 1, 1, 2}/256</c>
   4235 <c>10</c>
   4236 <c>{2, 1, 6, 27, 58, 56, 39, 25, 14, 10, 6, 3, 3, 2, 1, 1, 2, 0}/256</c>
   4237 </texttable>
   4238 
   4239 </section>
   4240 
   4241 <section anchor="silk_pulse_locations" title="Pulse Location Decoding">
   4242 <t>
   4243 The locations of the pulses in each shell block follow the pulse counts,
   4244  as decoded by silk_shell_decoder() (shell_coder.c).
   4245 As with the pulse counts, these locations are coded for all the shell blocks
   4246  before any of the remaining information for each block.
   4247 Unlike many other codecs, SILK places no restriction on the distribution of
   4248  pulses within a shell block.
   4249 All of the pulses may be placed in a single location, or each one in a unique
   4250  location, or anything in between.
   4251 </t>
   4252 
   4253 <t>
   4254 The location of pulses is coded by recursively partitioning each block into
   4255  halves, and coding how many pulses fall on the left side of the split.
   4256 All remaining pulses must fall on the right side of the split.
   4257 The process then recurses into the left half, and after that returns, the
   4258  right half (preorder traversal).
   4259 The PDF to use is chosen by the size of the current partition (16, 8, 4, or 2)
   4260  and the number of pulses in the partition (1 to 16, inclusive).
   4261 Tables&nbsp;<xref format="counter" target="silk_shell_code3_pdfs"/>
   4262  through&nbsp;<xref format="counter" target="silk_shell_code0_pdfs"/> list the
   4263  PDFs used for each partition size and pulse count.
   4264 This process skips partitions without any pulses, i.e., where the initial pulse
   4265  count from <xref target="silk_pulse_counts"/> was zero, or where the split in
   4266  the prior level indicated that all of the pulses fell on the other side.
   4267 These partitions have nothing to code, so they require no PDF.
   4268 </t>
   4269 
   4270 <texttable anchor="silk_shell_code3_pdfs"
   4271  title="PDFs for Pulse Count Split, 16 Sample Partitions">
   4272 <ttcol>Pulse Count</ttcol>
   4273 <ttcol>PDF</ttcol>
   4274  <c>1</c> <c>{126, 130}/256</c>
   4275  <c>2</c> <c>{56, 142, 58}/256</c>
   4276  <c>3</c> <c>{25, 101, 104, 26}/256</c>
   4277  <c>4</c> <c>{12, 60, 108, 64, 12}/256</c>
   4278  <c>5</c> <c>{7, 35, 84, 87, 37, 6}/256</c>
   4279  <c>6</c> <c>{4, 20, 59, 86, 63, 21, 3}/256</c>
   4280  <c>7</c> <c>{3, 12, 38, 72, 75, 42, 12, 2}/256</c>
   4281  <c>8</c> <c>{2, 8, 25, 54, 73, 59, 27, 7, 1}/256</c>
   4282  <c>9</c> <c>{2, 5, 17, 39, 63, 65, 42, 18, 4, 1}/256</c>
   4283 <c>10</c> <c>{1, 4, 12, 28, 49, 63, 54, 30, 11, 3, 1}/256</c>
   4284 <c>11</c> <c>{1, 4, 8, 20, 37, 55, 57, 41, 22, 8, 2, 1}/256</c>
   4285 <c>12</c> <c>{1, 3, 7, 15, 28, 44, 53, 48, 33, 16, 6, 1, 1}/256</c>
   4286 <c>13</c> <c>{1, 2, 6, 12, 21, 35, 47, 48, 40, 25, 12, 5, 1, 1}/256</c>
   4287 <c>14</c> <c>{1, 1, 4, 10, 17, 27, 37, 47, 43, 33, 21, 9, 4, 1, 1}/256</c>
   4288 <c>15</c> <c>{1, 1, 1, 8, 14, 22, 33, 40, 43, 38, 28, 16, 8, 1, 1, 1}/256</c>
   4289 <c>16</c> <c>{1, 1, 1, 1, 13, 18, 27, 36, 41, 41, 34, 24, 14, 1, 1, 1, 1}/256</c>
   4290 </texttable>
   4291 
   4292 <texttable anchor="silk_shell_code2_pdfs"
   4293  title="PDFs for Pulse Count Split, 8 Sample Partitions">
   4294 <ttcol>Pulse Count</ttcol>
   4295 <ttcol>PDF</ttcol>
   4296  <c>1</c> <c>{127, 129}/256</c>
   4297  <c>2</c> <c>{53, 149, 54}/256</c>
   4298  <c>3</c> <c>{22, 105, 106, 23}/256</c>
   4299  <c>4</c> <c>{11, 61, 111, 63, 10}/256</c>
   4300  <c>5</c> <c>{6, 35, 86, 88, 36, 5}/256</c>
   4301  <c>6</c> <c>{4, 20, 59, 87, 62, 21, 3}/256</c>
   4302  <c>7</c> <c>{3, 13, 40, 71, 73, 41, 13, 2}/256</c>
   4303  <c>8</c> <c>{3, 9, 27, 53, 70, 56, 28, 9, 1}/256</c>
   4304  <c>9</c> <c>{3, 8, 19, 37, 57, 61, 44, 20, 6, 1}/256</c>
   4305 <c>10</c> <c>{3, 7, 15, 28, 44, 54, 49, 33, 17, 5, 1}/256</c>
   4306 <c>11</c> <c>{1, 7, 13, 22, 34, 46, 48, 38, 28, 14, 4, 1}/256</c>
   4307 <c>12</c> <c>{1, 1, 11, 22, 27, 35, 42, 47, 33, 25, 10, 1, 1}/256</c>
   4308 <c>13</c> <c>{1, 1, 6, 14, 26, 37, 43, 43, 37, 26, 14, 6, 1, 1}/256</c>
   4309 <c>14</c> <c>{1, 1, 4, 10, 20, 31, 40, 42, 40, 31, 20, 10, 4, 1, 1}/256</c>
   4310 <c>15</c> <c>{1, 1, 3, 8, 16, 26, 35, 38, 38, 35, 26, 16, 8, 3, 1, 1}/256</c>
   4311 <c>16</c> <c>{1, 1, 2, 6, 12, 21, 30, 36, 38, 36, 30, 21, 12, 6, 2, 1, 1}/256</c>
   4312 </texttable>
   4313 
   4314 <texttable anchor="silk_shell_code1_pdfs"
   4315  title="PDFs for Pulse Count Split, 4 Sample Partitions">
   4316 <ttcol>Pulse Count</ttcol>
   4317 <ttcol>PDF</ttcol>
   4318  <c>1</c> <c>{127, 129}/256</c>
   4319  <c>2</c> <c>{49, 157, 50}/256</c>
   4320  <c>3</c> <c>{20, 107, 109, 20}/256</c>
   4321  <c>4</c> <c>{11, 60, 113, 62, 10}/256</c>
   4322  <c>5</c> <c>{7, 36, 84, 87, 36, 6}/256</c>
   4323  <c>6</c> <c>{6, 24, 57, 82, 60, 23, 4}/256</c>
   4324  <c>7</c> <c>{5, 18, 39, 64, 68, 42, 16, 4}/256</c>
   4325  <c>8</c> <c>{6, 14, 29, 47, 61, 52, 30, 14, 3}/256</c>
   4326  <c>9</c> <c>{1, 15, 23, 35, 51, 50, 40, 30, 10, 1}/256</c>
   4327 <c>10</c> <c>{1, 1, 21, 32, 42, 52, 46, 41, 18, 1, 1}/256</c>
   4328 <c>11</c> <c>{1, 6, 16, 27, 36, 42, 42, 36, 27, 16, 6, 1}/256</c>
   4329 <c>12</c> <c>{1, 5, 12, 21, 31, 38, 40, 38, 31, 21, 12, 5, 1}/256</c>
   4330 <c>13</c> <c>{1, 3, 9, 17, 26, 34, 38, 38, 34, 26, 17, 9, 3, 1}/256</c>
   4331 <c>14</c> <c>{1, 3, 7, 14, 22, 29, 34, 36, 34, 29, 22, 14, 7, 3, 1}/256</c>
   4332 <c>15</c> <c>{1, 2, 5, 11, 18, 25, 31, 35, 35, 31, 25, 18, 11, 5, 2, 1}/256</c>
   4333 <c>16</c> <c>{1, 1, 4, 9, 15, 21, 28, 32, 34, 32, 28, 21, 15, 9, 4, 1, 1}/256</c>
   4334 </texttable>
   4335 
   4336 <texttable anchor="silk_shell_code0_pdfs"
   4337  title="PDFs for Pulse Count Split, 2 Sample Partitions">
   4338 <ttcol>Pulse Count</ttcol>
   4339 <ttcol>PDF</ttcol>
   4340  <c>1</c> <c>{128, 128}/256</c>
   4341  <c>2</c> <c>{42, 172, 42}/256</c>
   4342  <c>3</c> <c>{21, 107, 107, 21}/256</c>
   4343  <c>4</c> <c>{12, 60, 112, 61, 11}/256</c>
   4344  <c>5</c> <c>{8, 34, 86, 86, 35, 7}/256</c>
   4345  <c>6</c> <c>{8, 23, 55, 90, 55, 20, 5}/256</c>
   4346  <c>7</c> <c>{5, 15, 38, 72, 72, 36, 15, 3}/256</c>
   4347  <c>8</c> <c>{6, 12, 27, 52, 77, 47, 20, 10, 5}/256</c>
   4348  <c>9</c> <c>{6, 19, 28, 35, 40, 40, 35, 28, 19, 6}/256</c>
   4349 <c>10</c> <c>{4, 14, 22, 31, 37, 40, 37, 31, 22, 14, 4}/256</c>
   4350 <c>11</c> <c>{3, 10, 18, 26, 33, 38, 38, 33, 26, 18, 10, 3}/256</c>
   4351 <c>12</c> <c>{2, 8, 13, 21, 29, 36, 38, 36, 29, 21, 13, 8, 2}/256</c>
   4352 <c>13</c> <c>{1, 5, 10, 17, 25, 32, 38, 38, 32, 25, 17, 10, 5, 1}/256</c>
   4353 <c>14</c> <c>{1, 4, 7, 13, 21, 29, 35, 36, 35, 29, 21, 13, 7, 4, 1}/256</c>
   4354 <c>15</c> <c>{1, 2, 5, 10, 17, 25, 32, 36, 36, 32, 25, 17, 10, 5, 2, 1}/256</c>
   4355 <c>16</c> <c>{1, 2, 4, 7, 13, 21, 28, 34, 36, 34, 28, 21, 13, 7, 4, 2, 1}/256</c>
   4356 </texttable>
   4357 
   4358 </section>
   4359 
   4360 <section anchor="silk_shell_lsb" title="LSB Decoding">
   4361 <t>
   4362 After the decoder reads the pulse locations for all blocks, it reads the LSBs
   4363  (if any) for each block in turn.
   4364 Inside each block, it reads all the LSBs for each coefficient in turn, even
   4365  those where no pulses were allocated, before proceeding to the next one.
   4366 For 10&nbsp;ms MB frames, it reads LSBs even for the extra 8&nbsp;samples in
   4367  the last block.
   4368 The LSBs are coded from most significant to least significant, and they all use
   4369  the PDF in <xref target="silk_shell_lsb_pdf"/>.
   4370 </t>
   4371 
   4372 <texttable anchor="silk_shell_lsb_pdf" title="PDF for Excitation LSBs">
   4373 <ttcol>PDF</ttcol>
   4374 <c>{136, 120}/256</c>
   4375 </texttable>
   4376 
   4377 <t>
   4378 The number of LSBs read for each coefficient in a block is determined in
   4379  <xref target="silk_pulse_counts"/>.
   4380 The magnitude of the coefficient is initially equal to the number of pulses
   4381  placed at that location in <xref target="silk_pulse_locations"/>.
   4382 As each LSB is decoded, the magnitude is doubled, and then the value of the LSB
   4383  added to it, to obtain an updated magnitude.
   4384 </t>
   4385 </section>
   4386 
   4387 <section anchor="silk_signs" title="Sign Decoding">
   4388 <t>
   4389 After decoding the pulse locations and the LSBs, the decoder knows the
   4390  magnitude of each coefficient in the excitation.
   4391 It then decodes a sign for all coefficients with a non-zero magnitude, using
   4392  one of the PDFs from <xref target="silk_sign_pdfs"/>.
   4393 If the value decoded is 0, then the coefficient magnitude is negated.
   4394 Otherwise, it remains positive.
   4395 </t>
   4396 
   4397 <t>
   4398 The decoder chooses the PDF for the sign based on the signal type and
   4399  quantization offset type (from <xref target="silk_frame_type"/>) and the
   4400  number of pulses in the block (from <xref target="silk_pulse_counts"/>).
   4401 The number of pulses in the block does not take into account any LSBs.
   4402 Most PDFs are skewed towards negative signs because of the quantization offset,
   4403  but the PDFs for zero pulses are highly skewed towards positive signs.
   4404 If a block contains many positive coefficients, it is sometimes beneficial to
   4405  code it solely using LSBs (i.e., with zero pulses), since the encoder may be
   4406  able to save enough bits on the signs to justify the less efficient
   4407  coefficient magnitude encoding.
   4408 </t>
   4409 
   4410 <texttable anchor="silk_sign_pdfs"
   4411  title="PDFs for Excitation Signs">
   4412 <ttcol>Signal Type</ttcol>
   4413 <ttcol>Quantization Offset Type</ttcol>
   4414 <ttcol>Pulse Count</ttcol>
   4415 <ttcol>PDF</ttcol>
   4416 <c>Inactive</c> <c>Low</c>  <c>0</c>         <c>{2, 254}/256</c>
   4417 <c>Inactive</c> <c>Low</c>  <c>1</c>         <c>{207, 49}/256</c>
   4418 <c>Inactive</c> <c>Low</c>  <c>2</c>         <c>{189, 67}/256</c>
   4419 <c>Inactive</c> <c>Low</c>  <c>3</c>         <c>{179, 77}/256</c>
   4420 <c>Inactive</c> <c>Low</c>  <c>4</c>         <c>{174, 82}/256</c>
   4421 <c>Inactive</c> <c>Low</c>  <c>5</c>         <c>{163, 93}/256</c>
   4422 <c>Inactive</c> <c>Low</c>  <c>6 or more</c> <c>{157, 99}/256</c>
   4423 <c>Inactive</c> <c>High</c> <c>0</c>         <c>{58, 198}/256</c>
   4424 <c>Inactive</c> <c>High</c> <c>1</c>         <c>{245, 11}/256</c>
   4425 <c>Inactive</c> <c>High</c> <c>2</c>         <c>{238, 18}/256</c>
   4426 <c>Inactive</c> <c>High</c> <c>3</c>         <c>{232, 24}/256</c>
   4427 <c>Inactive</c> <c>High</c> <c>4</c>         <c>{225, 31}/256</c>
   4428 <c>Inactive</c> <c>High</c> <c>5</c>         <c>{220, 36}/256</c>
   4429 <c>Inactive</c> <c>High</c> <c>6 or more</c> <c>{211, 45}/256</c>
   4430 <c>Unvoiced</c> <c>Low</c>  <c>0</c>         <c>{1, 255}/256</c>
   4431 <c>Unvoiced</c> <c>Low</c>  <c>1</c>         <c>{210, 46}/256</c>
   4432 <c>Unvoiced</c> <c>Low</c>  <c>2</c>         <c>{190, 66}/256</c>
   4433 <c>Unvoiced</c> <c>Low</c>  <c>3</c>         <c>{178, 78}/256</c>
   4434 <c>Unvoiced</c> <c>Low</c>  <c>4</c>         <c>{169, 87}/256</c>
   4435 <c>Unvoiced</c> <c>Low</c>  <c>5</c>         <c>{162, 94}/256</c>
   4436 <c>Unvoiced</c> <c>Low</c>  <c>6 or more</c> <c>{152, 104}/256</c>
   4437 <c>Unvoiced</c> <c>High</c> <c>0</c>         <c>{48, 208}/256</c>
   4438 <c>Unvoiced</c> <c>High</c> <c>1</c>         <c>{242, 14}/256</c>
   4439 <c>Unvoiced</c> <c>High</c> <c>2</c>         <c>{235, 21}/256</c>
   4440 <c>Unvoiced</c> <c>High</c> <c>3</c>         <c>{224, 32}/256</c>
   4441 <c>Unvoiced</c> <c>High</c> <c>4</c>         <c>{214, 42}/256</c>
   4442 <c>Unvoiced</c> <c>High</c> <c>5</c>         <c>{205, 51}/256</c>
   4443 <c>Unvoiced</c> <c>High</c> <c>6 or more</c> <c>{190, 66}/256</c>
   4444 <c>Voiced</c>   <c>Low</c>  <c>0</c>         <c>{1, 255}/256</c>
   4445 <c>Voiced</c>   <c>Low</c>  <c>1</c>         <c>{162, 94}/256</c>
   4446 <c>Voiced</c>   <c>Low</c>  <c>2</c>         <c>{152, 104}/256</c>
   4447 <c>Voiced</c>   <c>Low</c>  <c>3</c>         <c>{147, 109}/256</c>
   4448 <c>Voiced</c>   <c>Low</c>  <c>4</c>         <c>{144, 112}/256</c>
   4449 <c>Voiced</c>   <c>Low</c>  <c>5</c>         <c>{141, 115}/256</c>
   4450 <c>Voiced</c>   <c>Low</c>  <c>6 or more</c> <c>{138, 118}/256</c>
   4451 <c>Voiced</c>   <c>High</c> <c>0</c>         <c>{8, 248}/256</c>
   4452 <c>Voiced</c>   <c>High</c> <c>1</c>         <c>{203, 53}/256</c>
   4453 <c>Voiced</c>   <c>High</c> <c>2</c>         <c>{187, 69}/256</c>
   4454 <c>Voiced</c>   <c>High</c> <c>3</c>         <c>{176, 80}/256</c>
   4455 <c>Voiced</c>   <c>High</c> <c>4</c>         <c>{168, 88}/256</c>
   4456 <c>Voiced</c>   <c>High</c> <c>5</c>         <c>{161, 95}/256</c>
   4457 <c>Voiced</c>   <c>High</c> <c>6 or more</c> <c>{154, 102}/256</c>
   4458 </texttable>
   4459 
   4460 </section>
   4461 
   4462 <section anchor="silk_excitation_reconstruction"
   4463  title="Reconstructing the Excitation">
   4464 
   4465 <t>
   4466 After the signs have been read, there is enough information to reconstruct the
   4467  complete excitation signal.
   4468 This requires adding a constant quantization offset to each non-zero sample,
   4469  and then pseudorandomly inverting and offsetting every sample.
   4470 The constant quantization offset varies depending on the signal type and
   4471  quantization offset type (see <xref target="silk_frame_type"/>).
   4472 </t>
   4473 
   4474 <texttable anchor="silk_quantization_offsets"
   4475  title="Excitation Quantization Offsets">
   4476 <ttcol align="left">Signal Type</ttcol>
   4477 <ttcol align="left">Quantization Offset Type</ttcol>
   4478 <ttcol align="right">Quantization Offset (Q23)</ttcol>
   4479 <c>Inactive</c> <c>Low</c>  <c>25</c>
   4480 <c>Inactive</c> <c>High</c> <c>60</c>
   4481 <c>Unvoiced</c> <c>Low</c>  <c>25</c>
   4482 <c>Unvoiced</c> <c>High</c> <c>60</c>
   4483 <c>Voiced</c>   <c>Low</c>   <c>8</c>
   4484 <c>Voiced</c>   <c>High</c> <c>25</c>
   4485 </texttable>
   4486 
   4487 <t>
   4488 Let e_raw[i] be the raw excitation value at position i, with a magnitude
   4489  composed of the pulses at that location (see
   4490  <xref target="silk_pulse_locations"/>) combined with any additional LSBs (see
   4491  <xref target="silk_shell_lsb"/>), and with the corresponding sign decoded in
   4492  <xref target="silk_signs"/>.
   4493 Additionally, let seed be the current pseudorandom seed, which is initialized
   4494  to the value decoded from <xref target="silk_seed"/> for the first sample in
   4495  the current SILK frame, and updated for each subsequent sample according to
   4496  the procedure below.
   4497 Finally, let offset_Q23 be the quantization offset from
   4498  <xref target="silk_quantization_offsets"/>.
   4499 Then the following procedure produces the final reconstructed excitation value,
   4500  e_Q23[i]:
   4501 <figure align="center">
   4502 <artwork align="center"><![CDATA[
   4503 e_Q23[i] = (e_raw[i] << 8) - sign(e_raw[i])*20 + offset_Q23;
   4504     seed = (196314165*seed + 907633515) & 0xFFFFFFFF;
   4505 e_Q23[i] = (seed & 0x80000000) ? -e_Q23[i] : e_Q23[i];
   4506     seed = (seed + e_raw[i]) & 0xFFFFFFFF;
   4507 ]]></artwork>
   4508 </figure>
   4509 When e_raw[i] is zero, sign() returns 0 by the definition in
   4510  <xref target="sign"/>, so the factor of 20 does not get added.
   4511 The final e_Q23[i] value may require more than 16 bits per sample, but will not
   4512  require more than 23, including the sign.
   4513 </t>
   4514 
   4515 </section>
   4516 
   4517 </section>
   4518 
   4519 <section anchor="silk_frame_reconstruction" toc="include"
   4520  title="SILK Frame Reconstruction">
   4521 
   4522 <t>
   4523 The remainder of the reconstruction process for the frame does not need to be
   4524  bit-exact, as small errors should only introduce proportionally small
   4525  distortions.
   4526 Although the reference implementation only includes a fixed-point version of
   4527  the remaining steps, this section describes them in terms of a floating-point
   4528  version for simplicity.
   4529 This produces a signal with a nominal range of -1.0 to 1.0.
   4530 </t>
   4531 
   4532 <t>
   4533 silk_decode_core() (decode_core.c) contains the code for the main
   4534  reconstruction process.
   4535 It proceeds subframe-by-subframe, since quantization gains, LTP parameters, and
   4536  (in 20&nbsp;ms SILK frames) LPC coefficients can vary from one to the
   4537  next.
   4538 </t>
   4539 
   4540 <t>
   4541 Let a_Q12[k] be the LPC coefficients for the current subframe.
   4542 If this is the first or second subframe of a 20&nbsp;ms SILK frame and the LSF
   4543  interpolation factor, w_Q2 (see <xref target="silk_nlsf_interpolation"/>), is
   4544  less than 4, then these correspond to the final LPC coefficients produced by
   4545  <xref target="silk_lpc_gain_limit"/> from the interpolated LSF coefficients,
   4546  n1_Q15[k] (computed in <xref target="silk_nlsf_interpolation"/>).
   4547 Otherwise, they correspond to the final LPC coefficients produced from the
   4548  uninterpolated LSF coefficients for the current frame, n2_Q15[k].
   4549 </t>
   4550 
   4551 <t>
   4552 Also, let n be the number of samples in a subframe (40 for NB, 60 for MB, and
   4553  80 for WB), s be the index of the current subframe in this SILK frame (0 or 1
   4554  for 10&nbsp;ms frames, or 0 to 3 for 20&nbsp;ms frames), and j be the index of
   4555  the first sample in the residual corresponding to the current subframe.
   4556 </t>
   4557 
   4558 <section anchor="silk_ltp_synthesis" title="LTP Synthesis">
   4559 <t>
   4560 Voiced SILK frames (see <xref target="silk_frame_type"/>) pass the excitation
   4561  through an LTP filter using the parameters decoded in
   4562  <xref target="silk_ltp_params"/> to produce an LPC residual.
   4563 The LTP filter requires LPC residual values from before the current subframe as
   4564  input.
   4565 However, since the LPC coefficients may have changed, it obtains this residual
   4566  by "rewhitening" the corresponding output signal using the LPC coefficients
   4567  from the current subframe.
   4568 Let out[i] for
   4569  (j&nbsp;-&nbsp;pitch_lags[s]&nbsp;-&nbsp;d_LPC&nbsp;-&nbsp;2)&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;j
   4570  be the fully reconstructed output signal from the last
   4571  (pitch_lags[s]&nbsp;+&nbsp;d_LPC&nbsp;+&nbsp;2) samples of previous subframes
   4572  (see <xref target="silk_lpc_synthesis"/>), where pitch_lags[s] is the pitch
   4573  lag for the current subframe from <xref target="silk_ltp_lags"/>.
   4574 During reconstruction of the first subframe for this channel after either
   4575 <list style="symbols">
   4576 <t>An uncoded regular SILK frame (if this is the side channel), or</t>
   4577 <t>A decoder reset (see <xref target="decoder-reset"/>),</t>
   4578 </list>
   4579  out[] is rewhitened into an LPC residual,
   4580  res[i], via
   4581 <figure align="center">
   4582 <artwork align="center"><![CDATA[
   4583          4.0*LTP_scale_Q14
   4584 res[i] = ----------------- * clamp(-1.0,
   4585             gain_Q16[s]
   4586 
   4587                                    d_LPC-1
   4588                                      __              a_Q12[k]
   4589                             out[i] - \  out[i-k-1] * --------, 1.0) .
   4590                                      /_               4096.0
   4591                                      k=0
   4592 ]]></artwork>
   4593 </figure>
   4594 This requires storage to buffer up to 306 values of out[i] from previous
   4595  subframes.
   4596 This corresponds to WB with a maximum pitch lag of
   4597  18&nbsp;ms&nbsp;*&nbsp;16&nbsp;kHz samples, plus 16 samples for d_LPC, plus 2
   4598  samples for the width of the LTP filter.
   4599 </t>
   4600 
   4601 <t>
   4602 Let e_Q23[i] for j&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;(j&nbsp;+&nbsp;n) be the
   4603  excitation for the current subframe, and b_Q7[k] for
   4604  0&nbsp;&lt;=&nbsp;k&nbsp;&lt;&nbsp;5 be the coefficients of the LTP filter
   4605  taken from the codebook entry in one of
   4606  Tables&nbsp;<xref format="counter" target="silk_ltp_filter_coeffs0"/>
   4607  through&nbsp;<xref format="counter" target="silk_ltp_filter_coeffs2"/>
   4608  corresponding to the index decoded for the current subframe in
   4609  <xref target="silk_ltp_filter"/>.
   4610 Then for i such that j&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;(j&nbsp;+&nbsp;n),
   4611  the LPC residual is
   4612 <figure align="center">
   4613 <artwork align="center"><![CDATA[
   4614                       4
   4615           e_Q23[i]   __                                  b_Q7[k]
   4616 res[i] = --------- + \  res[i - pitch_lags[s] + 2 - k] * ------- .
   4617           2.0**23    /_                                   128.0
   4618                      k=0
   4619 ]]></artwork>
   4620 </figure>
   4621 </t>
   4622 
   4623 <t>
   4624 For unvoiced frames, the LPC residual for
   4625  j&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;(j&nbsp;+&nbsp;n) is simply a normalized
   4626  copy of the excitation signal, i.e.,
   4627 <figure align="center">
   4628 <artwork align="center"><![CDATA[
   4629           e_Q23[i]
   4630 res[i] = ---------
   4631           2.0**23
   4632 ]]></artwork>
   4633 </figure>
   4634 </t>
   4635 </section>
   4636 
   4637 <section anchor="silk_lpc_synthesis" title="LPC Synthesis">
   4638 <t>
   4639 LPC synthesis uses the short-term LPC filter to predict the next output
   4640  coefficient.
   4641 For i such that (j&nbsp;-&nbsp;d_LPC)&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;j, let
   4642  lpc[i] be the result of LPC synthesis from the last d_LPC samples of the
   4643  previous subframe, or zeros in the first subframe for this channel after
   4644  either
   4645 <list style="symbols">
   4646 <t>An uncoded regular SILK frame (if this is the side channel), or</t>
   4647 <t>A decoder reset (see <xref target="decoder-reset"/>).</t>
   4648 </list>
   4649 Then for i such that j&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;(j&nbsp;+&nbsp;n), the
   4650  result of LPC synthesis for the current subframe is
   4651 <figure align="center">
   4652 <artwork align="center"><![CDATA[
   4653                               d_LPC-1
   4654          gain_Q16[i]            __              a_Q12[k]
   4655 lpc[i] = ----------- * res[i] + \  lpc[i-k-1] * -------- .
   4656            65536.0              /_               4096.0
   4657                                 k=0
   4658 ]]></artwork>
   4659 </figure>
   4660 The decoder saves the final d_LPC values, i.e., lpc[i] such that
   4661  (j&nbsp;+&nbsp;n&nbsp;-&nbsp;d_LPC)&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;(j&nbsp;+&nbsp;n),
   4662  to feed into the LPC synthesis of the next subframe.
   4663 This requires storage for up to 16 values of lpc[i] (for WB frames).
   4664 </t>
   4665 
   4666 <t>
   4667 Then, the signal is clamped into the final nominal range:
   4668 <figure align="center">
   4669 <artwork align="center"><![CDATA[
   4670 out[i] = clamp(-1.0, lpc[i], 1.0) .
   4671 ]]></artwork>
   4672 </figure>
   4673 This clamping occurs entirely after the LPC synthesis filter has run.
   4674 The decoder saves the unclamped values, lpc[i], to feed into the LPC filter for
   4675  the next subframe, but saves the clamped values, out[i], for rewhitening in
   4676  voiced frames.
   4677 </t>
   4678 </section>
   4679 
   4680 </section>
   4681 
   4682 </section>
   4683 
   4684 <section anchor="silk_stereo_unmixing" title="Stereo Unmixing">
   4685 <t>
   4686 For stereo streams, after decoding a frame from each channel, the decoder must
   4687  convert the mid-side (MS) representation into a left-right (LR)
   4688  representation.
   4689 The function silk_stereo_MS_to_LR (stereo_MS_to_LR.c) implements this process.
   4690 In it, the decoder predicts the side channel using a) a simple low-passed
   4691  version of the mid channel, and b) the unfiltered mid channel, using the
   4692  prediction weights decoded in <xref target="silk_stereo_pred"/>.
   4693 This simple low-pass filter imposes a one-sample delay, and the unfiltered
   4694 mid channel is also delayed by one sample.
   4695 In order to allow seamless switching between stereo and mono, mono streams must
   4696  also impose the same one-sample delay.
   4697 The encoder requires an additional one-sample delay for both mono and stereo
   4698  streams, though an encoder may omit the delay for mono if it knows it will
   4699  never switch to stereo.
   4700 </t>
   4701 
   4702 <t>
   4703 The unmixing process operates in two phases.
   4704 The first phase lasts for 8&nbsp;ms, during which it interpolates the
   4705  prediction weights from the previous frame, prev_w0_Q13 and prev_w1_Q13, to
   4706  the values for the current frame, w0_Q13 and w1_Q13.
   4707 The second phase simply uses these weights for the remainder of the frame.
   4708 </t>
   4709 
   4710 <t>
   4711 Let mid[i] and side[i] be the contents of out[i] (from
   4712  <xref target="silk_lpc_synthesis"/>) for the current mid and side channels,
   4713  respectively, and let left[i] and right[i] be the corresponding stereo output
   4714  channels.
   4715 If the side channel is not coded (see <xref target="silk_mid_only_flag"/>),
   4716  then side[i] is set to zero.
   4717 Also let j be defined as in <xref target="silk_frame_reconstruction"/>, n1 be
   4718  the number of samples in phase&nbsp;1 (64 for NB, 96 for MB, and 128 for WB),
   4719  and n2 be the total number of samples in the frame.
   4720 Then for i such that j&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;(j&nbsp;+&nbsp;n2),
   4721  the left and right channel output is
   4722 <figure align="center">
   4723 <artwork align="center"><![CDATA[
   4724               prev_w0_Q13                  (w0_Q13 - prev_w0_Q13)
   4725         w0 =  ----------- + min(i - j, n1)*---------------------- ,
   4726                 8192.0                           8192.0*n1
   4727 
   4728               prev_w1_Q13                  (w1_Q13 - prev_w1_Q13)
   4729         w1 =  ----------- + min(i - j, n1)*---------------------- ,
   4730                 8192.0                            8192.0*n1
   4731 
   4732              mid[i-2] + 2*mid[i-1] + mid[i]
   4733         p0 = ------------------------------ ,
   4734                           4.0
   4735 
   4736  left[i] = clamp(-1.0, (1 + w1)*mid[i-1] + side[i-1] + w0*p0, 1.0) ,
   4737 
   4738 right[i] = clamp(-1.0, (1 - w1)*mid[i-1] - side[i-1] - w0*p0, 1.0) .
   4739 ]]></artwork>
   4740 </figure>
   4741 These formulas require two samples prior to index&nbsp;j, the start of the
   4742  frame, for the mid channel, and one prior sample for the side channel.
   4743 For the first frame after a decoder reset, zeros are used instead.
   4744 </t>
   4745 
   4746 </section>
   4747 
   4748 <section title="Resampling">
   4749 <t>
   4750 After stereo unmixing (if any), the decoder applies resampling to convert the
   4751  decoded SILK output to the sample rate desired by the application.
   4752 This is necessary when decoding a Hybrid frame at SWB or FB sample rates, or
   4753  whenever the decoder wants the output at a different sample rate than the
   4754  internal SILK sampling rate (e.g., to allow a constant sample rate when the
   4755  audio bandwidth changes, or to allow mixing with audio from other
   4756  applications).
   4757 The resampler itself is non-normative, and a decoder can use any method it
   4758  wants to perform the resampling.
   4759 </t>
   4760 
   4761 <t>
   4762 However, a minimum amount of delay is imposed to allow the resampler to
   4763  operate, and this delay is normative, so that the corresponding delay can be
   4764  applied to the MDCT layer in the encoder.
   4765 A decoder is always free to use a resampler which requires more delay than
   4766  allowed for here (e.g., to improve quality), but it must then delay the output
   4767  of the MDCT layer by this extra amount.
   4768 Keeping as much delay as possible on the encoder side allows an encoder which
   4769  knows it will never use any of the SILK or Hybrid modes to skip this delay.
   4770 By contrast, if it were all applied by the decoder, then a decoder which
   4771  processes audio in fixed-size blocks would be forced to delay the output of
   4772  CELT frames just in case of a later switch to a SILK or Hybrid mode.
   4773 </t>
   4774 
   4775 <t>
   4776 <xref target="silk_resampler_delay_alloc"/> gives the maximum resampler delay
   4777  in samples at 48&nbsp;kHz for each SILK audio bandwidth.
   4778 Because the actual output rate may not be 48&nbsp;kHz, it may not be possible
   4779  to achieve exactly these delays while using a whole number of input or output
   4780  samples.
   4781 The reference implementation is able to resample to any of the supported
   4782  output sampling rates (8, 12, 16, 24, or 48&nbsp;kHz) within or near this
   4783  delay constraint.
   4784 Some resampling filters (including those used by the reference implementation)
   4785  may add a delay that is not an exact integer, or is not linear-phase, and so
   4786  cannot be represented by a single delay at all frequencies.
   4787 However, such deviations are unlikely to be perceptible, and the comparison
   4788  tool described in <xref target="conformance"/> is designed to be relatively
   4789  insensitive to them.
   4790 The delays listed here are the ones that should be targeted by the encoder.
   4791 </t>
   4792 
   4793 <texttable anchor="silk_resampler_delay_alloc"
   4794  title="SILK Resampler Delay Allocations">
   4795 <ttcol>Audio Bandwidth</ttcol>
   4796 <ttcol>Delay in millisecond</ttcol>
   4797 <c>NB</c> <c>0.538</c>
   4798 <c>MB</c> <c>0.692</c>
   4799 <c>WB</c> <c>0.706</c>
   4800 </texttable>
   4801 
   4802 <t>
   4803 NB is given a smaller decoder delay allocation than MB and WB to allow a
   4804  higher-order filter when resampling to 8&nbsp;kHz in both the encoder and
   4805  decoder.
   4806 This implies that the audio content of two SILK frames operating at different
   4807  bandwidths are not perfectly aligned in time.
   4808 This is not an issue for any transitions described in
   4809  <xref target="switching"/>, because they all involve a SILK decoder reset.
   4810 When the decoder is reset, any samples remaining in the resampling buffer
   4811  are discarded, and the resampler is re-initialized with silence.
   4812 </t>
   4813 
   4814 </section>
   4815 
   4816 </section>
   4817 
   4818 
   4819 <section title="CELT Decoder">
   4820 
   4821 <t>
   4822 The CELT layer of Opus is based on the Modified Discrete Cosine Transform
   4823 <xref target='MDCT'/> with partially overlapping windows of 5 to 22.5 ms.
   4824 The main principle behind CELT is that the MDCT spectrum is divided into
   4825 bands that (roughly) follow the Bark scale, i.e., the scale of the ear's
   4826 critical bands&nbsp;<xref target="Zwicker61"/>. The normal CELT layer uses 21 of those bands, though Opus
   4827  Custom (see <xref target="opus-custom"/>) may use a different number of bands.
   4828 In Hybrid mode, the first 17 bands (up to 8&nbsp;kHz) are not coded.
   4829 A band can contain as little as one MDCT bin per channel, and as many as 176
   4830 bins per channel, as detailed in <xref target="celt_band_sizes"/>.
   4831 In each band, the gain (energy) is coded separately from
   4832 the shape of the spectrum. Coding the gain explicitly makes it easy to
   4833 preserve the spectral envelope of the signal. The remaining unit-norm shape
   4834 vector is encoded using a Pyramid Vector Quantizer (PVQ)&nbsp;<xref target='PVQ-decoder'/>.
   4835 </t>
   4836 
   4837 <texttable anchor="celt_band_sizes"
   4838  title="MDCT Bins Per Channel Per Band for Each Frame Size">
   4839 <ttcol>Frame Size:</ttcol>
   4840 <ttcol align="right">2.5&nbsp;ms</ttcol>
   4841 <ttcol align="right">5&nbsp;ms</ttcol>
   4842 <ttcol align="right">10&nbsp;ms</ttcol>
   4843 <ttcol align="right">20&nbsp;ms</ttcol>
   4844 <ttcol align="right">Start Frequency</ttcol>
   4845 <ttcol align="right">Stop Frequency</ttcol>
   4846 <c>Band</c> <c>Bins:</c> <c/> <c/> <c/> <c/> <c/>
   4847  <c>0</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>     <c>0&nbsp;Hz</c>   <c>200&nbsp;Hz</c>
   4848  <c>1</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>   <c>200&nbsp;Hz</c>   <c>400&nbsp;Hz</c>
   4849  <c>2</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>   <c>400&nbsp;Hz</c>   <c>600&nbsp;Hz</c>
   4850  <c>3</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>   <c>600&nbsp;Hz</c>   <c>800&nbsp;Hz</c>
   4851  <c>4</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>   <c>800&nbsp;Hz</c>  <c>1000&nbsp;Hz</c>
   4852  <c>5</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>  <c>1000&nbsp;Hz</c>  <c>1200&nbsp;Hz</c>
   4853  <c>6</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>  <c>1200&nbsp;Hz</c>  <c>1400&nbsp;Hz</c>
   4854  <c>7</c>  <c>1</c>  <c>2</c>  <c>4</c>   <c>8</c>  <c>1400&nbsp;Hz</c>  <c>1600&nbsp;Hz</c>
   4855  <c>8</c>  <c>2</c>  <c>4</c>  <c>8</c>  <c>16</c>  <c>1600&nbsp;Hz</c>  <c>2000&nbsp;Hz</c>
   4856  <c>9</c>  <c>2</c>  <c>4</c>  <c>8</c>  <c>16</c>  <c>2000&nbsp;Hz</c>  <c>2400&nbsp;Hz</c>
   4857 <c>10</c>  <c>2</c>  <c>4</c>  <c>8</c>  <c>16</c>  <c>2400&nbsp;Hz</c>  <c>2800&nbsp;Hz</c>
   4858 <c>11</c>  <c>2</c>  <c>4</c>  <c>8</c>  <c>16</c>  <c>2800&nbsp;Hz</c>  <c>3200&nbsp;Hz</c>
   4859 <c>12</c>  <c>4</c>  <c>8</c> <c>16</c>  <c>32</c>  <c>3200&nbsp;Hz</c>  <c>4000&nbsp;Hz</c>
   4860 <c>13</c>  <c>4</c>  <c>8</c> <c>16</c>  <c>32</c>  <c>4000&nbsp;Hz</c>  <c>4800&nbsp;Hz</c>
   4861 <c>14</c>  <c>4</c>  <c>8</c> <c>16</c>  <c>32</c>  <c>4800&nbsp;Hz</c>  <c>5600&nbsp;Hz</c>
   4862 <c>15</c>  <c>6</c> <c>12</c> <c>24</c>  <c>48</c>  <c>5600&nbsp;Hz</c>  <c>6800&nbsp;Hz</c>
   4863 <c>16</c>  <c>6</c> <c>12</c> <c>24</c>  <c>48</c>  <c>6800&nbsp;Hz</c>  <c>8000&nbsp;Hz</c>
   4864 <c>17</c>  <c>8</c> <c>16</c> <c>32</c>  <c>64</c>  <c>8000&nbsp;Hz</c>  <c>9600&nbsp;Hz</c>
   4865 <c>18</c> <c>12</c> <c>24</c> <c>48</c>  <c>96</c>  <c>9600&nbsp;Hz</c> <c>12000&nbsp;Hz</c>
   4866 <c>19</c> <c>18</c> <c>36</c> <c>72</c> <c>144</c> <c>12000&nbsp;Hz</c> <c>15600&nbsp;Hz</c>
   4867 <c>20</c> <c>22</c> <c>44</c> <c>88</c> <c>176</c> <c>15600&nbsp;Hz</c> <c>20000&nbsp;Hz</c>
   4868 </texttable>
   4869 
   4870 <t>
   4871 Transients are notoriously difficult for transform codecs to code.
   4872 CELT uses two different strategies for them:
   4873 <list style="numbers">
   4874 <t>Using multiple smaller MDCTs instead of a single large MDCT, and</t>
   4875 <t>Dynamic time-frequency resolution changes (See <xref target='tf-change'/>).</t>
   4876 </list>
   4877 To improve quality on highly tonal and periodic signals, CELT includes
   4878 a prefilter/postfilter combination. The prefilter on the encoder side
   4879 attenuates the signal's harmonics. The postfilter on the decoder side
   4880 restores the original gain of the harmonics, while shaping the coding noise
   4881 to roughly follow the harmonics. Such noise shaping reduces the perception
   4882 of the noise.
   4883 </t>
   4884 
   4885 <t>
   4886 When coding a stereo signal, three coding methods are available:
   4887 <list style="symbols">
   4888 <t>mid-side stereo: encodes the mean and the difference of the left and right channels,</t>
   4889 <t>intensity stereo: only encodes the mean of the left and right channels (discards the difference),</t>
   4890 <t>dual stereo: encodes the left and right channels separately.</t>
   4891 </list>
   4892 </t>
   4893 
   4894 <t>
   4895 An overview of the decoder is given in <xref target="celt-decoder-overview"/>.
   4896 </t>
   4897 
   4898 <figure anchor="celt-decoder-overview" title="Structure of the CELT decoder">
   4899 <artwork align="center"><![CDATA[
   4900                +---------+
   4901                | Coarse  |
   4902             +->| decoder |----+
   4903             |  +---------+    |
   4904             |                 |
   4905             |  +---------+    v
   4906             |  |  Fine   |  +---+
   4907             +->| decoder |->| + |
   4908             |  +---------+  +---+
   4909             |       ^         |
   4910 +---------+ |       |         |
   4911 |  Range  | | +----------+    v
   4912 | Decoder |-+ |   Bit    | +------+
   4913 +---------+ | |Allocation| | 2**x |
   4914             | +----------+ +------+
   4915             |       |         |
   4916             |       v         v               +--------+
   4917             |  +---------+  +---+  +-------+  | pitch  |
   4918             +->|   PVQ   |->| * |->| IMDCT |->| post-  |--->
   4919             |  | decoder |  +---+  +-------+  | filter |
   4920             |  +---------+                    +--------+
   4921             |                                      ^
   4922             +--------------------------------------+
   4923 ]]></artwork>
   4924 </figure>
   4925 
   4926 <t>
   4927 The decoder is based on the following symbols and sets of symbols:
   4928 </t>
   4929 
   4930 <texttable anchor="celt_symbols"
   4931  title="Order of the Symbols in the CELT Section of the Bitstream">
   4932 <ttcol align="center">Symbol(s)</ttcol>
   4933 <ttcol align="center">PDF</ttcol>
   4934 <ttcol align="center">Condition</ttcol>
   4935 <c>silence</c>      <c>{32767, 1}/32768</c> <c></c>
   4936 <c>post-filter</c>  <c>{1, 1}/2</c> <c></c>
   4937 <c>octave</c>       <c>uniform (6)</c><c>post-filter</c>
   4938 <c>period</c>       <c>raw bits (4+octave)</c><c>post-filter</c>
   4939 <c>gain</c>         <c>raw bits (3)</c><c>post-filter</c>
   4940 <c>tapset</c>       <c>{2, 1, 1}/4</c><c>post-filter</c>
   4941 <c>transient</c>    <c>{7, 1}/8</c><c></c>
   4942 <c>intra</c>        <c>{7, 1}/8</c><c></c>
   4943 <c>coarse energy</c><c><xref target="energy-decoding"/></c><c></c>
   4944 <c>tf_change</c>    <c><xref target="transient-decoding"/></c><c></c>
   4945 <c>tf_select</c>    <c>{1, 1}/2</c><c><xref target="transient-decoding"/></c>
   4946 <c>spread</c>       <c>{7, 2, 21, 2}/32</c><c></c>
   4947 <c>dyn. alloc.</c>  <c><xref target="allocation"/></c><c></c>
   4948 <c>alloc. trim</c>  <c>{2, 2, 5, 10, 22, 46, 22, 10, 5, 2, 2}/128</c><c></c>
   4949 <c>skip</c>         <c>{1, 1}/2</c><c><xref target="allocation"/></c>
   4950 <c>intensity</c>    <c>uniform</c><c><xref target="allocation"/></c>
   4951 <c>dual</c>         <c>{1, 1}/2</c><c></c>
   4952 <c>fine energy</c>  <c><xref target="energy-decoding"/></c><c></c>
   4953 <c>residual</c>     <c><xref target="PVQ-decoder"/></c><c></c>
   4954 <c>anti-collapse</c><c>{1, 1}/2</c><c><xref target="anti-collapse"/></c>
   4955 <c>finalize</c>     <c><xref target="energy-decoding"/></c><c></c>
   4956 </texttable>
   4957 
   4958 <t>
   4959 The decoder extracts information from the range-coded bitstream in the order
   4960 described in <xref target='celt_symbols'/>. In some circumstances, it is
   4961 possible for a decoded value to be out of range due to a very small amount of redundancy
   4962 in the encoding of large integers by the range coder.
   4963 In that case, the decoder should assume there has been an error in the coding,
   4964 decoding, or transmission and SHOULD take measures to conceal the error and/or report
   4965 to the application that a problem has occurred. Such out of range errors cannot occur
   4966 in the SILK layer.
   4967 </t>
   4968 
   4969 <section anchor="transient-decoding" title="Transient Decoding">
   4970 <t>
   4971 The "transient" flag indicates whether the frame uses a single long MDCT or several short MDCTs.
   4972 When it is set, then the MDCT coefficients represent multiple
   4973 short MDCTs in the frame. When not set, the coefficients represent a single
   4974 long MDCT for the frame. The flag is encoded in the bitstream with a probability of 1/8.
   4975 In addition to the global transient flag is a per-band
   4976 binary flag to change the time-frequency (tf) resolution independently in each band. The
   4977 change in tf resolution is defined in tf_select_table[][] in celt.c and depends
   4978 on the frame size, whether the transient flag is set, and the value of tf_select.
   4979 The tf_select flag uses a 1/2 probability, but is only decoded
   4980 if it can have an impact on the result knowing the value of all per-band
   4981 tf_change flags.
   4982 </t>
   4983 </section>
   4984 
   4985 <section anchor="energy-decoding" title="Energy Envelope Decoding">
   4986 
   4987 <t>
   4988 It is important to quantize the energy with sufficient resolution because
   4989 any energy quantization error cannot be compensated for at a later
   4990 stage. Regardless of the resolution used for encoding the spectral shape of a band,
   4991 it is perceptually important to preserve the energy in each band. CELT uses a
   4992 three-step coarse-fine-fine strategy for encoding the energy in the base-2 log
   4993 domain, as implemented in quant_bands.c</t>
   4994 
   4995 <section anchor="coarse-energy-decoding" title="Coarse energy decoding">
   4996 <t>
   4997 Coarse quantization of the energy uses a fixed resolution of 6 dB
   4998 (integer part of base-2 log). To minimize the bitrate, prediction is applied
   4999 both in time (using the previous frame) and in frequency (using the previous
   5000 bands). The part of the prediction that is based on the
   5001 previous frame can be disabled, creating an "intra" frame where the energy
   5002 is coded without reference to prior frames. The decoder first reads the intra flag
   5003 to determine what prediction is used.
   5004 The 2-D z-transform <xref target='z-transform'/> of
   5005 the prediction filter is:
   5006 <figure align="center">
   5007 <artwork align="center"><![CDATA[
   5008                             -1          -1
   5009               (1 - alpha*z_l  )*(1 - z_b  )
   5010 A(z_l, z_b) = -----------------------------
   5011                                  -1
   5012                      1 - beta*z_b
   5013 ]]></artwork>
   5014 </figure>
   5015 where b is the band index and l is the frame index. The prediction coefficients
   5016 applied depend on the frame size in use when not using intra energy and are alpha=0, beta=4915/32768
   5017 when using intra energy.
   5018 The time-domain prediction is based on the final fine quantization of the previous
   5019 frame, while the frequency domain (within the current frame) prediction is based
   5020 on coarse quantization only (because the fine quantization has not been computed
   5021 yet). The prediction is clamped internally so that fixed point implementations with
   5022 limited dynamic range always remain in the same state as floating point implementations.
   5023 We approximate the ideal
   5024 probability distribution of the prediction error using a Laplace distribution
   5025 with separate parameters for each frame size in intra- and inter-frame modes. These
   5026 parameters are held in the e_prob_model table in quant_bands.c.
   5027 The
   5028 coarse energy quantization is performed by unquant_coarse_energy() and
   5029 unquant_coarse_energy_impl() (quant_bands.c). The encoding of the Laplace-distributed values is
   5030 implemented in ec_laplace_decode() (laplace.c).
   5031 </t>
   5032 
   5033 </section>
   5034 
   5035 <section anchor="fine-energy-decoding" title="Fine energy quantization">
   5036 <t>
   5037 The number of bits assigned to fine energy quantization in each band is determined
   5038 by the bit allocation computation described in <xref target="allocation"></xref>.
   5039 Let B_i be the number of fine energy bits
   5040 for band i; the refinement is an integer f in the range [0,2**B_i-1]. The mapping between f
   5041 and the correction applied to the coarse energy is equal to (f+1/2)/2**B_i - 1/2. Fine
   5042 energy quantization is implemented in quant_fine_energy() (quant_bands.c).
   5043 </t>
   5044 <t>
   5045 When some bits are left "unused" after all other flags have been decoded, these bits
   5046 are assigned to a "final" step of fine allocation. In effect, these bits are used
   5047 to add one extra fine energy bit per band per channel. The allocation process
   5048 determines two "priorities" for the final fine bits.
   5049 Any remaining bits are first assigned only to bands of priority 0, starting
   5050 from band 0 and going up. If all bands of priority 0 have received one bit per
   5051 channel, then bands of priority 1 are assigned an extra bit per channel,
   5052 starting from band 0. If any bits are left after this, they are left unused.
   5053 This is implemented in unquant_energy_finalise() (quant_bands.c).
   5054 </t>
   5055 
   5056 </section> <!-- fine energy -->
   5057 
   5058 </section> <!-- Energy decode -->
   5059 
   5060 <section anchor="allocation" title="Bit Allocation">
   5061 
   5062 <t>Because the bit allocation drives the decoding of the range-coder
   5063 stream, it MUST be recovered exactly so that identical coding decisions are
   5064 made in the encoder and decoder. Any deviation from the reference's resulting
   5065 bit allocation will result in corrupted output, though implementers are
   5066 free to implement the procedure in any way which produces identical results.</t>
   5067 
   5068 <t>The per-band gain-shape structure of the CELT layer ensures that using
   5069  the same number of bits for the spectral shape of a band in every frame will
   5070  result in a roughly constant signal-to-noise ratio in that band.
   5071 This results in coding noise that has the same spectral envelope as the signal.
   5072 The masking curve produced by a standard psychoacoustic model also closely
   5073  follows the spectral envelope of the signal.
   5074 This structure means that the ideal allocation is more consistent from frame to
   5075  frame than it is for other codecs without an equivalent structure, and that a
   5076  fixed allocation provides fairly consistent perceptual
   5077  performance&nbsp;<xref target='Valin2010'/>.</t>
   5078 
   5079 <t>Many codecs transmit significant amounts of side information to control the
   5080  bit allocation within a frame.
   5081 Often this control is only indirect, and must be exercised carefully to
   5082  achieve the desired rate constraints.
   5083 The CELT layer, however, can adapt over a very wide range of rates, and thus
   5084  has a large number of codebook sizes to choose from for each band.
   5085 Explicitly signaling the size of each of these codebooks would impose
   5086  considerable overhead, even though the allocation is relatively static from
   5087  frame to frame.
   5088 This is because all of the information required to compute these codebook sizes
   5089  must be derived from a single frame by itself, in order to retain robustness
   5090  to packet loss, so the signaling cannot take advantage of knowledge of the
   5091  allocation in neighboring frames.
   5092 This problem is exacerbated in low-latency (small frame size) applications,
   5093  which would include this overhead in every frame.</t>
   5094 
   5095 <t>For this reason, in the MDCT mode Opus uses a primarily implicit bit
   5096 allocation. The available bitstream capacity is known in advance to both
   5097 the encoder and decoder without additional signaling, ultimately from the
   5098 packet sizes expressed by a higher-level protocol. Using this information,
   5099 the codec interpolates an allocation from a hard-coded table.</t>
   5100 
   5101 <t>While the band-energy structure effectively models intra-band masking,
   5102 it ignores the weaker inter-band masking, band-temporal masking, and
   5103 other less significant perceptual effects. While these effects can
   5104 often be ignored, they can become significant for particular samples. One
   5105 mechanism available to encoders would be to simply increase the overall
   5106 rate for these frames, but this is not possible in a constant rate mode
   5107 and can be fairly inefficient. As a result three explicitly signaled
   5108 mechanisms are provided to alter the implicit allocation:</t>
   5109 
   5110 <t>
   5111 <list style="symbols">
   5112 <t>Band boost</t>
   5113 <t>Allocation trim</t>
   5114 <t>Band skipping</t>
   5115 </list>
   5116 </t>
   5117 
   5118 <t>The first of these mechanisms, band boost, allows an encoder to boost
   5119 the allocation in specific bands. The second, allocation trim, works by
   5120 biasing the overall allocation towards higher or lower frequency bands. The third, band
   5121 skipping, selects which low-precision high frequency bands
   5122 will be allocated no shape bits at all.</t>
   5123 
   5124 <t>In stereo mode there are two additional parameters
   5125 potentially coded as part of the allocation procedure: a parameter to allow the
   5126 selective elimination of allocation for the 'side' (i.e., intensity stereo) in jointly coded bands,
   5127 and a flag to deactivate joint coding (i.e., dual stereo). These values are not signaled if
   5128 they would be meaningless in the overall context of the allocation.</t>
   5129 
   5130 <t>Because every signaled adjustment increases overhead and implementation
   5131 complexity, none were included speculatively: the reference encoder makes use
   5132 of all of these mechanisms. While the decision logic in the reference was
   5133 found to be effective enough to justify the overhead and complexity, further
   5134 analysis techniques may be discovered which increase the effectiveness of these
   5135 parameters. As with other signaled parameters, an encoder is free to choose the
   5136 values in any manner, but unless a technique is known to deliver superior
   5137 perceptual results the methods used by the reference implementation should be
   5138 used.</t>
   5139 
   5140 <t>The allocation process consists of the following steps: determining the per-band
   5141 maximum allocation vector, decoding the boosts, decoding the tilt, determining
   5142 the remaining capacity of the frame, searching the mode table for the
   5143 entry nearest but not exceeding the available space (subject to the tilt, boosts, band
   5144 maximums, and band minimums), linear interpolation, reallocation of
   5145 unused bits with concurrent skip decoding, determination of the
   5146 fine-energy vs. shape split, and final reallocation. This process results
   5147 in a per-band shape allocation (in 1/8th bit units), a per-band fine-energy
   5148 allocation (in 1 bit per channel units), a set of band priorities for
   5149 controlling the use of remaining bits at the end of the frame, and a
   5150 remaining balance of unallocated space, which is usually zero except
   5151 at very high rates.</t>
   5152 
   5153 <t>
   5154 The "static" bit allocation (in 1/8 bits) for a quality q, excluding the minimums, maximums,
   5155 tilt and boosts, is equal to channels*N*alloc[band][q]&lt;&lt;LM&gt;&gt;2, where
   5156 alloc[][] is given in <xref target="static_alloc"/> and LM=log2(frame_size/120). The allocation
   5157 is obtained by linearly interpolating between two values of q (in steps of 1/64) to find the
   5158 highest allocation that does not exceed the number of bits remaining.
   5159 </t>
   5160 
   5161 <texttable anchor="static_alloc"
   5162  title="CELT Static Allocation Table">
   5163  <preamble>Rows indicate the MDCT bands, columns are the different quality (q) parameters. The units are 1/32 bit per MDCT bin.</preamble>
   5164 <ttcol align="right">0</ttcol>
   5165 <ttcol align="right">1</ttcol>
   5166 <ttcol align="right">2</ttcol>
   5167 <ttcol align="right">3</ttcol>
   5168 <ttcol align="right">4</ttcol>
   5169 <ttcol align="right">5</ttcol>
   5170 <ttcol align="right">6</ttcol>
   5171 <ttcol align="right">7</ttcol>
   5172 <ttcol align="right">8</ttcol>
   5173 <ttcol align="right">9</ttcol>
   5174 <ttcol align="right">10</ttcol>
   5175 <c>0</c><c>90</c><c>110</c><c>118</c><c>126</c><c>134</c><c>144</c><c>152</c><c>162</c><c>172</c><c>200</c>
   5176 <c>0</c><c>80</c><c>100</c><c>110</c><c>119</c><c>127</c><c>137</c><c>145</c><c>155</c><c>165</c><c>200</c>
   5177 <c>0</c><c>75</c><c>90</c><c>103</c><c>112</c><c>120</c><c>130</c><c>138</c><c>148</c><c>158</c><c>200</c>
   5178 <c>0</c><c>69</c><c>84</c><c>93</c><c>104</c><c>114</c><c>124</c><c>132</c><c>142</c><c>152</c><c>200</c>
   5179 <c>0</c><c>63</c><c>78</c><c>86</c><c>95</c><c>103</c><c>113</c><c>123</c><c>133</c><c>143</c><c>200</c>
   5180 <c>0</c><c>56</c><c>71</c><c>80</c><c>89</c><c>97</c><c>107</c><c>117</c><c>127</c><c>137</c><c>200</c>
   5181 <c>0</c><c>49</c><c>65</c><c>75</c><c>83</c><c>91</c><c>101</c><c>111</c><c>121</c><c>131</c><c>200</c>
   5182 <c>0</c><c>40</c><c>58</c><c>70</c><c>78</c><c>85</c><c>95</c><c>105</c><c>115</c><c>125</c><c>200</c>
   5183 <c>0</c><c>34</c><c>51</c><c>65</c><c>72</c><c>78</c><c>88</c><c>98</c><c>108</c><c>118</c><c>198</c>
   5184 <c>0</c><c>29</c><c>45</c><c>59</c><c>66</c><c>72</c><c>82</c><c>92</c><c>102</c><c>112</c><c>193</c>
   5185 <c>0</c><c>20</c><c>39</c><c>53</c><c>60</c><c>66</c><c>76</c><c>86</c><c>96</c><c>106</c><c>188</c>
   5186 <c>0</c><c>18</c><c>32</c><c>47</c><c>54</c><c>60</c><c>70</c><c>80</c><c>90</c><c>100</c><c>183</c>
   5187 <c>0</c><c>10</c><c>26</c><c>40</c><c>47</c><c>54</c><c>64</c><c>74</c><c>84</c><c>94</c><c>178</c>
   5188 <c>0</c><c>0</c><c>20</c><c>31</c><c>39</c><c>47</c><c>57</c><c>67</c><c>77</c><c>87</c><c>173</c>
   5189 <c>0</c><c>0</c><c>12</c><c>23</c><c>32</c><c>41</c><c>51</c><c>61</c><c>71</c><c>81</c><c>168</c>
   5190 <c>0</c><c>0</c><c>0</c><c>15</c><c>25</c><c>35</c><c>45</c><c>55</c><c>65</c><c>75</c><c>163</c>
   5191 <c>0</c><c>0</c><c>0</c><c>4</c><c>17</c><c>29</c><c>39</c><c>49</c><c>59</c><c>69</c><c>158</c>
   5192 <c>0</c><c>0</c><c>0</c><c>0</c><c>12</c><c>23</c><c>33</c><c>43</c><c>53</c><c>63</c><c>153</c>
   5193 <c>0</c><c>0</c><c>0</c><c>0</c><c>1</c><c>16</c><c>26</c><c>36</c><c>46</c><c>56</c><c>148</c>
   5194 <c>0</c><c>0</c><c>0</c><c>0</c><c>0</c><c>10</c><c>15</c><c>20</c><c>30</c><c>45</c><c>129</c>
   5195 <c>0</c><c>0</c><c>0</c><c>0</c><c>0</c><c>1</c><c>1</c><c>1</c><c>1</c><c>20</c><c>104</c>
   5196 </texttable>
   5197 
   5198 <t>The maximum allocation vector is an approximation of the maximum space
   5199 that can be used by each band for a given mode. The value is
   5200 approximate because the shape encoding is variable rate (due
   5201 to entropy coding of splitting parameters). Setting the maximum too low reduces the
   5202 maximum achievable quality in a band while setting it too high
   5203 may result in waste: bitstream capacity available at the end
   5204 of the frame which can not be put to any use. The maximums
   5205 specified by the codec reflect the average maximum. In the reference
   5206 implementation, the maximums in bits/sample are precomputed in a static table
   5207 (see cache_caps50[] in static_modes_float.h) for each band,
   5208 for each value of LM, and for both mono and stereo.
   5209 
   5210 Implementations are expected
   5211 to simply use the same table data, but the procedure for generating
   5212 this table is included in rate.c as part of compute_pulse_cache().</t>
   5213 
   5214 <t>To convert the values in cache.caps into the actual maximums: first
   5215 set nbBands to the maximum number of bands for this mode, and stereo to
   5216 zero if stereo is not in use and one otherwise. For each band set N
   5217 to the number of MDCT bins covered by the band (for one channel), set LM
   5218 to the shift value for the frame size,
   5219 then set i to nbBands*(2*LM+stereo). Then set the maximum for the band to
   5220 the i-th index of cache.caps + 64 and multiply by the number of channels
   5221 in the current frame (one or two) and by N, then divide the result by 4
   5222 using integer division. The resulting vector will be called
   5223 cap[]. The elements fit in signed 16-bit integers but do not fit in 8 bits.
   5224 This procedure is implemented in the reference in the function init_caps() in celt.c.
   5225 </t>
   5226 
   5227 <t>The band boosts are represented by a series of binary symbols which
   5228 are entropy coded with very low probability. Each band can potentially be boosted
   5229 multiple times, subject to the frame actually having enough room to obey
   5230 the boost and having enough room to code the boost symbol. The default
   5231 coding cost for a boost starts out at six bits (probability p=1/64), but subsequent boosts
   5232 in a band cost only a single bit and every time a band is boosted the
   5233 initial cost is reduced (down to a minimum of two bits, or p=1/4). Since the initial
   5234 cost of coding a boost is 6 bits, the coding cost of the boost symbols when
   5235 completely unused is 0.48 bits/frame for a 21 band mode (21*-log2(1-1/2**6)).</t>
   5236 
   5237 <t>To decode the band boosts: First set 'dynalloc_logp' to 6, the initial
   5238 amount of storage required to signal a boost in bits, 'total_bits' to the
   5239 size of the frame in 8th bits, 'total_boost' to zero, and 'tell' to the total number
   5240 of 8th bits decoded
   5241 so far. For each band from the coding start (0 normally, but 17 in Hybrid mode)
   5242 to the coding end (which changes depending on the signaled bandwidth), the boost quanta
   5243 in units of 1/8 bit is calculated as quanta = min(8*N, max(48, N)).
   5244 This represents a boost step size of six bits, subject to a lower limit of
   5245 1/8th&nbsp;bit/sample and an upper limit of 1&nbsp;bit/sample.
   5246 Set 'boost' to zero and 'dynalloc_loop_logp'
   5247 to dynalloc_logp. While dynalloc_loop_log (the current worst case symbol cost) in
   5248 8th bits plus tell is less than total_bits plus total_boost and boost is less than cap[] for this
   5249 band: Decode a bit from the bitstream with a with dynalloc_loop_logp as the cost
   5250 of a one, update tell to reflect the current used capacity, if the decoded value
   5251 is zero break the  loop otherwise add quanta to boost and total_boost, subtract quanta from
   5252 total_bits, and set dynalloc_loop_log to 1. When the while loop finishes
   5253 boost contains the boost for this band. If boost is non-zero and dynalloc_logp
   5254 is greater than 2, decrease dynalloc_logp.  Once this process has been
   5255 executed on all bands, the band boosts have been decoded. This procedure
   5256 is implemented around line 2474 of celt.c.</t>
   5257 
   5258 <t>At very low rates it is possible that there won't be enough available
   5259 space to execute the inner loop even once. In these cases band boost
   5260 is not possible but its overhead is completely eliminated. Because of the
   5261 high cost of band boost when activated, a reasonable encoder should not be
   5262 using it at very low rates. The reference implements its dynalloc decision
   5263 logic around line 1304 of celt.c.</t>
   5264 
   5265 <t>The allocation trim is a integer value from 0-10. The default value of
   5266 5 indicates no trim. The trim parameter is entropy coded in order to
   5267 lower the coding cost of less extreme adjustments. Values lower than
   5268 5 bias the allocation towards lower frequencies and values above 5
   5269 bias it towards higher frequencies. Like other signaled parameters, signaling
   5270 of the trim is gated so that it is not included if there is insufficient space
   5271 available in the bitstream. To decode the trim, first set
   5272 the trim value to 5, then if and only if the count of decoded 8th bits so far (ec_tell_frac)
   5273 plus 48 (6 bits) is less than or equal to the total frame size in 8th
   5274 bits minus total_boost (a product of the above band boost procedure),
   5275 decode the trim value using the PDF in <xref target="celt_trim_pdf"/>.</t>
   5276 
   5277 <texttable anchor="celt_trim_pdf" title="PDF for the Trim">
   5278 <ttcol>PDF</ttcol>
   5279 <c>{1, 1, 2, 5, 10, 22, 46, 22, 10, 5, 2, 2}/128</c>
   5280 </texttable>
   5281 
   5282 <t>For 10 ms and 20 ms frames using short blocks and that have at least LM+2 bits left prior to
   5283 the allocation process, then one anti-collapse bit is reserved in the allocation process so it can
   5284 be decoded later. Following the the anti-collapse reservation, one bit is reserved for skip if available.</t>
   5285 
   5286 <t>For stereo frames, bits are reserved for intensity stereo and for dual stereo. Intensity stereo
   5287 requires ilog2(end-start) bits. Those bits are reserved if there is enough bits left. Following this, one
   5288 bit is reserved for dual stereo if available.</t>
   5289 
   5290 
   5291 <t>The allocation computation begins by setting up some initial conditions.
   5292 'total' is set to the remaining available 8th bits, computed by taking the
   5293 size of the coded frame times 8 and subtracting ec_tell_frac(). From this value, one (8th bit)
   5294 is subtracted to ensure that the resulting allocation will be conservative. 'anti_collapse_rsv'
   5295 is set to 8 (8th bits) if and only if the frame is a transient, LM is greater than 1, and total is
   5296 greater than or equal to (LM+2) * 8. Total is then decremented by anti_collapse_rsv and clamped
   5297 to be equal to or greater than zero. 'skip_rsv' is set to 8 (8th bits) if total is greater than
   5298 8, otherwise it is zero. Total is then decremented by skip_rsv. This reserves space for the
   5299 final skipping flag.</t>
   5300 
   5301 <t>If the current frame is stereo, intensity_rsv is set to the conservative log2 in 8th bits
   5302 of the number of coded bands for this frame (given by the table LOG2_FRAC_TABLE in rate.c). If
   5303 intensity_rsv is greater than total then intensity_rsv is set to zero. Otherwise total is
   5304 decremented by intensity_rsv, and if total is still greater than 8, dual_stereo_rsv is
   5305 set to 8 and total is decremented by dual_stereo_rsv.</t>
   5306 
   5307 <t>The allocation process then computes a vector representing the hard minimum amounts allocation
   5308 any band will receive for shape. This minimum is higher than the technical limit of the PVQ
   5309 process, but very low rate allocations produce an excessively sparse spectrum and these bands
   5310 are better served by having no allocation at all. For each coded band, set thresh[band] to
   5311 twenty-four times the number of MDCT bins in the band and divide by 16. If 8 times the number
   5312 of channels is greater, use that instead. This sets the minimum allocation to one bit per channel
   5313 or 48 128th bits per MDCT bin, whichever is greater. The band-size dependent part of this
   5314 value is not scaled by the channel count, because at the very low rates where this limit is
   5315 applicable there will usually be no bits allocated to the side.</t>
   5316 
   5317 <t>The previously decoded allocation trim is used to derive a vector of per-band adjustments,
   5318 'trim_offsets[]'. For each coded band take the alloc_trim and subtract 5 and LM. Then multiply
   5319 the result by the number of channels, the number of MDCT bins in the shortest frame size for this mode,
   5320 the number of remaining bands, 2**LM, and 8. Then divide this value by 64. Finally, if the
   5321 number of MDCT bins in the band per channel is only one, 8 times the number of channels is subtracted
   5322 in order to diminish the allocation by one bit, because width 1 bands receive greater benefit
   5323 from the coarse energy coding.</t>
   5324 
   5325 
   5326 </section>
   5327 
   5328 <section anchor="PVQ-decoder" title="Shape Decoding">
   5329 <t>
   5330 In each band, the normalized "shape" is encoded
   5331 using a vector quantization scheme called a "pyramid vector quantizer".
   5332 </t>
   5333 
   5334 <t>In
   5335 the simplest case, the number of bits allocated in
   5336 <xref target="allocation"></xref> is converted to a number of pulses as described
   5337 by <xref target="bits-pulses"></xref>. Knowing the number of pulses and the
   5338 number of samples in the band, the decoder calculates the size of the codebook
   5339 as detailed in <xref target="cwrs-decoder"></xref>. The size is used to decode
   5340 an unsigned integer (uniform probability model), which is the codeword index.
   5341 This index is converted into the corresponding vector as explained in
   5342 <xref target="cwrs-decoder"></xref>. This vector is then scaled to unit norm.
   5343 </t>
   5344 
   5345 <section anchor="bits-pulses" title="Bits to Pulses">
   5346 <t>
   5347 Although the allocation is performed in 1/8th bit units, the quantization requires
   5348 an integer number of pulses K. To do this, the encoder searches for the value
   5349 of K that produces the number of bits nearest to the allocated value
   5350 (rounding down if exactly halfway between two values), not to exceed
   5351 the total number of bits available. For efficiency reasons, the search is performed against a
   5352 precomputed allocation table which only permits some K values for each N. The number of
   5353 codebook entries can be computed as explained in <xref target="cwrs-decoder"></xref>. The difference
   5354 between the number of bits allocated and the number of bits used is accumulated to a
   5355 "balance" (initialized to zero) that helps adjust the
   5356 allocation for the next bands. One third of the balance is applied to the
   5357 bit allocation of each band to help achieve the target allocation. The only
   5358 exceptions are the band before the last and the last band, for which half the balance
   5359 and the whole balance are applied, respectively.
   5360 </t>
   5361 </section>
   5362 
   5363 <section anchor="cwrs-decoder" title="PVQ Decoding">
   5364 
   5365 <t>
   5366 Decoding of PVQ vectors is implemented in decode_pulses() (cwrs.c).
   5367 The unique codeword index is decoded as a uniformly-distributed integer value between 0 and
   5368 V(N,K)-1, where V(N,K) is the number of possible combinations of K pulses in
   5369 N samples. The index is then converted to a vector in the same way specified in
   5370 <xref target="PVQ"></xref>. The indexing is based on the calculation of V(N,K)
   5371 (denoted N(L,K) in <xref target="PVQ"></xref>).
   5372 </t>
   5373 
   5374 <t>
   5375  The number of combinations can be computed recursively as
   5376 V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1), with V(N,0) = 1 and V(0,K) = 0, K != 0.
   5377 There are many different ways to compute V(N,K), including precomputed tables and direct
   5378 use of the recursive formulation. The reference implementation applies the recursive
   5379 formulation one line (or column) at a time to save on memory use,
   5380 along with an alternate,
   5381 univariate recurrence to initialize an arbitrary line, and direct
   5382 polynomial solutions for small N. All of these methods are
   5383 equivalent, and have different trade-offs in speed, memory usage, and
   5384 code size. Implementations MAY use any methods they like, as long as
   5385 they are equivalent to the mathematical definition.
   5386 </t>
   5387 
   5388 <t>
   5389 The decoded vector X is recovered as follows.
   5390 Let i be the index decoded with the procedure in <xref target="ec_dec_uint"/>
   5391  with ft&nbsp;=&nbsp;V(N,K), so that 0&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;V(N,K).
   5392 Let k&nbsp;=&nbsp;K.
   5393 Then for j&nbsp;=&nbsp;0 to (N&nbsp;-&nbsp;1), inclusive, do:
   5394 <list style="numbers">
   5395 <t>Let p&nbsp;=&nbsp;(V(N-j-1,k)&nbsp;+&nbsp;V(N-j,k))/2.</t>
   5396 <t>
   5397 If i&nbsp;&lt;&nbsp;p, then let sgn&nbsp;=&nbsp;1, else let sgn&nbsp;=&nbsp;-1
   5398  and set i&nbsp;=&nbsp;i&nbsp;-&nbsp;p.
   5399 </t>
   5400 <t>Let k0&nbsp;=&nbsp;k and set p&nbsp;=&nbsp;p&nbsp;-&nbsp;V(N-j-1,k).</t>
   5401 <t>
   5402 While p&nbsp;&gt;&nbsp;i, set k&nbsp;=&nbsp;k&nbsp;-&nbsp;1 and
   5403  p&nbsp;=&nbsp;p&nbsp;-&nbsp;V(N-j-1,k).
   5404 </t>
   5405 <t>
   5406 Set X[j]&nbsp;=&nbsp;sgn*(k0&nbsp;-&nbsp;k) and i&nbsp;=&nbsp;i&nbsp;-&nbsp;p.
   5407 </t>
   5408 </list>
   5409 </t>
   5410 
   5411 <t>
   5412 The decoded vector X is then normalized such that its
   5413 L2-norm equals one.
   5414 </t>
   5415 </section>
   5416 
   5417 <section anchor="spreading" title="Spreading">
   5418 <t>
   5419 The normalized vector decoded in <xref target="cwrs-decoder"/> is then rotated
   5420 for the purpose of avoiding tonal artifacts. The rotation gain is equal to
   5421 <figure align="center">
   5422 <artwork align="center"><![CDATA[
   5423 g_r = N / (N + f_r*K)
   5424 ]]></artwork>
   5425 </figure>
   5426 
   5427 where N is the number of dimensions, K is the number of pulses, and f_r depends on
   5428 the value of the "spread" parameter in the bit-stream.
   5429 </t>
   5430 
   5431 <texttable anchor="spread values" title="Spreading Values">
   5432 <ttcol>Spread value</ttcol>
   5433 <ttcol>f_r</ttcol>
   5434  <c>0</c> <c>infinite (no rotation)</c>
   5435  <c>1</c> <c>15</c>
   5436  <c>2</c> <c>10</c>
   5437  <c>3</c> <c>5</c>
   5438 </texttable>
   5439 
   5440 <t>
   5441 The rotation angle is then calculated as
   5442 <figure align="center">
   5443 <artwork align="center"><![CDATA[
   5444                  2
   5445         pi *  g_r
   5446 theta = ----------
   5447             4
   5448 ]]></artwork>
   5449 </figure>
   5450 A 2-D rotation R(i,j) between points x_i and x_j is defined as:
   5451 <figure align="center">
   5452 <artwork align="center"><![CDATA[
   5453 x_i' =  cos(theta)*x_i + sin(theta)*x_j
   5454 x_j' = -sin(theta)*x_i + cos(theta)*x_j
   5455 ]]></artwork>
   5456 </figure>
   5457 
   5458 An N-D rotation is then achieved by applying a series of 2-D rotations back and forth, in the
   5459 following order: R(x_1, x_2), R(x_2, x_3), ..., R(x_N-2, X_N-1), R(x_N-1, X_N),
   5460 R(x_N-2, X_N-1), ..., R(x_1, x_2).
   5461 </t>
   5462 
   5463 <t>
   5464 If the decoded vector represents more
   5465 than one time block, then this spreading process is applied separately on each time block.
   5466 Also, if each block represents 8 samples or more, then another N-D rotation, by
   5467 (pi/2-theta), is applied <spanx style="emph">before</spanx> the rotation described above. This
   5468 extra rotation is applied in an interleaved manner with a stride equal to round(sqrt(N/nb_blocks)),
   5469 i.e., it is applied independently for each set of sample S_k = {stride*n + k}, n=0..N/stride-1.
   5470 </t>
   5471 </section>
   5472 
   5473 <section anchor="split" title="Split decoding">
   5474 <t>
   5475 To avoid the need for multi-precision calculations when decoding PVQ codevectors,
   5476 the maximum size allowed for codebooks is 32 bits. When larger codebooks are
   5477 needed, the vector is instead split in two sub-vectors of size N/2.
   5478 A quantized gain parameter with precision
   5479 derived from the current allocation is entropy coded to represent the relative
   5480 gains of each side of the split, and the entire decoding process is recursively
   5481 applied. Multiple levels of splitting may be applied up to a limit of LM+1 splits.
   5482 The same recursive mechanism is applied for the joint coding
   5483 of stereo audio.
   5484 </t>
   5485 
   5486 </section>
   5487 
   5488 <section anchor="tf-change" title="Time-Frequency change">
   5489 <t>
   5490 The time-frequency (TF) parameters are used to control the time-frequency resolution tradeoff
   5491 in each coded band. For each band, there are two possible TF choices. For the first
   5492 band coded, the PDF is {3, 1}/4 for frames marked as transient and {15, 1}/16 for
   5493 the other frames. For subsequent bands, the TF choice is coded relative to the
   5494 previous TF choice with probability {15, 1}/15 for transient frames and {31, 1}/32
   5495 otherwise. The mapping between the decoded TF choices and the adjustment in TF
   5496 resolution is shown in the tables below.
   5497 </t>
   5498 
   5499 <texttable anchor='tf_00'
   5500  title="TF Adjustments for Non-transient Frames and tf_select=0">
   5501 <ttcol align='center'>Frame size (ms)</ttcol>
   5502 <ttcol align='center'>0</ttcol>
   5503 <ttcol align='center'>1</ttcol>
   5504 <c>2.5</c>      <c>0</c> <c>-1</c>
   5505 <c>5</c>      <c>0</c> <c>-1</c>
   5506 <c>10</c>      <c>0</c> <c>-2</c>
   5507 <c>20</c>      <c>0</c> <c>-2</c>
   5508 </texttable>
   5509 
   5510 <texttable anchor='tf_01'
   5511  title="TF Adjustments for Non-transient Frames and tf_select=1">
   5512 <ttcol align='center'>Frame size (ms)</ttcol>
   5513 <ttcol align='center'>0</ttcol>
   5514 <ttcol align='center'>1</ttcol>
   5515 <c>2.5</c>      <c>0</c> <c>-1</c>
   5516 <c>5</c>      <c>0</c> <c>-2</c>
   5517 <c>10</c>      <c>0</c> <c>-3</c>
   5518 <c>20</c>      <c>0</c> <c>-3</c>
   5519 </texttable>
   5520 
   5521 
   5522 <texttable anchor='tf_10'
   5523  title="TF Adjustments for Transient Frames and tf_select=0">
   5524 <ttcol align='center'>Frame size (ms)</ttcol>
   5525 <ttcol align='center'>0</ttcol>
   5526 <ttcol align='center'>1</ttcol>
   5527 <c>2.5</c>      <c>0</c> <c>-1</c>
   5528 <c>5</c>      <c>1</c> <c>0</c>
   5529 <c>10</c>      <c>2</c> <c>0</c>
   5530 <c>20</c>      <c>3</c> <c>0</c>
   5531 </texttable>
   5532 
   5533 <texttable anchor='tf_11'
   5534  title="TF Adjustments for Transient Frames and tf_select=1">
   5535 <ttcol align='center'>Frame size (ms)</ttcol>
   5536 <ttcol align='center'>0</ttcol>
   5537 <ttcol align='center'>1</ttcol>
   5538 <c>2.5</c>      <c>0</c> <c>-1</c>
   5539 <c>5</c>      <c>1</c> <c>-1</c>
   5540 <c>10</c>      <c>1</c> <c>-1</c>
   5541 <c>20</c>      <c>1</c> <c>-1</c>
   5542 </texttable>
   5543 
   5544 <t>
   5545 A negative TF adjustment means that the temporal resolution is increased,
   5546 while a positive TF adjustment means that the frequency resolution is increased.
   5547 Changes in TF resolution are implemented using the Hadamard transform <xref target="Hadamard"/>. To increase
   5548 the time resolution by N, N "levels" of the Hadamard transform are applied to the
   5549 decoded vector for each interleaved MDCT vector. To increase the frequency resolution
   5550 (assumes a transient frame), then N levels of the Hadamard transform are applied
   5551 <spanx style="emph">across</spanx> the interleaved MDCT vector. In the case of increased
   5552 time resolution the decoder uses the "sequency order" because the input vector
   5553 is sorted in time.
   5554 </t>
   5555 </section>
   5556 
   5557 
   5558 </section>
   5559 
   5560 <section anchor="anti-collapse" title="Anti-Collapse Processing">
   5561 <t>
   5562 The anti-collapse feature is designed to avoid the situation where the use of multiple
   5563 short MDCTs causes the energy in one or more of the MDCTs to be zero for
   5564 some bands, causing unpleasant artifacts.
   5565 When the frame has the transient bit set, an anti-collapse bit is decoded.
   5566 When anti-collapse is set, the energy in each small MDCT is prevented
   5567 from collapsing to zero. For each band of each MDCT where a collapse is
   5568 detected, a pseudo-random signal is inserted with an energy corresponding
   5569 to the minimum energy over the two previous frames. A renormalization step is
   5570 then required to ensure that the anti-collapse step did not alter the
   5571 energy preservation property.
   5572 </t>
   5573 </section>
   5574 
   5575 <section anchor="denormalization" title="Denormalization">
   5576 <t>
   5577 Just as each band was normalized in the encoder, the last step of the decoder before
   5578 the inverse MDCT is to denormalize the bands. Each decoded normalized band is
   5579 multiplied by the square root of the decoded energy. This is done by denormalise_bands()
   5580 (bands.c).
   5581 </t>
   5582 </section>
   5583 
   5584 <section anchor="inverse-mdct" title="Inverse MDCT">
   5585 
   5586 
   5587 <t>The inverse MDCT implementation has no special characteristics. The
   5588 input is N frequency-domain samples and the output is 2*N time-domain
   5589 samples, while scaling by 1/2. A "low-overlap" window reduces the algorithmic delay.
   5590 It is derived from a basic (full overlap) 240-sample version of the window used by the Vorbis codec:
   5591 <figure align="center">
   5592 <artwork align="center"><![CDATA[
   5593                                       2
   5594        /   /pi      /pi   n + 1/2\ \ \
   5595 W(n) = |sin|-- * sin|-- * -------| | | .
   5596        \   \2       \2       L   / / /
   5597 ]]></artwork>
   5598 </figure>
   5599 The low-overlap window is created by zero-padding the basic window and inserting ones in the
   5600 middle, such that the resulting window still satisfies power complementarity <xref target='Princen86'/>.
   5601 The IMDCT and
   5602 windowing are performed by mdct_backward (mdct.c).
   5603 </t>
   5604 
   5605 <section anchor="post-filter" title="Post-filter">
   5606 <t>
   5607 The output of the inverse MDCT (after weighted overlap-add) is sent to the
   5608 post-filter. Although the post-filter is applied at the end, the post-filter
   5609 parameters are encoded at the beginning, just after the silence flag.
   5610 The post-filter can be switched on or off using one bit (logp=1).
   5611 If the post-filter is enabled, then the octave is decoded as an integer value
   5612 between 0 and 6 of uniform probability. Once the octave is known, the fine pitch
   5613 within the octave is decoded using 4+octave raw bits. The final pitch period
   5614 is equal to (16&lt;&lt;octave)+fine_pitch-1 so it is bounded between 15 and 1022,
   5615 inclusively. Next, the gain is decoded as three raw bits and is equal to
   5616 G=3*(int_gain+1)/32. The set of post-filter taps is decoded last, using
   5617 a pdf equal to {2, 1, 1}/4. Tapset zero corresponds to the filter coefficients
   5618 g0 = 0.3066406250, g1 = 0.2170410156, g2 = 0.1296386719. Tapset one
   5619 corresponds to the filter coefficients g0 = 0.4638671875, g1 = 0.2680664062,
   5620 g2 = 0, and tapset two uses filter coefficients g0 = 0.7998046875,
   5621 g1 = 0.1000976562, g2 = 0.
   5622 </t>
   5623 
   5624 <t>
   5625 The post-filter response is thus computed as:
   5626               <figure align="center">
   5627                 <artwork align="center">
   5628                   <![CDATA[
   5629    y(n) = x(n) + G*(g0*y(n-T) + g1*(y(n-T+1)+y(n-T+1))
   5630                               + g2*(y(n-T+2)+y(n-T+2)))
   5631 ]]>
   5632                 </artwork>
   5633               </figure>
   5634 
   5635 During a transition between different gains, a smooth transition is calculated
   5636 using the square of the MDCT window. It is important that values of y(n) be
   5637 interpolated one at a time such that the past value of y(n) used is interpolated.
   5638 </t>
   5639 </section>
   5640 
   5641 <section anchor="deemphasis" title="De-emphasis">
   5642 <t>
   5643 After the post-filter,
   5644 the signal is de-emphasized using the inverse of the pre-emphasis filter
   5645 used in the encoder:
   5646 <figure align="center">
   5647 <artwork align="center"><![CDATA[
   5648  1            1
   5649 ---- = --------------- ,
   5650 A(z)                -1
   5651        1 - alpha_p*z
   5652 ]]></artwork>
   5653 </figure>
   5654 where alpha_p=0.8500061035.
   5655 </t>
   5656 </section>
   5657 
   5658 </section>
   5659 
   5660 </section>
   5661 
   5662 <section anchor="Packet Loss Concealment" title="Packet Loss Concealment (PLC)">
   5663 <t>
   5664 Packet loss concealment (PLC) is an optional decoder-side feature that
   5665 SHOULD be included when receiving from an unreliable channel. Because
   5666 PLC is not part of the bitstream, there are many acceptable ways to
   5667 implement PLC with different complexity/quality trade-offs.
   5668 </t>
   5669 
   5670 <t>
   5671 The PLC in
   5672 the reference implementation depends on the mode of last packet received.
   5673 In CELT mode, the PLC finds a periodicity in the decoded
   5674 signal and repeats the windowed waveform using the pitch offset. The windowed
   5675 waveform is overlapped in such a way as to preserve the time-domain aliasing
   5676 cancellation with the previous frame and the next frame. This is implemented
   5677 in celt_decode_lost() (mdct.c).  In SILK mode, the PLC uses LPC extrapolation
   5678 from the previous frame, implemented in silk_PLC() (PLC.c).
   5679 </t>
   5680 
   5681 <section anchor="clock-drift" title="Clock Drift Compensation">
   5682 <t>
   5683 Clock drift refers to the gradual desynchronization of two endpoints
   5684 whose sample clocks run at different frequencies while they are streaming
   5685 live audio.  Differences in clock frequencies are generally attributable to
   5686 manufacturing variation in the endpoints' clock hardware.  For long-lived
   5687 streams, the time difference between sender and receiver can grow without
   5688 bound.
   5689 </t>
   5690 
   5691 <t>
   5692 When the sender's clock runs slower than the receiver's, the effect is similar
   5693 to packet loss: too few packets are received.  The receiver can distinguish
   5694 between drift and loss if the transport provides packet timestamps.  A receiver
   5695 for live streams SHOULD conceal the effects of drift, and MAY do so by invoking
   5696 the PLC.
   5697 </t>
   5698 
   5699 <t>
   5700 When the sender's clock runs faster than the receiver's, too many packets will
   5701 be received.  The receiver MAY respond by skipping any packet (i.e., not
   5702 submitting the packet for decoding).  This is likely to produce a less severe
   5703 artifact than if the frame were dropped after decoding.
   5704 </t>
   5705 
   5706 <t>
   5707 A decoder MAY employ a more sophisticated drift compensation method. For
   5708 example, the
   5709 <xref target='Google-NetEQ'>NetEQ component</xref>
   5710 of the
   5711 <xref target='Google-WebRTC'>Google WebRTC codebase</xref>
   5712 compensates for drift by adding or removing
   5713 one period when the signal is highly periodic. The reference implementation of
   5714 Opus allows a caller to learn whether the current frame's signal is highly
   5715 periodic, and if so what the period is, using the OPUS_GET_PITCH() request.
   5716 </t>
   5717 </section>
   5718 
   5719 </section>
   5720 
   5721 <section anchor="switching" title="Configuration Switching">
   5722 
   5723 <t>
   5724 Switching between the Opus coding modes, audio bandwidths, and channel counts
   5725  requires careful consideration to avoid audible glitches.
   5726 Switching between any two configurations of the CELT-only mode, any two
   5727  configurations of the Hybrid mode, or from WB SILK to Hybrid mode does not
   5728  require any special treatment in the decoder, as the MDCT overlap will smooth
   5729  the transition.
   5730 Switching from Hybrid mode to WB SILK requires adding in the final contents
   5731  of the CELT overlap buffer to the first SILK-only packet.
   5732 This can be done by decoding a 2.5&nbsp;ms silence frame with the CELT decoder
   5733  using the channel count of the SILK-only packet (and any choice of audio
   5734  bandwidth), which will correctly handle the cases when the channel count
   5735  changes as well.
   5736 </t>
   5737 
   5738 <t>
   5739 When changing the channel count for SILK-only or Hybrid packets, the encoder
   5740  can avoid glitches by smoothly varying the stereo width of the input signal
   5741  before or after the transition, and SHOULD do so.
   5742 However, other transitions between SILK-only packets or between NB or MB SILK
   5743  and Hybrid packets may cause glitches, because neither the LSF coefficients
   5744  nor the LTP, LPC, stereo unmixing, and resampler buffers are available at the
   5745  new sample rate.
   5746 These switches SHOULD be delayed by the encoder until quiet periods or
   5747  transients, where the inevitable glitches will be less audible. Additionally,
   5748  the bit-stream MAY include redundant side information ("redundancy"), in the
   5749  form of additional CELT frames embedded in each of the Opus frames around the
   5750  transition.
   5751 </t>
   5752 
   5753 <t>
   5754 The other transitions that cannot be easily handled are those where the lower
   5755  frequencies switch between the SILK LP-based model and the CELT MDCT model.
   5756 However, an encoder may not have an opportunity to delay such a switch to a
   5757  convenient point.
   5758 For example, if the content switches from speech to music, and the encoder does
   5759  not have enough latency in its analysis to detect this in advance, there may
   5760  be no convenient silence period during which to make the transition for quite
   5761  some time.
   5762 To avoid or reduce glitches during these problematic mode transitions, and
   5763  also between audio bandwidth changes in the SILK-only modes, transitions MAY
   5764  include redundant side information ("redundancy"), in the form of an
   5765  additional CELT frame embedded in the Opus frame.
   5766 </t>
   5767 
   5768 <t>
   5769 A transition between coding the lower frequencies with the LP model and the
   5770  MDCT model or a transition that involves changing the SILK bandwidth
   5771  is only normatively specified when it includes redundancy.
   5772 For those without redundancy, it is RECOMMENDED that the decoder use a
   5773  concealment technique (e.g., make use of a PLC algorithm) to "fill in" the
   5774  gap or discontinuity caused by the mode transition.
   5775 Therefore, PLC MUST NOT be applied during any normative transition, i.e., when
   5776 <list style="symbols">
   5777 <t>A packet includes redundancy for this transition (as described below),</t>
   5778 <t>The transition is between any WB SILK packet and any Hybrid packet, or vice
   5779  versa,</t>
   5780 <t>The transition is between any two Hybrid mode packets, or</t>
   5781 <t>The transition is between any two CELT mode packets,</t>
   5782 </list>
   5783  unless there is actual packet loss.
   5784 </t>
   5785 
   5786 <section anchor="side-info" title="Transition Side Information (Redundancy)">
   5787 <t>
   5788 Transitions with side information include an extra 5&nbsp;ms "redundant" CELT
   5789  frame within the Opus frame.
   5790 This frame is designed to fill in the gap or discontinuity in the different
   5791  layers without requiring the decoder to conceal it.
   5792 For transitions from CELT-only to SILK-only or Hybrid, the redundant frame is
   5793  inserted in the first Opus frame after the transition (i.e., the first
   5794  SILK-only or Hybrid frame).
   5795 For transitions from SILK-only or Hybrid to CELT-only, the redundant frame is
   5796  inserted in the last Opus frame before the transition (i.e., the last
   5797  SILK-only or Hybrid frame).
   5798 </t>
   5799 
   5800 <section anchor="opus_redundancy_flag" title="Redundancy Flag">
   5801 <t>
   5802 The presence of redundancy is signaled in all SILK-only and Hybrid frames, not
   5803  just those involved in a mode transition.
   5804 This allows the frames to be decoded correctly even if an adjacent frame is
   5805  lost.
   5806 For SILK-only frames, this signaling is implicit, based on the size of the
   5807  of the Opus frame and the number of bits consumed decoding the SILK portion of
   5808  it.
   5809 After decoding the SILK portion of the Opus frame, the decoder uses ec_tell()
   5810  (see <xref target="ec_tell"/>) to check if there are at least 17 bits
   5811  remaining.
   5812 If so, then the frame contains redundancy.
   5813 </t>
   5814 
   5815 <t>
   5816 For Hybrid frames, this signaling is explicit.
   5817 After decoding the SILK portion of the Opus frame, the decoder uses ec_tell()
   5818  (see <xref target="ec_tell"/>) to ensure there are at least 37 bits remaining.
   5819 If so, it reads a symbol with the PDF in
   5820  <xref target="opus_redundancy_flag_pdf"/>, and if the value is 1, then the
   5821  frame contains redundancy.
   5822 Otherwise (if there were fewer than 37 bits left or the value was 0), the frame
   5823  does not contain redundancy.
   5824 </t>
   5825 
   5826 <texttable anchor="opus_redundancy_flag_pdf" title="Redundancy Flag PDF">
   5827 <ttcol>PDF</ttcol>
   5828 <c>{4095, 1}/4096</c>
   5829 </texttable>
   5830 </section>
   5831 
   5832 <section anchor="opus_redundancy_pos" title="Redundancy Position Flag">
   5833 <t>
   5834 Since the current frame is a SILK-only or a Hybrid frame, it must be at least
   5835  10&nbsp;ms.
   5836 Therefore, it needs an additional flag to indicate whether the redundant
   5837  5&nbsp;ms CELT frame should be mixed into the beginning of the current frame,
   5838  or the end.
   5839 After determining that a frame contains redundancy, the decoder reads a
   5840  1&nbsp;bit symbol with a uniform PDF
   5841  (<xref target="opus_redundancy_pos_pdf"/>).
   5842 </t>
   5843 
   5844 <texttable anchor="opus_redundancy_pos_pdf" title="Redundancy Position PDF">
   5845 <ttcol>PDF</ttcol>
   5846 <c>{1, 1}/2</c>
   5847 </texttable>
   5848 
   5849 <t>
   5850 If the value is zero, this is the first frame in the transition, and the
   5851  redundancy belongs at the end.
   5852 If the value is one, this is the second frame in the transition, and the
   5853  redundancy belongs at the beginning.
   5854 There is no way to specify that an Opus frame contains separate redundant CELT
   5855  frames at both the beginning and the end.
   5856 </t>
   5857 </section>
   5858 
   5859 <section anchor="opus_redundancy_size" title="Redundancy Size">
   5860 <t>
   5861 Unlike the CELT portion of a Hybrid frame, the redundant CELT frame does not
   5862  use the same entropy coder state as the rest of the Opus frame, because this
   5863  would break the CELT bit allocation mechanism in Hybrid frames.
   5864 Thus, a redundant CELT frame always starts and ends on a byte boundary, even in
   5865  SILK-only frames, where this is not strictly necessary.
   5866 </t>
   5867 
   5868 <t>
   5869 For SILK-only frames, the number of bytes in the redundant CELT frame is simply
   5870  the number of whole bytes remaining, which must be at least 2, due to the
   5871  space check in <xref target="opus_redundancy_flag"/>.
   5872 For Hybrid frames, the number of bytes is equal to 2, plus a decoded unsigned
   5873  integer less than 256 (see <xref target="ec_dec_uint"/>).
   5874 This may be more than the number of whole bytes remaining in the Opus frame,
   5875  in which case the frame is invalid.
   5876 However, a decoder is not required to ignore the entire frame, as this may be
   5877  the result of a bit error that desynchronized the range coder.
   5878 There may still be useful data before the error, and a decoder MAY keep any
   5879  audio decoded so far instead of invoking the PLC, but it is RECOMMENDED that
   5880  the decoder stop decoding and discard the rest of the current Opus frame.
   5881 </t>
   5882 
   5883 <t>
   5884 It would have been possible to avoid these invalid states in the design of Opus
   5885  by limiting the range of the explicit length decoded from Hybrid frames by the
   5886  actual number of whole bytes remaining.
   5887 However, this would require an encoder to determine the rate allocation for the
   5888  MDCT layer up front, before it began encoding that layer.
   5889 By allowing some invalid sizes, the encoder is able to defer that decision
   5890  until much later.
   5891 When encoding Hybrid frames which do not include redundancy, the encoder must
   5892  still decide up-front if it wishes to use the minimum 37 bits required to
   5893  trigger encoding of the redundancy flag, but this is a much looser
   5894  restriction.
   5895 </t>
   5896 
   5897 <t>
   5898 After determining the size of the redundant CELT frame, the decoder reduces
   5899  the size of the buffer currently in use by the range coder by that amount.
   5900 The CELT layer read any raw bits from the end of this reduced buffer, and all
   5901  calculations of the number of bits remaining in the buffer must be done using
   5902  this new, reduced size, rather than the original size of the Opus frame.
   5903 </t>
   5904 </section>
   5905 
   5906 <section anchor="opus_redundancy_decoding" title="Decoding the Redundancy">
   5907 <t>
   5908 The redundant frame is decoded like any other CELT-only frame, with the
   5909  exception that it does not contain a TOC byte.
   5910 The frame size is fixed at 5&nbsp;ms, the channel count is set to that of the
   5911  current frame, and the audio bandwidth is also set to that of the current
   5912  frame, with the exception that for MB SILK frames, it is set to WB.
   5913 </t>
   5914 
   5915 <t>
   5916 If the redundancy belongs at the beginning (in a CELT-only to SILK-only or
   5917  Hybrid transition), the final reconstructed output uses the first 2.5&nbsp;ms
   5918  of audio output by the decoder for the redundant frame as-is, discarding
   5919  the corresponding output from the SILK-only or Hybrid portion of the frame.
   5920 The remaining 2.5&nbsp;ms is cross-lapped with the decoded SILK/Hybrid signal
   5921  using the CELT's power-complementary MDCT window to ensure a smooth
   5922  transition.
   5923 </t>
   5924 
   5925 <t>
   5926 If the redundancy belongs at the end (in a SILK-only or Hybrid to CELT-only
   5927  transition), only the second half (2.5&nbsp;ms) of the audio output by the
   5928  decoder for the redundant frame is used.
   5929 In that case, the second half of the redundant frame is cross-lapped with the
   5930  end of the SILK/Hybrid signal, again using CELT's power-complementary MDCT
   5931  window to ensure a smooth transition.
   5932 </t>
   5933 </section>
   5934 
   5935 </section>
   5936 
   5937 <section anchor="decoder-reset" title="State Reset">
   5938 <t>
   5939 When a transition occurs, the state of the SILK or the CELT decoder (or both)
   5940  may need to be reset before decoding a frame in the new mode.
   5941 This avoids reusing "out of date" memory, which may not have been updated in
   5942  some time or may not be in a well-defined state due to, e.g., PLC.
   5943 The SILK state is reset before every SILK-only or Hybrid frame where the
   5944  previous frame was CELT-only.
   5945 The CELT state is reset every time the operating mode changes and the new mode
   5946  is either Hybrid or CELT-only, except when the transition uses redundancy as
   5947  described above.
   5948 When switching from SILK-only or Hybrid to CELT-only with redundancy, the CELT
   5949  state is reset before decoding the redundant CELT frame embedded in the
   5950  SILK-only or Hybrid frame, but it is not reset before decoding the following
   5951  CELT-only frame.
   5952 When switching from CELT-only mode to SILK-only or Hybrid mode with redundancy,
   5953  the CELT decoder is not reset for decoding the redundant CELT frame.
   5954 </t>
   5955 </section>
   5956 
   5957 <section title="Summary of Transitions">
   5958 
   5959 <t>
   5960 <xref target="normative_transitions"/> illustrates all of the normative
   5961  transitions involving a mode change, an audio bandwidth change, or both.
   5962 Each one uses an S, H, or C to represent an Opus frame in the corresponding
   5963  mode.
   5964 In addition, an R indicates the presence of redundancy in the Opus frame it is
   5965  cross-lapped with.
   5966 Its location in the first or last 5&nbsp;ms is assumed to correspond to whether
   5967  it is the frame before or after the transition.
   5968 Other uses of redundancy are non-normative.
   5969 Finally, a c indicates the contents of the CELT overlap buffer after the
   5970  previously decoded frame (i.e., as extracted by decoding a silence frame).
   5971 <figure align="center" anchor="normative_transitions"
   5972  title="Normative Transitions">
   5973 <artwork align="center"><![CDATA[
   5974 SILK to SILK with Redundancy:             S -> S -> S
   5975                                                     &
   5976                                                    !R -> R
   5977                                                          &
   5978                                                         ;S -> S -> S
   5979 
   5980 NB or MB SILK to Hybrid with Redundancy:  S -> S -> S
   5981                                                     &
   5982                                                    !R ->;H -> H -> H
   5983 
   5984 WB SILK to Hybrid:                        S -> S -> S ->!H -> H -> H
   5985 
   5986 SILK to CELT with Redundancy:             S -> S -> S
   5987                                                     &
   5988                                                    !R -> C -> C -> C
   5989 
   5990 Hybrid to NB or MB SILK with Redundancy:  H -> H -> H
   5991                                                     &
   5992                                                    !R -> R
   5993                                                          &
   5994                                                         ;S -> S -> S
   5995 
   5996 Hybrid to WB SILK:                        H -> H -> H -> c
   5997                                                       \  +
   5998                                                        > S -> S -> S
   5999 
   6000 Hybrid to CELT with Redundancy:           H -> H -> H
   6001                                                     &
   6002                                                    !R -> C -> C -> C
   6003 
   6004 CELT to SILK with Redundancy:             C -> C -> C -> R
   6005                                                          &
   6006                                                         ;S -> S -> S
   6007 
   6008 CELT to Hybrid with Redundancy:           C -> C -> C -> R
   6009                                                          &
   6010                                                         |H -> H -> H
   6011 
   6012 Key:
   6013 S   SILK-only frame                 ;   SILK decoder reset
   6014 H   Hybrid frame                    |   CELT and SILK decoder resets
   6015 C   CELT-only frame                 !   CELT decoder reset
   6016 c   CELT overlap                    +   Direct mixing
   6017 R   Redundant CELT frame            &   Windowed cross-lap
   6018 ]]></artwork>
   6019 </figure>
   6020 The first two and the last two Opus frames in each example are illustrative,
   6021  i.e., there is no requirement that a stream remain in the same configuration
   6022  for three consecutive frames before or after a switch.
   6023 </t>
   6024 
   6025 <t>
   6026 The behavior of transitions without redundancy where PLC is allowed is non-normative.
   6027 An encoder might still wish to use these transitions if, for example, it
   6028  doesn't want to add the extra bitrate required for redundancy or if it makes
   6029  a decision to switch after it has already transmitted the frame that would
   6030  have had to contain the redundancy.
   6031 <xref target="nonnormative_transitions"/> illustrates the recommended
   6032  cross-lapping and decoder resets for these transitions.
   6033 <figure align="center" anchor="nonnormative_transitions"
   6034  title="Recommended Non-Normative Transitions">
   6035 <artwork align="center"><![CDATA[
   6036 SILK to SILK (audio bandwidth change):    S -> S -> S   ;S -> S -> S
   6037 
   6038 NB or MB SILK to Hybrid:                  S -> S -> S   |H -> H -> H
   6039 
   6040 SILK to CELT without Redundancy:          S -> S -> S -> P
   6041                                                          &
   6042                                                         !C -> C -> C
   6043 
   6044 Hybrid to NB or MB SILK:                  H -> H -> H -> c
   6045                                                          +
   6046                                                         ;S -> S -> S
   6047 
   6048 Hybrid to CELT without Redundancy:        H -> H -> H -> P
   6049                                                          &
   6050                                                         !C -> C -> C
   6051 
   6052 CELT to SILK without Redundancy:          C -> C -> C -> P
   6053                                                          &
   6054                                                         ;S -> S -> S
   6055 
   6056 CELT to Hybrid without Redundancy:        C -> C -> C -> P
   6057                                                          &
   6058                                                         |H -> H -> H
   6059 
   6060 Key:
   6061 S   SILK-only frame                 ;   SILK decoder reset
   6062 H   Hybrid frame                    |   CELT and SILK decoder resets
   6063 C   CELT-only frame                 !   CELT decoder reset
   6064 c   CELT overlap                    +   Direct mixing
   6065 P   Packet Loss Concealment         &   Windowed cross-lap
   6066 ]]></artwork>
   6067 </figure>
   6068 Encoders SHOULD NOT use other transitions, e.g., those that involve redundancy
   6069  in ways not illustrated in <xref target="normative_transitions"/>.
   6070 </t>
   6071 
   6072 </section>
   6073 
   6074 </section>
   6075 
   6076 </section>
   6077 
   6078 
   6079 <!--  ******************************************************************* -->
   6080 <!--  **************************   OPUS ENCODER   *********************** -->
   6081 <!--  ******************************************************************* -->
   6082 
   6083 <section title="Opus Encoder">
   6084 <t>
   6085 Just like the decoder, the Opus encoder also normally consists of two main blocks: the
   6086 SILK encoder and the CELT encoder. However, unlike the case of the decoder, a valid
   6087 (though potentially suboptimal) Opus encoder is not required to support all modes and
   6088 may thus only include a SILK encoder module or a CELT encoder module.
   6089 The output bit-stream of the Opus encoding contains bits from the SILK and CELT
   6090  encoders, though these are not separable due to the use of a range coder.
   6091 A block diagram of the encoder is illustrated below.
   6092 
   6093 <figure align="center" anchor="opus-encoder-figure" title="Opus Encoder">
   6094 <artwork>
   6095 <![CDATA[
   6096                     +------------+    +---------+
   6097                     |   Sample   |    |  SILK   |------+
   6098                  +->|    Rate    |--->| Encoder |      V
   6099   +-----------+  |  | Conversion |    |         | +---------+
   6100   | Optional  |  |  +------------+    +---------+ |  Range  |
   6101 ->| High-pass |--+                                | Encoder |---->
   6102   |  Filter   |  |  +--------------+  +---------+ |         | Bit-
   6103   +-----------+  |  |    Delay     |  |  CELT   | +---------+ stream
   6104                  +->| Compensation |->| Encoder |      ^
   6105                     |              |  |         |------+
   6106                     +--------------+  +---------+
   6107 ]]>
   6108 </artwork>
   6109 </figure>
   6110 </t>
   6111 
   6112 <t>
   6113 For a normal encoder where both the SILK and the CELT modules are included, an optimal
   6114 encoder should select which coding mode to use at run-time depending on the conditions.
   6115 In the reference implementation, the frame size is selected by the application, but the
   6116 other configuration parameters (number of channels, bandwidth, mode) are automatically
   6117 selected (unless explicitly overridden by the application) depend on the following:
   6118 <list style="symbols">
   6119 <t>Requested bitrate</t>
   6120 <t>Input sampling rate</t>
   6121 <t>Type of signal (speech vs music)</t>
   6122 <t>Frame size in use</t>
   6123 </list>
   6124 
   6125 The type of signal currently needs to be provided by the application (though it can be
   6126 changed in real-time). An Opus encoder implementation could also do automatic detection,
   6127 but since Opus is an interactive codec, such an implementation would likely have to either
   6128 delay the signal (for non-interactive applications) or delay the mode switching decisions (for
   6129 interactive applications).
   6130 </t>
   6131 
   6132 <t>
   6133 When the encoder is configured for voice over IP applications, the input signal is
   6134 filtered by a high-pass filter to remove the lowest part of the spectrum
   6135 that contains little speech energy and may contain background noise. This is a second order
   6136 Auto Regressive Moving Average (i.e., with poles and zeros) filter with a cut-off frequency around 50&nbsp;Hz.
   6137 In the future, a music detector may also be used to lower the cut-off frequency when the
   6138 input signal is detected to be music rather than speech.
   6139 </t>
   6140 
   6141 <section anchor="range-encoder" title="Range Encoder">
   6142 <t>
   6143 The range coder acts as the bit-packer for Opus.
   6144 It is used in three different ways: to encode
   6145 <list style="symbols">
   6146 <t>
   6147 Entropy-coded symbols with a fixed probability model using ec_encode()
   6148  (entenc.c),
   6149 </t>
   6150 <t>
   6151 Integers from 0 to (2**M&nbsp;-&nbsp;1) using ec_enc_uint() or ec_enc_bits()
   6152  (entenc.c),</t>
   6153 <t>
   6154 Integers from 0 to (ft&nbsp;-&nbsp;1) (where ft is not a power of two) using
   6155  ec_enc_uint() (entenc.c).
   6156 </t>
   6157 </list>
   6158 </t>
   6159 
   6160 <t>
   6161 The range encoder maintains an internal state vector composed of the four-tuple
   6162  (val,&nbsp;rng,&nbsp;rem,&nbsp;ext) representing the low end of the current
   6163  range, the size of the current range, a single buffered output byte, and a
   6164  count of additional carry-propagating output bytes.
   6165 Both val and rng are 32-bit unsigned integer values, rem is a byte value or
   6166  less than 255 or the special value -1, and ext is an unsigned integer with at
   6167  least 11 bits.
   6168 This state vector is initialized at the start of each each frame to the value
   6169  (0,&nbsp;2**31,&nbsp;-1,&nbsp;0).
   6170 After encoding a sequence of symbols, the value of rng in the encoder should
   6171  exactly match the value of rng in the decoder after decoding the same sequence
   6172  of symbols.
   6173 This is a powerful tool for detecting errors in either an encoder or decoder
   6174  implementation.
   6175 The value of val, on the other hand, represents different things in the encoder
   6176  and decoder, and is not expected to match.
   6177 </t>
   6178 
   6179 <t>
   6180 The decoder has no analog for rem and ext.
   6181 These are used to perform carry propagation in the renormalization loop below.
   6182 Each iteration of this loop produces 9 bits of output, consisting of 8 data
   6183  bits and a carry flag.
   6184 The encoder cannot determine the final value of the output bytes until it
   6185  propagates these carry flags.
   6186 Therefore the reference implementation buffers a single non-propagating output
   6187  byte (i.e., one less than 255) in rem and keeps a count of additional
   6188  propagating (i.e., 255) output bytes in ext.
   6189 An implementation may choose to use any mathematically equivalent scheme to
   6190  perform carry propagation.
   6191 </t>
   6192 
   6193 <section anchor="encoding-symbols" title="Encoding Symbols">
   6194 <t>
   6195 The main encoding function is ec_encode() (entenc.c), which encodes symbol k in
   6196  the current context using the same three-tuple (fl[k],&nbsp;fh[k],&nbsp;ft)
   6197  as the decoder to describe the range of the symbol (see
   6198  <xref target="range-decoder"/>).
   6199 </t>
   6200 <t>
   6201 ec_encode() updates the state of the encoder as follows.
   6202 If fl[k] is greater than zero, then
   6203 <figure align="center">
   6204 <artwork align="center"><![CDATA[
   6205                   rng
   6206 val = val + rng - --- * (ft - fl) ,
   6207                   ft
   6208 
   6209       rng
   6210 rng = --- * (fh - fl) .
   6211       ft
   6212 ]]></artwork>
   6213 </figure>
   6214 Otherwise, val is unchanged and
   6215 <figure align="center">
   6216 <artwork align="center"><![CDATA[
   6217             rng
   6218 rng = rng - --- * (fh - fl) .
   6219             ft
   6220 ]]></artwork>
   6221 </figure>
   6222 The divisions here are integer division.
   6223 </t>
   6224 
   6225 <section anchor="range-encoder-renorm" title="Renormalization">
   6226 <t>
   6227 After this update, the range is normalized using a procedure very similar to
   6228  that of <xref target="range-decoder-renorm"/>, implemented by
   6229  ec_enc_normalize() (entenc.c).
   6230 The following process is repeated until rng&nbsp;&gt;&nbsp;2**23.
   6231 First, the top 9 bits of val, (val&gt;&gt;23), are sent to the carry buffer,
   6232  described in <xref target="ec_enc_carry_out"/>.
   6233 Then, the encoder sets
   6234 <figure align="center">
   6235 <artwork align="center"><![CDATA[
   6236 val = (val<<8) & 0x7FFFFFFF ,
   6237 
   6238 rng = rng<<8 .
   6239 ]]></artwork>
   6240 </figure>
   6241 </t>
   6242 </section>
   6243 
   6244 <section anchor="ec_enc_carry_out"
   6245  title="Carry Propagation and Output Buffering">
   6246 <t>
   6247 The function ec_enc_carry_out() (entenc.c) implements carry propagation and
   6248  output buffering.
   6249 It takes as input a 9-bit value, c, consisting of 8 data bits and an additional
   6250  carry bit.
   6251 If c is equal to the value 255, then ext is simply incremented, and no other
   6252  state updates are performed.
   6253 Otherwise, let b&nbsp;=&nbsp;(c&gt;&gt;8) be the carry bit.
   6254 Then,
   6255 <list style="symbols">
   6256 <t>
   6257 If the buffered byte rem contains a value other than -1, the encoder outputs
   6258  the byte (rem&nbsp;+&nbsp;b).
   6259 Otherwise, if rem is -1, no byte is output.
   6260 </t>
   6261 <t>
   6262 If ext is non-zero, then the encoder outputs ext bytes---all with a value of 0
   6263  if b is set, or 255 if b is unset---and sets ext to 0.
   6264 </t>
   6265 <t>
   6266 rem is set to the 8 data bits:
   6267 <figure align="center">
   6268 <artwork align="center"><![CDATA[
   6269 rem = c & 255 .
   6270 ]]></artwork>
   6271 </figure>
   6272 </t>
   6273 </list>
   6274 </t>
   6275 </section>
   6276 
   6277 </section>
   6278 
   6279 <section anchor="encoding-alternate" title="Alternate Encoding Methods">
   6280 <t>
   6281 The reference implementation uses three additional encoding methods that are
   6282  exactly equivalent to the above, but make assumptions and simplifications that
   6283  allow for a more efficient implementation.
   6284 </t>
   6285 
   6286 <section anchor="ec_encode_bin" title="ec_encode_bin()">
   6287 <t>
   6288 The first is ec_encode_bin() (entenc.c), defined using the parameter ftb
   6289  instead of ft.
   6290 It is mathematically equivalent to calling ec_encode() with
   6291  ft&nbsp;=&nbsp;(1&lt;&lt;ftb), but avoids using division.
   6292 </t>
   6293 </section>
   6294 
   6295 <section anchor="ec_enc_bit_logp" title="ec_enc_bit_logp()">
   6296 <t>
   6297 The next is ec_enc_bit_logp() (entenc.c), which encodes a single binary symbol.
   6298 The context is described by a single parameter, logp, which is the absolute
   6299  value of the base-2 logarithm of the probability of a "1".
   6300 It is mathematically equivalent to calling ec_encode() with the 3-tuple
   6301  (fl[k]&nbsp;=&nbsp;0, fh[k]&nbsp;=&nbsp;(1&lt;&lt;logp)&nbsp;-&nbsp;1,
   6302  ft&nbsp;=&nbsp;(1&lt;&lt;logp)) if k is 0 and with
   6303  (fl[k]&nbsp;=&nbsp;(1&lt;&lt;logp)&nbsp;-&nbsp;1,
   6304  fh[k]&nbsp;=&nbsp;ft&nbsp;=&nbsp;(1&lt;&lt;logp)) if k is 1.
   6305 The implementation requires no multiplications or divisions.
   6306 </t>
   6307 </section>
   6308 
   6309 <section anchor="ec_enc_icdf" title="ec_enc_icdf()">
   6310 <t>
   6311 The last is ec_enc_icdf() (entenc.c), which encodes a single binary symbol with
   6312  a table-based context of up to 8 bits.
   6313 This uses the same icdf table as ec_dec_icdf() from
   6314  <xref target="ec_dec_icdf"/>.
   6315 The function is mathematically equivalent to calling ec_encode() with
   6316  fl[k]&nbsp;=&nbsp;(1&lt;&lt;ftb)&nbsp;-&nbsp;icdf[k-1] (or 0 if
   6317  k&nbsp;==&nbsp;0), fh[k]&nbsp;=&nbsp;(1&lt;&lt;ftb)&nbsp;-&nbsp;icdf[k], and
   6318  ft&nbsp;=&nbsp;(1&lt;&lt;ftb).
   6319 This only saves a few arithmetic operations over ec_encode_bin(), but allows
   6320  the encoder to use the same icdf tables as the decoder.
   6321 </t>
   6322 </section>
   6323 
   6324 </section>
   6325 
   6326 <section anchor="encoding-bits" title="Encoding Raw Bits">
   6327 <t>
   6328 The raw bits used by the CELT layer are packed at the end of the buffer using
   6329  ec_enc_bits() (entenc.c).
   6330 Because the raw bits may continue into the last byte output by the range coder
   6331  if there is room in the low-order bits, the encoder must be prepared to merge
   6332  these values into a single byte.
   6333 The procedure in <xref target="encoder-finalizing"/> does this in a way that
   6334  ensures both the range coded data and the raw bits can be decoded
   6335  successfully.
   6336 </t>
   6337 </section>
   6338 
   6339 <section anchor="encoding-ints" title="Encoding Uniformly Distributed Integers">
   6340 <t>
   6341 The function ec_enc_uint() (entenc.c) encodes one of ft equiprobable symbols in
   6342  the range 0 to (ft&nbsp;-&nbsp;1), inclusive, each with a frequency of 1,
   6343  where ft may be as large as (2**32&nbsp;-&nbsp;1).
   6344 Like the decoder (see <xref target="ec_dec_uint"/>), it splits up the
   6345  value into a range coded symbol representing up to 8 of the high bits, and, if
   6346  necessary, raw bits representing the remainder of the value.
   6347 </t>
   6348 <t>
   6349 ec_enc_uint() takes a two-tuple (t,&nbsp;ft), where t is the value to be
   6350  encoded, 0&nbsp;&lt;=&nbsp;t&nbsp;&lt;&nbsp;ft, and ft is not necessarily a
   6351  power of two.
   6352 Let ftb&nbsp;=&nbsp;ilog(ft&nbsp;-&nbsp;1), i.e., the number of bits required
   6353  to store (ft&nbsp;-&nbsp;1) in two's complement notation.
   6354 If ftb is 8 or less, then t is encoded directly using ec_encode() with the
   6355  three-tuple (t, t&nbsp;+&nbsp;1, ft).
   6356 </t>
   6357 <t>
   6358 If ftb is greater than 8, then the top 8 bits of t are encoded using the
   6359  three-tuple (t&gt;&gt;(ftb&nbsp;-&nbsp;8),
   6360  (t&gt;&gt;(ftb&nbsp;-&nbsp;8))&nbsp;+&nbsp;1,
   6361  ((ft&nbsp;-&nbsp;1)&gt;&gt;(ftb&nbsp;-&nbsp;8))&nbsp;+&nbsp;1), and the
   6362  remaining bits,
   6363  (t&nbsp;&amp;&nbsp;((1&lt;&lt;(ftb&nbsp;-&nbsp;8))&nbsp;-&nbsp;1),
   6364  are encoded as raw bits with ec_enc_bits().
   6365 </t>
   6366 </section>
   6367 
   6368 <section anchor="encoder-finalizing" title="Finalizing the Stream">
   6369 <t>
   6370 After all symbols are encoded, the stream must be finalized by outputting a
   6371  value inside the current range.
   6372 Let end be the integer in the interval [val,&nbsp;val&nbsp;+&nbsp;rng) with the
   6373  largest number of trailing zero bits, b, such that
   6374  (end&nbsp;+&nbsp;(1&lt;&lt;b)&nbsp;-&nbsp;1) is also in the interval
   6375  [val,&nbsp;val&nbsp;+&nbsp;rng).
   6376 This choice of end allows the maximum number of trailing bits to be set to
   6377  arbitrary values while still ensuring the range coded part of the buffer can
   6378  be decoded correctly.
   6379 Then, while end is not zero, the top 9 bits of end, i.e., (end&gt;&gt;23), are
   6380  passed to the carry buffer in accordance with the procedure in
   6381  <xref target="ec_enc_carry_out"/>, and end is updated via
   6382 <figure align="center">
   6383 <artwork align="center"><![CDATA[
   6384 end = (end<<8) & 0x7FFFFFFF .
   6385 ]]></artwork>
   6386 </figure>
   6387 Finally, if the buffered output byte, rem, is neither zero nor the special
   6388  value -1, or the carry count, ext, is greater than zero, then 9 zero bits are
   6389  sent to the carry buffer to flush it to the output buffer.
   6390 When outputting the final byte from the range coder, if it would overlap any
   6391  raw bits already packed into the end of the output buffer, they should be ORed
   6392  into the same byte.
   6393 The bit allocation routines in the CELT layer should ensure that this can be
   6394  done without corrupting the range coder data so long as end is chosen as
   6395  described above.
   6396 If there is any space between the end of the range coder data and the end of
   6397  the raw bits, it is padded with zero bits.
   6398 This entire process is implemented by ec_enc_done() (entenc.c).
   6399 </t>
   6400 </section>
   6401 
   6402 <section anchor="encoder-tell" title="Current Bit Usage">
   6403 <t>
   6404    The bit allocation routines in Opus need to be able to determine a
   6405    conservative upper bound on the number of bits that have been used
   6406    to encode the current frame thus far. This drives allocation
   6407    decisions and ensures that the range coder and raw bits will not
   6408    overflow the output buffer. This is computed in the
   6409    reference implementation to whole-bit precision by
   6410    the function ec_tell() (entcode.h) and to fractional 1/8th bit
   6411    precision by the function ec_tell_frac() (entcode.c).
   6412    Like all operations in the range coder, it must be implemented in a
   6413    bit-exact manner, and must produce exactly the same value returned by
   6414    the same functions in the decoder after decoding the same symbols.
   6415 </t>
   6416 </section>
   6417 
   6418 </section>
   6419 
   6420 <section title='SILK Encoder'>
   6421   <t>
   6422     In many respects the SILK encoder mirrors the SILK decoder described
   6423     in <xref target='silk_decoder_outline'/>.
   6424     Details such as the quantization and range coder tables can be found
   6425     there, while this section describes the high-level design choices that
   6426     were made.
   6427     The diagram below shows the basic modules of the SILK encoder.
   6428 <figure align="center" anchor="silk_encoder_figure" title="SILK Encoder">
   6429 <artwork>
   6430 <![CDATA[
   6431        +----------+    +--------+    +---------+
   6432        |  Sample  |    | Stereo |    |  SILK   |
   6433 ------>|   Rate   |--->| Mixing |--->|  Core   |---------->
   6434 Input  |Conversion|    |        |    | Encoder |  Bitstream
   6435        +----------+    +--------+    +---------+
   6436 ]]>
   6437 </artwork>
   6438 </figure>
   6439 </t>
   6440 
   6441 <section title='Sample Rate Conversion'>
   6442 <t>
   6443 The input signal's sampling rate is adjusted by a sample rate conversion
   6444 module so that it matches the SILK internal sampling rate.
   6445 The input to the sample rate converter is delayed by a number of samples
   6446 depending on the sample rate ratio, such that the overall delay is constant
   6447 for all input and output sample rates.
   6448 </t>
   6449 </section>
   6450 
   6451 <section title='Stereo Mixing'>
   6452 <t>
   6453 The stereo mixer is only used for stereo input signals.
   6454 It converts a stereo left/right signal into an adaptive
   6455 mid/side representation.
   6456 The first step is to compute non-adaptive mid/side signals
   6457 as half the sum and difference between left and right signals.
   6458 The side signal is then minimized in energy by subtracting a
   6459 prediction of it based on the mid signal.
   6460 This prediction works well when the left and right signals
   6461 exhibit linear dependency, for instance for an amplitude-panned
   6462 input signal.
   6463 Like in the decoder, the prediction coefficients are linearly
   6464 interpolated during the first 8&nbsp;ms of the frame.
   6465   The mid signal is always encoded, whereas the residual
   6466   side signal is only encoded if it has sufficient
   6467   energy compared to the mid signal's energy.
   6468   If it has not,
   6469   the "mid_only_flag" is set without encoding the side signal.
   6470 </t>
   6471 <t>
   6472 The predictor coefficients are coded regardless of whether
   6473 the side signal is encoded.
   6474 For each frame, two predictor coefficients are computed, one
   6475 that predicts between low-passed mid and side channels, and
   6476 one that predicts between high-passed mid and side channels.
   6477 The low-pass filter is a simple three-tap filter
   6478 and creates a delay of one sample.
   6479 The high-pass filtered signal is the difference between
   6480 the mid signal delayed by one sample and the low-passed
   6481 signal.  Instead of explicitly computing the high-passed
   6482 signal, it is computationally more efficient to transform
   6483 the prediction coefficients before applying them to the
   6484 filtered mid signal, as follows
   6485 <figure align="center">
   6486 <artwork align="center">
   6487 <![CDATA[
   6488 pred(n) = LP(n) * w0 + HP(n) * w1
   6489         = LP(n) * w0 + (mid(n-1) - LP(n)) * w1
   6490         = LP(n) * (w0 - w1) + mid(n-1) * w1
   6491 ]]>
   6492 </artwork>
   6493 </figure>
   6494 where w0 and w1 are the low-pass and high-pass prediction
   6495 coefficients, mid(n-1) is the mid signal delayed by one sample,
   6496 LP(n) and HP(n) are the low-passed and high-passed
   6497 signals and pred(n) is the prediction signal that is subtracted
   6498 from the side signal.
   6499 </t>
   6500 </section>
   6501 
   6502 <section title='SILK Core Encoder'>
   6503 <t>
   6504 What follows is a description of the core encoder and its components.
   6505 For simplicity, the core encoder is referred to simply as the encoder in
   6506 the remainder of this section. An overview of the encoder is given in
   6507 <xref target="encoder_figure" />.
   6508 </t>
   6509 <figure align="center" anchor="encoder_figure" title="SILK Core Encoder">
   6510 <artwork align="center">
   6511 <![CDATA[
   6512                                                              +---+
   6513                           +--------------------------------->|   |
   6514      +---------+          |      +---------+                 |   |
   6515      |Voice    |          |      |LTP      |12               |   |
   6516  +-->|Activity |--+       +----->|Scaling  |-----------+---->|   |
   6517  |   |Detector |3 |       |      |Control  |<--+       |     |   |
   6518  |   +---------+  |       |      +---------+   |       |     |   |
   6519  |                |       |      +---------+   |       |     |   |
   6520  |                |       |      |Gains    |   |       |     |   |
   6521  |                |       |  +-->|Processor|---|---+---|---->| R |
   6522  |                |       |  |   |         |11 |   |   |     | a |
   6523  |               \/       |  |   +---------+   |   |   |     | n |
   6524  |          +---------+   |  |   +---------+   |   |   |     | g |
   6525  |          |Pitch    |   |  |   |LSF      |   |   |   |     | e |
   6526  |       +->|Analysis |---+  |   |Quantizer|---|---|---|---->|   |
   6527  |       |  |         |4  |  |   |         |8  |   |   |     | E |-->
   6528  |       |  +---------+   |  |   +---------+   |   |   |     | n | 2
   6529  |       |                |  |    9/\  10|     |   |   |     | c |
   6530  |       |                |  |     |    \/     |   |   |     | o |
   6531  |       |  +---------+   |  |   +----------+  |   |   |     | d |
   6532  |       |  |Noise    |   +--|-->|Prediction|--+---|---|---->| e |
   6533  |       +->|Shaping  |---|--+   |Analysis  |7 |   |   |     | r |
   6534  |       |  |Analysis |5  |  |   |          |  |   |   |     |   |
   6535  |       |  +---------+   |  |   +----------+  |   |   |     |   |
   6536  |       |                |  |        /\       |   |   |     |   |
   6537  |       |     +----------|--|--------+        |   |   |     |   |
   6538  |       |     |         \/  \/               \/  \/  \/     |   |
   6539  |       |     |       +---------+          +------------+   |   |
   6540  |       |     |       |         |          |Noise       |   |   |
   6541 -+-------+-----+------>|Prefilter|--------->|Shaping     |-->|   |
   6542 1                      |         | 6        |Quantization|13 |   |
   6543                        +---------+          +------------+   +---+
   6544 
   6545 1:  Input speech signal
   6546 2:  Range encoded bitstream
   6547 3:  Voice activity estimate
   6548 4:  Pitch lags (per 5 ms) and voicing decision (per 20 ms)
   6549 5:  Noise shaping quantization coefficients
   6550   - Short term synthesis and analysis
   6551     noise shaping coefficients (per 5 ms)
   6552   - Long term synthesis and analysis noise
   6553     shaping coefficients (per 5 ms and for voiced speech only)
   6554   - Noise shaping tilt (per 5 ms)
   6555   - Quantizer gain/step size (per 5 ms)
   6556 6:  Input signal filtered with analysis noise shaping filters
   6557 7:  Short and long term prediction coefficients
   6558     LTP (per 5 ms) and LPC (per 20 ms)
   6559 8:  LSF quantization indices
   6560 9:  LSF coefficients
   6561 10: Quantized LSF coefficients
   6562 11: Processed gains, and synthesis noise shape coefficients
   6563 12: LTP state scaling coefficient. Controlling error propagation
   6564    / prediction gain trade-off
   6565 13: Quantized signal
   6566 ]]>
   6567 </artwork>
   6568 </figure>
   6569 
   6570 <section title='Voice Activity Detection'>
   6571 <t>
   6572 The input signal is processed by a Voice Activity Detector (VAD) to produce
   6573 a measure of voice activity, spectral tilt, and signal-to-noise estimates for
   6574 each frame. The VAD uses a sequence of half-band filterbanks to split the
   6575 signal into four subbands: 0...Fs/16, Fs/16...Fs/8, Fs/8...Fs/4, and
   6576 Fs/4...Fs/2, where Fs is the sampling frequency (8, 12, 16, or 24&nbsp;kHz).
   6577 The lowest subband, from 0 - Fs/16, is high-pass filtered with a first-order
   6578 moving average (MA) filter (with transfer function H(z) = 1-z**(-1)) to
   6579 reduce the energy at the lowest frequencies. For each frame, the signal
   6580 energy per subband is computed.
   6581 In each subband, a noise level estimator tracks the background noise level
   6582 and a Signal-to-Noise Ratio (SNR) value is computed as the logarithm of the
   6583 ratio of energy to noise level.
   6584 Using these intermediate variables, the following parameters are calculated
   6585 for use in other SILK modules:
   6586 <list style="symbols">
   6587 <t>
   6588 Average SNR. The average of the subband SNR values.
   6589 </t>
   6590 
   6591 <t>
   6592 Smoothed subband SNRs. Temporally smoothed subband SNR values.
   6593 </t>
   6594 
   6595 <t>
   6596 Speech activity level. Based on the average SNR and a weighted average of the
   6597 subband energies.
   6598 </t>
   6599 
   6600 <t>
   6601 Spectral tilt. A weighted average of the subband SNRs, with positive weights
   6602 for the low subbands and negative weights for the high subbands.
   6603 </t>
   6604 </list>
   6605 </t>
   6606 </section>
   6607 
   6608 <section title='Pitch Analysis' anchor='pitch_estimator_overview_section'>
   6609 <t>
   6610 The input signal is processed by the open loop pitch estimator shown in
   6611 <xref target='pitch_estimator_figure' />.
   6612 <figure align="center" anchor="pitch_estimator_figure"
   6613  title="Block diagram of the pitch estimator">
   6614 <artwork align="center">
   6615 <![CDATA[
   6616                                  +--------+  +----------+
   6617                                  |2 x Down|  |Time-     |
   6618                               +->|sampling|->|Correlator|     |
   6619                               |  |        |  |          |     |4
   6620                               |  +--------+  +----------+    \/
   6621                               |                    | 2    +-------+
   6622                               |                    |  +-->|Speech |5
   6623     +---------+    +--------+ |                   \/  |   |Type   |->
   6624     |LPC      |    |Down    | |              +----------+ |       |
   6625  +->|Analysis | +->|sample  |-+------------->|Time-     | +-------+
   6626  |  |         | |  |to 8 kHz|                |Correlator|----------->
   6627  |  +---------+ |  +--------+                |__________|          6
   6628  |       |      |                                  |3
   6629  |      \/      |                                 \/
   6630  |  +---------+ |                            +----------+
   6631  |  |Whitening| |                            |Time-     |
   6632 -+->|Filter   |-+--------------------------->|Correlator|----------->
   6633 1   |         |                              |          |          7
   6634     +---------+                              +----------+
   6635 
   6636 1: Input signal
   6637 2: Lag candidates from stage 1
   6638 3: Lag candidates from stage 2
   6639 4: Correlation threshold
   6640 5: Voiced/unvoiced flag
   6641 6: Pitch correlation
   6642 7: Pitch lags
   6643 ]]>
   6644 </artwork>
   6645 </figure>
   6646 The pitch analysis finds a binary voiced/unvoiced classification, and, for
   6647 frames classified as voiced, four pitch lags per frame - one for each
   6648 5&nbsp;ms subframe - and a pitch correlation indicating the periodicity of
   6649 the signal.
   6650 The input is first whitened using a Linear Prediction (LP) whitening filter,
   6651 where the coefficients are computed through standard Linear Prediction Coding
   6652 (LPC) analysis. The order of the whitening filter is 16 for best results, but
   6653 is reduced to 12 for medium complexity and 8 for low complexity modes.
   6654 The whitened signal is analyzed to find pitch lags for which the time
   6655 correlation is high.
   6656 The analysis consists of three stages for reducing the complexity:
   6657 <list style="symbols">
   6658 <t>In the first stage, the whitened signal is downsampled to 4&nbsp;kHz
   6659 (from 8&nbsp;kHz) and the current frame is correlated to a signal delayed
   6660 by a range of lags, starting from a shortest lag corresponding to
   6661 500&nbsp;Hz, to a longest lag corresponding to 56&nbsp;Hz.</t>
   6662 
   6663 <t>
   6664 The second stage operates on an 8&nbsp;kHz signal (downsampled from 12, 16,
   6665 or 24&nbsp;kHz) and measures time correlations only near the lags
   6666 corresponding to those that had sufficiently high correlations in the first
   6667 stage. The resulting correlations are adjusted for a small bias towards
   6668 short lags to avoid ending up with a multiple of the true pitch lag.
   6669 The highest adjusted correlation is compared to a threshold depending on:
   6670 <list style="symbols">
   6671 <t>
   6672 Whether the previous frame was classified as voiced
   6673 </t>
   6674 <t>
   6675 The speech activity level
   6676 </t>
   6677 <t>
   6678 The spectral tilt.
   6679 </t>
   6680 </list>
   6681 If the threshold is exceeded, the current frame is classified as voiced and
   6682 the lag with the highest adjusted correlation is stored for a final pitch
   6683 analysis of the highest precision in the third stage.
   6684 </t>
   6685 <t>
   6686 The last stage operates directly on the whitened input signal to compute time
   6687 correlations for each of the four subframes independently in a narrow range
   6688 around the lag with highest correlation from the second stage.
   6689 </t>
   6690 </list>
   6691 </t>
   6692 </section>
   6693 
   6694 <section title='Noise Shaping Analysis' anchor='noise_shaping_analysis_overview_section'>
   6695 <t>
   6696 The noise shaping analysis finds gains and filter coefficients used in the
   6697 prefilter and noise shaping quantizer. These parameters are chosen such that
   6698 they will fulfill several requirements:
   6699 <list style="symbols">
   6700 <t>
   6701 Balancing quantization noise and bitrate.
   6702 The quantization gains determine the step size between reconstruction levels
   6703 of the excitation signal. Therefore, increasing the quantization gain
   6704 amplifies quantization noise, but also reduces the bitrate by lowering
   6705 the entropy of the quantization indices.
   6706 </t>
   6707 <t>
   6708 Spectral shaping of the quantization noise; the noise shaping quantizer is
   6709 capable of reducing quantization noise in some parts of the spectrum at the
   6710 cost of increased noise in other parts without substantially changing the
   6711 bitrate.
   6712 By shaping the noise such that it follows the signal spectrum, it becomes
   6713 less audible. In practice, best results are obtained by making the shape
   6714 of the noise spectrum slightly flatter than the signal spectrum.
   6715 </t>
   6716 <t>
   6717 De-emphasizing spectral valleys; by using different coefficients in the
   6718 analysis and synthesis part of the prefilter and noise shaping quantizer,
   6719 the levels of the spectral valleys can be decreased relative to the levels
   6720 of the spectral peaks such as speech formants and harmonics.
   6721 This reduces the entropy of the signal, which is the difference between the
   6722 coded signal and the quantization noise, thus lowering the bitrate.
   6723 </t>
   6724 <t>
   6725 Matching the levels of the decoded speech formants to the levels of the
   6726 original speech formants; an adjustment gain and a first order tilt
   6727 coefficient are computed to compensate for the effect of the noise
   6728 shaping quantization on the level and spectral tilt.
   6729 </t>
   6730 </list>
   6731 </t>
   6732 <t>
   6733 <figure align="center" anchor="noise_shape_analysis_spectra_figure"
   6734  title="Noise shaping and spectral de-emphasis illustration">
   6735 <artwork align="center">
   6736 <![CDATA[
   6737   / \   ___
   6738    |   // \\
   6739    |  //   \\     ____
   6740    |_//     \\___//  \\         ____
   6741    | /  ___  \   /    \\       //  \\
   6742  P |/  /   \  \_/      \\_____//    \\
   6743  o |  /     \     ____  \     /      \\
   6744  w | /       \___/    \  \___/  ____  \\___ 1
   6745  e |/                  \       /    \  \
   6746  r |                    \_____/      \  \__ 2
   6747    |                                  \
   6748    |                                   \___ 3
   6749    |
   6750    +---------------------------------------->
   6751                     Frequency
   6752 
   6753 1: Input signal spectrum
   6754 2: De-emphasized and level matched spectrum
   6755 3: Quantization noise spectrum
   6756 ]]>
   6757 </artwork>
   6758 </figure>
   6759 <xref target='noise_shape_analysis_spectra_figure' /> shows an example of an
   6760 input signal spectrum (1).
   6761 After de-emphasis and level matching, the spectrum has deeper valleys (2).
   6762 The quantization noise spectrum (3) more or less follows the input signal
   6763 spectrum, while having slightly less pronounced peaks.
   6764 The entropy, which provides a lower bound on the bitrate for encoding the
   6765 excitation signal, is proportional to the area between the de-emphasized
   6766 spectrum (2) and the quantization noise spectrum (3). Without de-emphasis,
   6767 the entropy is proportional to the area between input spectrum (1) and
   6768 quantization noise (3) - clearly higher.
   6769 </t>
   6770 
   6771 <t>
   6772 The transformation from input signal to de-emphasized signal can be
   6773 described as a filtering operation with a filter
   6774 <figure align="center">
   6775 <artwork align="center">
   6776 <![CDATA[
   6777                            -1    Wana(z)
   6778 H(z) = G * ( 1 - c_tilt * z  ) * -------
   6779                                  Wsyn(z),
   6780 ]]>
   6781 </artwork>
   6782 </figure>
   6783 having an adjustment gain G, a first order tilt adjustment filter with
   6784 tilt coefficient c_tilt, and where
   6785 <figure align="center">
   6786 <artwork align="center">
   6787 <![CDATA[
   6788                16                            d
   6789                __             -k        -L  __            -k
   6790 Wana(z) = (1 - \ (a_ana(k) * z  )*(1 - z  * \ b_ana(k) * z  ),
   6791                /_                           /_
   6792                k=1                          k=-d
   6793 ]]>
   6794 </artwork>
   6795 </figure>
   6796 is the analysis part of the de-emphasis filter, consisting of the short-term
   6797 shaping filter with coefficients a_ana(k), and the long-term shaping filter
   6798 with coefficients b_ana(k) and pitch lag L.
   6799 The parameter d determines the number of long-term shaping filter taps.
   6800 </t>
   6801 
   6802 <t>
   6803 Similarly, but without the tilt adjustment, the synthesis part can be written as
   6804 <figure align="center">
   6805 <artwork align="center">
   6806 <![CDATA[
   6807                16                            d
   6808                __             -k        -L  __            -k
   6809 Wsyn(z) = (1 - \ (a_syn(k) * z  )*(1 - z  * \ b_syn(k) * z  ).
   6810                /_                           /_
   6811                k=1                          k=-d
   6812             ]]>
   6813 </artwork>
   6814 </figure>
   6815 </t>
   6816 <t>
   6817 All noise shaping parameters are computed and applied per subframe of 5&nbsp;ms.
   6818 First, an LPC analysis is performed on a windowed signal block of 15&nbsp;ms.
   6819 The signal block has a look-ahead of 5&nbsp;ms relative to the current subframe,
   6820 and the window is an asymmetric sine window. The LPC analysis is done with the
   6821 autocorrelation method, with an order of between 8, in lowest-complexity mode,
   6822 and 16, for best quality.
   6823 </t>
   6824 <t>
   6825 Optionally the LPC analysis and noise shaping filters are warped by replacing
   6826 the delay elements by first-order allpass filters.
   6827 This increases the frequency resolution at low frequencies and reduces it at
   6828 high ones, which better matches the human auditory system and improves
   6829 quality.
   6830 The warped analysis and filtering comes at a cost in complexity
   6831 and is therefore only done in higher complexity modes.
   6832 </t>
   6833 <t>
   6834 The quantization gain is found by taking the square root of the residual energy
   6835 from the LPC analysis and multiplying it by a value inversely proportional
   6836 to the coding quality control parameter and the pitch correlation.
   6837 </t>
   6838 <t>
   6839 Next the two sets of short-term noise shaping coefficients a_ana(k) and
   6840 a_syn(k) are obtained by applying different amounts of bandwidth expansion to the
   6841 coefficients found in the LPC analysis.
   6842 This bandwidth expansion moves the roots of the LPC polynomial towards the
   6843 origin, using the formulas
   6844 <figure align="center">
   6845 <artwork align="center">
   6846 <![CDATA[
   6847                       k
   6848  a_ana(k) = a(k)*g_ana , and
   6849 
   6850                       k
   6851  a_syn(k) = a(k)*g_syn ,
   6852 ]]>
   6853 </artwork>
   6854 </figure>
   6855 where a(k) is the k'th LPC coefficient, and the bandwidth expansion factors
   6856 g_ana and g_syn are calculated as
   6857 <figure align="center">
   6858 <artwork align="center">
   6859 <![CDATA[
   6860 g_ana = 0.95 - 0.01*C, and
   6861 
   6862 g_syn = 0.95 + 0.01*C,
   6863 ]]>
   6864 </artwork>
   6865 </figure>
   6866 where C is the coding quality control parameter between 0 and 1.
   6867 Applying more bandwidth expansion to the analysis part than to the synthesis
   6868 part gives the desired de-emphasis of spectral valleys in between formants.
   6869 </t>
   6870 
   6871 <t>
   6872 The long-term shaping is applied only during voiced frames.
   6873 It uses three filter taps, described by
   6874 <figure align="center">
   6875 <artwork align="center">
   6876   <![CDATA[
   6877 b_ana = F_ana * [0.25, 0.5, 0.25], and
   6878 
   6879 b_syn = F_syn * [0.25, 0.5, 0.25].
   6880 ]]>
   6881 </artwork>
   6882 </figure>
   6883 For unvoiced frames these coefficients are set to 0. The multiplication factors
   6884 F_ana and F_syn are chosen between 0 and 1, depending on the coding quality
   6885 control parameter, as well as the calculated pitch correlation and smoothed
   6886 subband SNR of the lowest subband. By having F_ana less than F_syn,
   6887 the pitch harmonics are emphasized relative to the valleys in between the
   6888 harmonics.
   6889 </t>
   6890 
   6891 <t>
   6892 The tilt coefficient c_tilt is for unvoiced frames chosen as
   6893 <figure align="center">
   6894 <artwork align="center">
   6895 <![CDATA[
   6896 c_tilt = 0.25,
   6897 ]]>
   6898 </artwork>
   6899 </figure>
   6900 and as
   6901 <figure align="center">
   6902 <artwork align="center">
   6903 <![CDATA[
   6904 c_tilt = 0.25 + 0.2625 * V
   6905 ]]>
   6906 </artwork>
   6907 </figure>
   6908 for voiced frames, where V is the voice activity level between 0 and 1.
   6909 </t>
   6910 <t>
   6911 The adjustment gain G serves to correct any level mismatch between the original
   6912 and decoded signals that might arise from the noise shaping and de-emphasis.
   6913 This gain is computed as the ratio of the prediction gain of the short-term
   6914 analysis and synthesis filter coefficients. The prediction gain of an LPC
   6915 synthesis filter is the square root of the output energy when the filter is
   6916 excited by a unit-energy impulse on the input.
   6917 An efficient way to compute the prediction gain is by first computing the
   6918 reflection coefficients from the LPC coefficients through the step-down
   6919 algorithm, and extracting the prediction gain from the reflection coefficients
   6920 as
   6921 <figure align="center">
   6922 <artwork align="center">
   6923 <![CDATA[
   6924                K
   6925               ___          2  -0.5
   6926  predGain = ( | | 1 - (r_k)  )    ,
   6927               k=1
   6928 ]]>
   6929 </artwork>
   6930 </figure>
   6931 where r_k is the k'th reflection coefficient.
   6932 </t>
   6933 
   6934 <t>
   6935 Initial values for the quantization gains are computed as the square-root of
   6936 the residual energy of the LPC analysis, adjusted by the coding quality control
   6937 parameter.
   6938 These quantization gains are later adjusted based on the results of the
   6939 prediction analysis.
   6940 </t>
   6941 </section>
   6942 
   6943 <section title='Prediction Analysis' anchor='pred_ana_overview_section'>
   6944 <t>
   6945 The prediction analysis is performed in one of two ways depending on how
   6946 the pitch estimator classified the frame.
   6947 The processing for voiced and unvoiced speech is described in
   6948 <xref target='pred_ana_voiced_overview_section' /> and
   6949   <xref target='pred_ana_unvoiced_overview_section' />, respectively.
   6950   Inputs to this function include the pre-whitened signal from the
   6951   pitch estimator (see <xref target='pitch_estimator_overview_section'/>).
   6952 </t>
   6953 
   6954 <section title='Voiced Speech' anchor='pred_ana_voiced_overview_section'>
   6955 <t>
   6956   For a frame of voiced speech the pitch pulses will remain dominant in the
   6957   pre-whitened input signal.
   6958   Further whitening is desirable as it leads to higher quality at the same
   6959   available bitrate.
   6960   To achieve this, a Long-Term Prediction (LTP) analysis is carried out to
   6961   estimate the coefficients of a fifth-order LTP filter for each of four
   6962   subframes.
   6963   The LTP coefficients are quantized using the method described in
   6964   <xref target='ltp_quantizer_overview_section'/>, and the quantized LTP
   6965   coefficients are used to compute the LTP residual signal.
   6966   This LTP residual signal is the input to an LPC analysis where the LPC coefficients are
   6967   estimated using Burg's method <xref target="Burg"/>, such that the residual energy is minimized.
   6968   The estimated LPC coefficients are converted to a Line Spectral Frequency (LSF) vector
   6969   and quantized as described in <xref target='lsf_quantizer_overview_section'/>.
   6970 After quantization, the quantized LSF vector is converted back to LPC
   6971 coefficients using the full procedure in <xref target="silk_nlsfs"/>.
   6972 By using quantized LTP coefficients and LPC coefficients derived from the
   6973 quantized LSF coefficients, the encoder remains fully synchronized with the
   6974 decoder.
   6975 The quantized LPC and LTP coefficients are also used to filter the input
   6976 signal and measure residual energy for each of the four subframes.
   6977 </t>
   6978 </section>
   6979 <section title='Unvoiced Speech' anchor='pred_ana_unvoiced_overview_section'>
   6980 <t>
   6981 For a speech signal that has been classified as unvoiced, there is no need
   6982 for LTP filtering, as it has already been determined that the pre-whitened
   6983 input signal is not periodic enough within the allowed pitch period range
   6984 for LTP analysis to be worth the cost in terms of complexity and bitrate.
   6985 The pre-whitened input signal is therefore discarded, and instead the input
   6986 signal is used for LPC analysis using Burg's method.
   6987 The resulting LPC coefficients are converted to an LSF vector and quantized
   6988 as described in the following section.
   6989 They are then transformed back to obtain quantized LPC coefficients, which
   6990 are then used to filter the input signal and measure residual energy for
   6991 each of the four subframes.
   6992 </t>
   6993 <section title="Burg's Method">
   6994 <t>
   6995 The main purpose of linear prediction in SILK is to reduce the bitrate by
   6996 minimizing the residual energy.
   6997 At least at high bitrates, perceptual aspects are handled
   6998 independently by the noise shaping filter.
   6999 Burg's method is used because it provides higher prediction gain
   7000 than the autocorrelation method and, unlike the covariance method,
   7001 produces stable filters (assuming numerical errors don't spoil
   7002 that). SILK's implementation of Burg's method is also computationally
   7003 faster than the autocovariance method.
   7004 The implementation of Burg's method differs from traditional
   7005 implementations in two aspects.
   7006 The first difference is that it
   7007 operates on autocorrelations, similar to the Schur algorithm <xref target="Schur"/>, but
   7008 with a simple update to the autocorrelations after finding each
   7009 reflection coefficient to make the result identical to Burg's method.
   7010 This brings down the complexity of Burg's method to near that of
   7011 the autocorrelation method.
   7012 The second difference is that the signal in each subframe is scaled
   7013 by the inverse of the residual quantization step size.  Subframes with
   7014 a small quantization step size will on average spend more bits for a
   7015 given amount of residual energy than subframes with a large step size.
   7016 Without scaling, Burg's method minimizes the total residual energy in
   7017 all subframes, which doesn't necessarily minimize the total number of
   7018 bits needed for coding the quantized residual.  The residual energy
   7019 of the scaled subframes is a better measure for that number of
   7020 bits.
   7021 </t>
   7022 </section>
   7023 </section>
   7024 </section>
   7025 
   7026 <section title='LSF Quantization' anchor='lsf_quantizer_overview_section'>
   7027 <t>
   7028 Unlike many other speech codecs, SILK uses variable bitrate coding
   7029 for the LSFs.
   7030 This improves the average rate-distortion (R-D) tradeoff and reduces outliers.
   7031 The variable bitrate coding minimizes a linear combination of the weighted
   7032 quantization errors and the bitrate.
   7033 The weights for the quantization errors are the Inverse
   7034 Harmonic Mean Weighting (IHMW) function proposed by Laroia et al.
   7035 (see <xref target="laroia-icassp" />).
   7036 These weights are referred to here as Laroia weights.
   7037 </t>
   7038 <t>
   7039 The LSF quantizer consists of two stages.
   7040 The first stage is an (unweighted) vector quantizer (VQ), with a
   7041 codebook size of 32 vectors.
   7042 The quantization errors for the codebook vector are sorted, and
   7043 for the N best vectors a second stage quantizer is run.
   7044 By varying the number N a tradeoff is made between R-D performance
   7045 and computational efficiency.
   7046 For each of the N codebook vectors the Laroia weights corresponding
   7047 to that vector (and not to the input vector) are calculated.
   7048 Then the residual between the input LSF vector and the codebook
   7049 vector is scaled by the square roots of these Laroia weights.
   7050 This scaling partially normalizes error sensitivity for the
   7051 residual vector, so that a uniform quantizer with fixed
   7052 step sizes can be used in the second stage without too much
   7053 performance loss.
   7054 And by scaling with Laroia weights determined from the first-stage
   7055 codebook vector, the process can be reversed in the decoder.
   7056 </t>
   7057 <t>
   7058 The second stage uses predictive delayed decision scalar
   7059 quantization.
   7060 The quantization error is weighted by Laroia weights determined
   7061 from the LSF input vector.
   7062 The predictor multiplies the previous quantized residual value
   7063 by a prediction coefficient that depends on the vector index from the
   7064 first stage VQ and on the location in the LSF vector.
   7065 The prediction is subtracted from the LSF residual value before
   7066 quantizing the result, and added back afterwards.
   7067 This subtraction can be interpreted as shifting the quantization levels
   7068 of the scalar quantizer, and as a result the quantization error of
   7069 each value depends on the quantization decision of the previous value.
   7070 This dependency is exploited by the delayed decision mechanism to
   7071 search for a quantization sequency with best R-D performance
   7072 with a Viterbi-like algorithm <xref target="Viterbi"/>.
   7073 The quantizer processes the residual LSF vector in reverse order
   7074 (i.e., it starts with the highest residual LSF value).
   7075 This is done because the prediction works slightly
   7076 better in the reverse direction.
   7077 </t>
   7078 <t>
   7079 The quantization index of the first stage is entropy coded.
   7080 The quantization sequence from the second stage is also entropy
   7081 coded, where for each element the probability table is chosen
   7082 depending on the vector index from the first stage and the location
   7083 of that element in the LSF vector.
   7084 </t>
   7085 
   7086 <section title='LSF Stabilization' anchor='lsf_stabilizer_overview_section'>
   7087 <t>
   7088 If the input is stable, finding the best candidate usually results in a
   7089 quantized vector that is also stable. Because of the two-stage approach,
   7090 however, it is possible that the best quantization candidate is unstable.
   7091 The encoder applies the same stabilization procedure applied by the decoder
   7092  (see <xref target="silk_nlsf_stabilization"/> to ensure the LSF parameters
   7093  are within their valid range, increasingly sorted, and have minimum
   7094  distances between each other and the border values.
   7095 </t>
   7096 </section>
   7097 </section>
   7098 
   7099 <section title='LTP Quantization' anchor='ltp_quantizer_overview_section'>
   7100 <t>
   7101 For voiced frames, the prediction analysis described in
   7102 <xref target='pred_ana_voiced_overview_section' /> resulted in four sets
   7103 (one set per subframe) of five LTP coefficients, plus four weighting matrices.
   7104 The LTP coefficients for each subframe are quantized using entropy constrained
   7105 vector quantization.
   7106 A total of three vector codebooks are available for quantization, with
   7107 different rate-distortion trade-offs. The three codebooks have 10, 20, and
   7108 40 vectors and average rates of about 3, 4, and 5 bits per vector, respectively.
   7109 Consequently, the first codebook has larger average quantization distortion at
   7110 a lower rate, whereas the last codebook has smaller average quantization
   7111 distortion at a higher rate.
   7112 Given the weighting matrix W_ltp and LTP vector b, the weighted rate-distortion
   7113 measure for a codebook vector cb_i with rate r_i is give by
   7114 <figure align="center">
   7115 <artwork align="center">
   7116 <![CDATA[
   7117  RD = u * (b - cb_i)' * W_ltp * (b - cb_i) + r_i,
   7118 ]]>
   7119 </artwork>
   7120 </figure>
   7121 where u is a fixed, heuristically-determined parameter balancing the distortion
   7122 and rate.
   7123 Which codebook gives the best performance for a given LTP vector depends on the
   7124 weighting matrix for that LTP vector.
   7125 For example, for a low valued W_ltp, it is advantageous to use the codebook
   7126 with 10 vectors as it has a lower average rate.
   7127 For a large W_ltp, on the other hand, it is often better to use the codebook
   7128 with 40 vectors, as it is more likely to contain the best codebook vector.
   7129 The weighting matrix W_ltp depends mostly on two aspects of the input signal.
   7130 The first is the periodicity of the signal; the more periodic, the larger W_ltp.
   7131 The second is the change in signal energy in the current subframe, relative to
   7132 the signal one pitch lag earlier.
   7133 A decaying energy leads to a larger W_ltp than an increasing energy.
   7134 Both aspects fluctuate relatively slowly, which causes the W_ltp matrices for
   7135 different subframes of one frame often to be similar.
   7136 Because of this, one of the three codebooks typically gives good performance
   7137 for all subframes, and therefore the codebook search for the subframe LTP
   7138 vectors is constrained to only allow codebook vectors to be chosen from the
   7139 same codebook, resulting in a rate reduction.
   7140 </t>
   7141 
   7142 <t>
   7143 To find the best codebook, each of the three vector codebooks is
   7144 used to quantize all subframe LTP vectors and produce a combined
   7145 weighted rate-distortion measure for each vector codebook.
   7146 The vector codebook with the lowest combined rate-distortion
   7147 over all subframes is chosen. The quantized LTP vectors are used
   7148 in the noise shaping quantizer, and the index of the codebook
   7149 plus the four indices for the four subframe codebook vectors
   7150 are passed on to the range encoder.
   7151 </t>
   7152 </section>
   7153 
   7154 <section title='Prefilter'>
   7155 <t>
   7156 In the prefilter the input signal is filtered using the spectral valley
   7157 de-emphasis filter coefficients from the noise shaping analysis
   7158 (see <xref target='noise_shaping_analysis_overview_section'/>).
   7159 By applying only the noise shaping analysis filter to the input signal,
   7160 it provides the input to the noise shaping quantizer.
   7161 </t>
   7162 </section>
   7163 
   7164 <section title='Noise Shaping Quantizer'>
   7165 <t>
   7166 The noise shaping quantizer independently shapes the signal and coding noise
   7167 spectra to obtain a perceptually higher quality at the same bitrate.
   7168 </t>
   7169 <t>
   7170 The prefilter output signal is multiplied with a compensation gain G computed
   7171 in the noise shaping analysis. Then the output of a synthesis shaping filter
   7172 is added, and the output of a prediction filter is subtracted to create a
   7173 residual signal.
   7174 The residual signal is multiplied by the inverse quantized quantization gain
   7175 from the noise shaping analysis, and input to a scalar quantizer.
   7176 The quantization indices of the scalar quantizer represent a signal of pulses
   7177 that is input to the pyramid range encoder.
   7178 The scalar quantizer also outputs a quantization signal, which is multiplied
   7179 by the quantized quantization gain from the noise shaping analysis to create
   7180 an excitation signal.
   7181 The output of the prediction filter is added to the excitation signal to form
   7182 the quantized output signal y(n).
   7183 The quantized output signal y(n) is input to the synthesis shaping and
   7184 prediction filters.
   7185 </t>
   7186 <t>
   7187 Optionally the noise shaping quantizer operates in a delayed decision
   7188 mode.
   7189 In this mode it uses a Viterbi algorithm to keep track of
   7190 multiple rounding choices in the quantizer and select the best
   7191 one after a delay of 32 samples.  This improves the rate/distortion
   7192 performance of the quantizer.
   7193 </t>
   7194 </section>
   7195 
   7196 <section title='Constant Bitrate Mode'>
   7197 <t>
   7198   SILK was designed to run in Variable Bitrate (VBR) mode.  However
   7199   the reference implementation also has a Constant Bitrate (CBR) mode
   7200   for SILK.  In CBR mode SILK will attempt to encode each packet with
   7201   no more than the allowed number of bits.  The Opus wrapper code
   7202   then pads the bitstream if any unused bits are left in SILK mode, or
   7203   encodes the high band with the remaining number of bits in Hybrid mode.
   7204   The number of payload bits is adjusted by changing
   7205   the quantization gains and the rate/distortion tradeoff in the noise
   7206   shaping quantizer, in an iterative loop
   7207   around the noise shaping quantizer and entropy coding.
   7208   Compared to the SILK VBR mode, the CBR mode has lower
   7209   audio quality at a given average bitrate, and also has higher
   7210   computational complexity.
   7211 </t>
   7212 </section>
   7213 
   7214 </section>
   7215 
   7216 </section>
   7217 
   7218 
   7219 <section title="CELT Encoder">
   7220 <t>
   7221 Most of the aspects of the CELT encoder can be directly derived from the description
   7222 of the decoder. For example, the filters and rotations in the encoder are simply the
   7223 inverse of the operation performed by the decoder. Similarly, the quantizers generally
   7224 optimize for the mean square error (because noise shaping is part of the bit-stream itself),
   7225 so no special search is required. For this reason, only the less straightforward aspects of the
   7226 encoder are described here.
   7227 </t>
   7228 
   7229 <section anchor="pitch-prefilter" title="Pitch Prefilter">
   7230 <t>The pitch prefilter is applied after the pre-emphasis. It is applied
   7231 in such a way as to be the inverse of the decoder's post-filter. The main non-obvious aspect of the
   7232 prefilter is the selection of the pitch period. The pitch search should be optimized for the
   7233 following criteria:
   7234 <list style="symbols">
   7235 <t>continuity: it is important that the pitch period
   7236 does not change abruptly between frames; and</t>
   7237 <t>avoidance of pitch multiples: when the period used is a multiple of the real period
   7238 (lower frequency fundamental), the post-filter loses most of its ability to reduce noise</t>
   7239 </list>
   7240 </t>
   7241 </section>
   7242 
   7243 <section anchor="normalization" title="Bands and Normalization">
   7244 <t>
   7245 The MDCT output is divided into bands that are designed to match the ear's critical
   7246 bands for the smallest (2.5&nbsp;ms) frame size. The larger frame sizes use integer
   7247 multiples of the 2.5&nbsp;ms layout. For each band, the encoder
   7248 computes the energy that will later be encoded. Each band is then normalized by the
   7249 square root of the <spanx style="strong">unquantized</spanx> energy, such that each band now forms a unit vector X.
   7250 The energy and the normalization are computed by compute_band_energies()
   7251 and normalise_bands() (bands.c), respectively.
   7252 </t>
   7253 </section>
   7254 
   7255 <section anchor="energy-quantization" title="Energy Envelope Quantization">
   7256 
   7257 <t>
   7258 Energy quantization (both coarse and fine) can be easily understood from the decoding process.
   7259 For all useful bitrates, the coarse quantizer always chooses the quantized log energy value that
   7260 minimizes the error for each band. Only at very low rate does the encoder allow larger errors to
   7261 minimize the rate and avoid using more bits than are available. When the
   7262 available CPU requirements allow it, it is best to try encoding the coarse energy both with and without
   7263 inter-frame prediction such that the best prediction mode can be selected. The optimal mode depends on
   7264 the coding rate, the available bitrate, and the current rate of packet loss.
   7265 </t>
   7266 
   7267 <t>The fine energy quantizer always chooses the quantized log energy value that
   7268 minimizes the error for each band because the rate of the fine quantization depends only
   7269 on the bit allocation and not on the values that are coded.
   7270 </t>
   7271 </section> <!-- Energy quant -->
   7272 
   7273 <section title="Bit Allocation">
   7274 <t>The encoder must use exactly the same bit allocation process as used by the decoder
   7275 and described in <xref target="allocation"/>. The three mechanisms that can be used by the
   7276 encoder to adjust the bitrate on a frame-by-frame basis are band boost, allocation trim,
   7277 and band skipping.
   7278 </t>
   7279 
   7280 <section title="Band Boost">
   7281 <t>The reference encoder makes a decision to boost a band when the energy of that band is significantly
   7282 higher than that of the neighboring bands. Let E_j be the log-energy of band j, we define
   7283 <list>
   7284 <t>D_j = 2*E_j - E_j-1 - E_j+1 </t>
   7285 </list>
   7286 
   7287 The allocation of band j is boosted once if D_j &gt; t1 and twice if D_j &gt; t2. For LM&gt;=1, t1=2 and t2=4,
   7288 while for LM&lt;1, t1=3 and t2=5.
   7289 </t>
   7290 
   7291 </section>
   7292 
   7293 <section title="Allocation Trim">
   7294 <t>The allocation trim is a value between 0 and 10 (inclusively) that controls the allocation
   7295 balance between the low and high frequencies. The encoder starts with a safe "default" of 5
   7296 and deviates from that default in two different ways. First the trim can deviate by +/- 2
   7297 depending on the spectral tilt of the input signal. For signals with more low frequencies, the
   7298 trim is increased by up to 2, while for signals with more high frequencies, the trim is
   7299 decreased by up to 2.
   7300 For stereo inputs, the trim value can
   7301 be decreased by up to 4 when the inter-channel correlation at low frequency (first 8 bands)
   7302 is high. </t>
   7303 </section>
   7304 
   7305 <section title="Band Skipping">
   7306 <t>The encoder uses band skipping to ensure that the shape of the bands is only coded
   7307 if there is at least 1/2 bit per sample available for the PVQ. If not, then no bit is allocated
   7308 and folding is used instead. To ensure continuity in the allocation, some amount of hysteresis is
   7309 added to the process, such that a band that received PVQ bits in the previous frame only needs 7/16
   7310 bit/sample to be coded for the current frame, while a band that did not receive PVQ bits in the
   7311 previous frames needs at least 9/16 bit/sample to be coded.</t>
   7312 </section>
   7313 
   7314 </section>
   7315 
   7316 <section title="Stereo Decisions">
   7317 <t>Because CELT applies mid-side stereo coupling in the normalized domain, it does not suffer from
   7318 important stereo image problems even when the two channels are completely uncorrelated. For this reason
   7319 it is always safe to use stereo coupling on any audio frame. That being said, there are some frames
   7320 for which dual (independent) stereo is still more efficient. This decision is made by comparing the estimated
   7321 entropy with and without coupling over the first 13 bands, taking into account the fact that all bands with
   7322 more than two MDCT bins require one extra degree of freedom when coded in mid-side. Let L1_ms and L1_lr
   7323 be the L1-norm of the mid-side vector and the L1-norm of the left-right vector, respectively. The decision
   7324 to use mid-side is made if and only if
   7325 <figure align="center">
   7326 <artwork align="center"><![CDATA[
   7327  L1_ms          L1_lr
   7328 --------    <   -----
   7329 bins + E        bins
   7330 ]]></artwork>
   7331 </figure>
   7332 where bins is the number of MDCT bins in the first 13 bands and E is the number of extra degrees of
   7333 freedom for mid-side coding. For LM>1, E=13, otherwise E=5.
   7334 </t>
   7335 
   7336 <t>The reference encoder decides on the intensity stereo threshold based on the bitrate alone. After
   7337 taking into account the frame size by subtracting 80 bits per frame for coarse energy, the first
   7338 band using intensity coding is as follows:
   7339 </t>
   7340 
   7341 <texttable anchor="intensity-thresholds"
   7342  title="Thresholds for Intensity Stereo">
   7343 <ttcol align='center'>bitrate (kb/s)</ttcol>
   7344 <ttcol align='center'>start band</ttcol>
   7345 <c>&lt;35</c>      <c>8</c>
   7346 <c>35-50</c>      <c>12</c>
   7347 <c>50-68</c>      <c>16</c>
   7348 <c>84-84</c>      <c>18</c>
   7349 <c>84-102</c>     <c>19</c>
   7350 <c>102-130</c>     <c>20</c>
   7351 <c>&gt;130</c>     <c>disabled</c>
   7352 </texttable>
   7353 
   7354 
   7355 </section>
   7356 
   7357 <section title="Time-Frequency Decision">
   7358 <t>
   7359 The choice of time-frequency resolution used in <xref target="tf-change"></xref> is based on
   7360 R-D optimization. The distortion is the L1-norm (sum of absolute values) of each band
   7361 after each TF resolution under consideration. The L1 norm is used because it represents the entropy
   7362 for a Laplacian source. The number of bits required to code a change in TF resolution between
   7363 two bands is higher than the cost of having those two bands use the same resolution, which is
   7364 what requires the R-D optimization. The optimal decision is computed using the Viterbi algorithm.
   7365 See tf_analysis() in celt/celt.c.
   7366 </t>
   7367 </section>
   7368 
   7369 <section title="Spreading Values Decision">
   7370 <t>
   7371 The choice of the spreading value in <xref target="spread values"></xref> has an
   7372 impact on the nature of the coding noise introduced by CELT. The larger the f_r value, the
   7373 lower the impact of the rotation, and the more tonal the coding noise. The
   7374 more tonal the signal, the more tonal the noise should be, so the CELT encoder determines
   7375 the optimal value for f_r by estimating how tonal the signal is. The tonality estimate
   7376 is based on discrete pdf (4-bin histogram) of each band. Bands that have a large number of small
   7377 values are considered more tonal and a decision is made by combining all bands with more than
   7378 8 samples. See spreading_decision() in celt/bands.c.
   7379 </t>
   7380 </section>
   7381 
   7382 <section anchor="pvq" title="Spherical Vector Quantization">
   7383 <t>CELT uses a Pyramid Vector Quantization (PVQ) <xref target="PVQ"></xref>
   7384 codebook for quantizing the details of the spectrum in each band that have not
   7385 been predicted by the pitch predictor. The PVQ codebook consists of all sums
   7386 of K signed pulses in a vector of N samples, where two pulses at the same position
   7387 are required to have the same sign. Thus the codebook includes
   7388 all integer codevectors y of N dimensions that satisfy sum(abs(y(j))) = K.
   7389 </t>
   7390 
   7391 <t>
   7392 In bands where there are sufficient bits allocated PVQ is used to encode
   7393 the unit vector that results from the normalization in
   7394 <xref target="normalization"></xref> directly. Given a PVQ codevector y,
   7395 the unit vector X is obtained as X = y/||y||, where ||.|| denotes the
   7396 L2 norm.
   7397 </t>
   7398 
   7399 
   7400 <section anchor="pvq-search" title="PVQ Search">
   7401 
   7402 <t>
   7403 The search for the best codevector y is performed by alg_quant()
   7404 (vq.c). There are several possible approaches to the
   7405 search, with a trade-off between quality and complexity. The method used in the reference
   7406 implementation computes an initial codeword y1 by projecting the normalized spectrum
   7407 X onto the codebook pyramid of K-1 pulses:
   7408 </t>
   7409 <t>
   7410 y0 = truncate_towards_zero( (K-1) * X / sum(abs(X)))
   7411 </t>
   7412 
   7413 <t>
   7414 Depending on N, K and the input data, the initial codeword y0 may contain from
   7415 0 to K-1 non-zero values. All the remaining pulses, with the exception of the last one,
   7416 are found iteratively with a greedy search that minimizes the normalized correlation
   7417 between y and X:
   7418 <figure align="center">
   7419 <artwork align="center"><![CDATA[
   7420       T
   7421 J = -X * y / ||y||
   7422 ]]></artwork>
   7423 </figure>
   7424 </t>
   7425 
   7426 <t>
   7427 The search described above is considered to be a good trade-off between quality
   7428 and computational cost. However, there are other possible ways to search the PVQ
   7429 codebook and the implementers MAY use any other search methods. See alg_quant() in celt/vq.c.
   7430 </t>
   7431 </section>
   7432 
   7433 <section anchor="cwrs-encoder" title="PVQ Encoding">
   7434 
   7435 <t>
   7436 The vector to encode, X, is converted into an index i such that
   7437  0&nbsp;&lt;=&nbsp;i&nbsp;&lt;&nbsp;V(N,K) as follows.
   7438 Let i&nbsp;=&nbsp;0 and k&nbsp;=&nbsp;0.
   7439 Then for j&nbsp;=&nbsp;(N&nbsp;-&nbsp;1) down to 0, inclusive, do:
   7440 <list style="numbers">
   7441 <t>
   7442 If k&nbsp;>&nbsp;0, set
   7443  i&nbsp;=&nbsp;i&nbsp;+&nbsp;(V(N-j-1,k-1)&nbsp;+&nbsp;V(N-j,k-1))/2.
   7444 </t>
   7445 <t>Set k&nbsp;=&nbsp;k&nbsp;+&nbsp;abs(X[j]).</t>
   7446 <t>
   7447 If X[j]&nbsp;&lt;&nbsp;0, set
   7448  i&nbsp;=&nbsp;i&nbsp;+&nbsp;(V(N-j-1,k)&nbsp;+&nbsp;V(N-j,k))/2.
   7449 </t>
   7450 </list>
   7451 </t>
   7452 
   7453 <t>
   7454 The index i is then encoded using the procedure in
   7455  <xref target="encoding-ints"/> with ft&nbsp;=&nbsp;V(N,K).
   7456 </t>
   7457 
   7458 </section>
   7459 
   7460 </section>
   7461 
   7462 
   7463 
   7464 
   7465 
   7466 </section>
   7467 
   7468 </section>
   7469 
   7470 
   7471 <section anchor="conformance" title="Conformance">
   7472 
   7473 <t>
   7474 It is our intention to allow the greatest possible choice of freedom in
   7475 implementing the specification. For this reason, outside of the exceptions
   7476 noted in this section, conformance is defined through the reference
   7477 implementation of the decoder provided in <xref target="ref-implementation"/>.
   7478 Although this document includes an English description of the codec, should
   7479 the description contradict the source code of the reference implementation,
   7480 the latter shall take precedence.
   7481 </t>
   7482 
   7483 <t>
   7484 Compliance with this specification means that in addition to following the normative keywords in this document,
   7485  a decoder's output MUST also be
   7486  within the thresholds specified by the opus_compare.c tool (included
   7487  with the code) when compared to the reference implementation for each of the
   7488  test vectors provided (see <xref target="test-vectors"></xref>) and for each output
   7489  sampling rate and channel count supported. In addition, a compliant
   7490  decoder implementation MUST have the same final range decoder state as that of the
   7491  reference decoder. It is therefore RECOMMENDED that the
   7492  decoder implement the same functional behavior as the reference.
   7493 
   7494  A decoder implementation is not required to support all output sampling
   7495  rates or all output channel counts.
   7496 </t>
   7497 
   7498 <section title="Testing">
   7499 <t>
   7500 Using the reference code provided in <xref target="ref-implementation"></xref>,
   7501 a test vector can be decoded with
   7502 <list>
   7503 <t>opus_demo -d &lt;rate&gt; &lt;channels&gt; testvectorX.bit testX.out</t>
   7504 </list>
   7505 where &lt;rate&gt; is the sampling rate and can be 8000, 12000, 16000, 24000, or 48000, and
   7506 &lt;channels&gt; is 1 for mono or 2 for stereo.
   7507 </t>
   7508 
   7509 <t>
   7510 If the range decoder state is incorrect for one of the frames, the decoder will exit with
   7511 "Error: Range coder state mismatch between encoder and decoder". If the decoder succeeds, then
   7512 the output can be compared with the "reference" output with
   7513 <list>
   7514 <t>opus_compare -s -r &lt;rate&gt; testvectorX.dec testX.out</t>
   7515 </list>
   7516 for stereo or
   7517 <list>
   7518 <t>opus_compare -r &lt;rate&gt; testvectorX.dec testX.out</t>
   7519 </list>
   7520 for mono.
   7521 </t>
   7522 
   7523 <t>In addition to indicating whether the test vector comparison passes, the opus_compare tool
   7524 outputs an "Opus quality metric" that indicates how well the tested decoder matches the
   7525 reference implementation. A quality of 0 corresponds to the passing threshold, while
   7526 a quality of 100 is the highest possible value and means that the output of the tested decoder is identical to the reference
   7527 implementation. The passing threshold (quality 0) was calibrated in such a way that it corresponds to
   7528 additive white noise with a 48 dB SNR (similar to what can be obtained on a cassette deck).
   7529 It is still possible for an implementation to sound very good with such a low quality measure
   7530 (e.g. if the deviation is due to inaudible phase distortion), but unless this is verified by
   7531 listening tests, it is RECOMMENDED that implementations achieve a quality above 90 for 48&nbsp;kHz
   7532 decoding. For other sampling rates, it is normal for the quality metric to be lower
   7533 (typically as low as 50 even for a good implementation) because of harmless mismatch with
   7534 the delay and phase of the internal sampling rate conversion.
   7535 </t>
   7536 
   7537 <t>
   7538 On POSIX environments, the run_vectors.sh script can be used to verify all test
   7539 vectors. This can be done with
   7540 <list>
   7541 <t>run_vectors.sh &lt;exec path&gt; &lt;vector path&gt; &lt;rate&gt;</t>
   7542 </list>
   7543 where &lt;exec path&gt; is the directory where the opus_demo and opus_compare executables
   7544 are built and &lt;vector path&gt; is the directory containing the test vectors.
   7545 </t>
   7546 </section>
   7547 
   7548 <section anchor="opus-custom" title="Opus Custom">
   7549 <t>
   7550 Opus Custom is an OPTIONAL part of the specification that is defined to
   7551 handle special sample rates and frame rates that are not supported by the
   7552 main Opus specification. Use of Opus Custom is discouraged for all but very
   7553 special applications for which a frame size different from 2.5, 5, 10, or 20&nbsp;ms is
   7554 needed (for either complexity or latency reasons). Because Opus Custom is
   7555 optional, streams encoded using Opus Custom cannot be expected to be decodable by all Opus
   7556 implementations. Also, because no in-band mechanism exists for specifying the sampling
   7557 rate and frame size of Opus Custom streams, out-of-band signaling is required.
   7558 In Opus Custom operation, only the CELT layer is available, using the opus_custom_* function
   7559 calls in opus_custom.h.
   7560 </t>
   7561 </section>
   7562 
   7563 </section>
   7564 
   7565 <section anchor="security" title="Security Considerations">
   7566 
   7567 <t>
   7568 Implementations of the Opus codec need to take appropriate security considerations
   7569 into account, as outlined in <xref target="DOS"/>.
   7570 It is extremely important for the decoder to be robust against malicious
   7571 payloads.
   7572 Malicious payloads must not cause the decoder to overrun its allocated memory
   7573  or to take an excessive amount of resources to decode.
   7574 Although problems
   7575 in encoders are typically rarer, the same applies to the encoder. Malicious
   7576 audio streams must not cause the encoder to misbehave because this would
   7577 allow an attacker to attack transcoding gateways.
   7578 </t>
   7579 <t>
   7580 The reference implementation contains no known buffer overflow or cases where
   7581  a specially crafted packet or audio segment could cause a significant increase
   7582  in CPU load.
   7583 However, on certain CPU architectures where denormalized floating-point
   7584  operations are much slower than normal floating-point operations, it is
   7585  possible for some audio content (e.g., silence or near-silence) to cause an
   7586  increase in CPU load.
   7587 Denormals can be introduced by reordering operations in the compiler and depend
   7588  on the target architecture, so it is difficult to guarantee that an implementation
   7589  avoids them.
   7590 For architectures on which denormals are problematic, adding very small
   7591  floating-point offsets to the affected signals to prevent significant numbers
   7592  of denormalized operations is RECOMMENDED.
   7593 Alternatively, it is often possible to configure the hardware to treat
   7594  denormals as zero (DAZ).
   7595 No such issue exists for the fixed-point reference implementation.
   7596 </t>
   7597 <t>The reference implementation was validated in the following conditions:
   7598 <list style="numbers">
   7599 <t>
   7600 Sending the decoder valid packets generated by the reference encoder and
   7601  verifying that the decoder's final range coder state matches that of the
   7602  encoder.
   7603 </t>
   7604 <t>
   7605 Sending the decoder packets generated by the reference encoder and then
   7606  subjected to random corruption.
   7607 </t>
   7608 <t>Sending the decoder random packets.</t>
   7609 <t>
   7610 Sending the decoder packets generated by a version of the reference encoder
   7611  modified to make random coding decisions (internal fuzzing), including mode
   7612  switching, and verifying that the range coder final states match.
   7613 </t>
   7614 </list>
   7615 In all of the conditions above, both the encoder and the decoder were run
   7616  inside the <xref target="Valgrind">Valgrind</xref> memory
   7617  debugger, which tracks reads and writes to invalid memory regions as well as
   7618  the use of uninitialized memory.
   7619 There were no errors reported on any of the tested conditions.
   7620 </t>
   7621 </section>
   7622 
   7623 
   7624 <section title="IANA Considerations">
   7625 <t>
   7626 This document has no actions for IANA.
   7627 </t>
   7628 </section>
   7629 
   7630 <section anchor="Acknowledgements" title="Acknowledgements">
   7631 <t>
   7632 Thanks to all other developers, including Raymond Chen, Soeren Skak Jensen, Gregory Maxwell,
   7633 Christopher Montgomery, and Karsten Vandborg Soerensen. We would also
   7634 like to thank Igor Dyakonov, Jan Skoglund, and Christian Hoene for their help with subjective testing of the
   7635 Opus codec. Thanks to Ralph Giles, John Ridges, Ben Schwartz, Keith Yan, Christian Hoene, Kat Walsh, and many others on the Opus and CELT mailing lists
   7636 for their bug reports and feedback.
   7637 </t>
   7638 </section>
   7639 
   7640 <section title="Copying Conditions">
   7641 <t>The authors agree to grant third parties the irrevocable right to copy, use and distribute
   7642 the work (excluding Code Components available under the simplified BSD license), with or
   7643 without modification, in any medium, without royalty, provided that, unless separate
   7644 permission is granted, redistributed modified works do not contain misleading author, version,
   7645 name of work, or endorsement information.</t>
   7646 </section>
   7647 
   7648 </middle>
   7649 
   7650 <back>
   7651 
   7652 <references title="Normative References">
   7653 
   7654 <reference anchor="rfc2119">
   7655 <front>
   7656 <title>Key words for use in RFCs to Indicate Requirement Levels </title>
   7657 <author initials="S." surname="Bradner" fullname="Scott Bradner"></author>
   7658 </front>
   7659 <seriesInfo name="RFC" value="2119" />
   7660 </reference>
   7661 
   7662 </references>
   7663 
   7664 <references title="Informative References">
   7665 
   7666 <reference anchor='requirements'>
   7667 <front>
   7668 <title>Requirements for an Internet Audio Codec</title>
   7669 <author initials='J.-M.' surname='Valin' fullname='J.-M. Valin'>
   7670 <organization /></author>
   7671 <author initials='K.' surname='Vos' fullname='K. Vos'>
   7672 <organization /></author>
   7673 <author>
   7674 <organization>IETF</organization></author>
   7675 <date year='2011' month='August' />
   7676 <abstract>
   7677 <t>This document provides specific requirements for an Internet audio
   7678    codec.  These requirements address quality, sample rate, bitrate,
   7679    and packet-loss robustness, as well as other desirable properties.
   7680 </t></abstract></front>
   7681 <seriesInfo name='RFC' value='6366' />
   7682 <format type='TXT' target='http://tools.ietf.org/rfc/rfc6366.txt' />
   7683 </reference>
   7684 
   7685 <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.3550.xml"?>
   7686 <?rfc include="http://xml.resource.org/public/rfc/bibxml/reference.RFC.3533.xml"?>
   7687 
   7688 <reference anchor='SILK' target='http://developer.skype.com/silk'>
   7689 <front>
   7690 <title>SILK Speech Codec</title>
   7691 <author initials='K.' surname='Vos' fullname='K. Vos'>
   7692 <organization /></author>
   7693 <author initials='S.' surname='Jensen' fullname='S. Jensen'>
   7694 <organization /></author>
   7695 <author initials='K.' surname='Soerensen' fullname='K. Soerensen'>
   7696 <organization /></author>
   7697 <date year='2010' month='March' />
   7698 <abstract>
   7699 <t></t>
   7700 </abstract></front>
   7701 <seriesInfo name='Internet-Draft' value='draft-vos-silk-01' />
   7702 <format type='TXT' target='http://tools.ietf.org/html/draft-vos-silk-01' />
   7703 </reference>
   7704 
   7705 <reference anchor="laroia-icassp">
   7706 <front>
   7707 <title abbrev="Robust and Efficient Quantization of Speech LSP">
   7708 Robust and Efficient Quantization of Speech LSP Parameters Using Structured Vector Quantization
   7709 </title>
   7710 <author initials="R.L." surname="Laroia" fullname="R.">
   7711 <organization/>
   7712 </author>
   7713 <author initials="N.P." surname="Phamdo" fullname="N.">
   7714 <organization/>
   7715 </author>
   7716 <author initials="N.F." surname="Farvardin" fullname="N.">
   7717 <organization/>
   7718 </author>
   7719 </front>
   7720 <seriesInfo name="ICASSP-1991, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 641-644, October" value="1991"/>
   7721 </reference>
   7722 
   7723 <reference anchor='CELT' target='http://celt-codec.org/'>
   7724 <front>
   7725 <title>Constrained-Energy Lapped Transform (CELT) Codec</title>
   7726 <author initials='J-M.' surname='Valin' fullname='J-M. Valin'>
   7727 <organization /></author>
   7728 <author initials='T&#x2E;B.' surname='Terriberry' fullname='Timothy B. Terriberry'>
   7729 <organization /></author>
   7730 <author initials='G.' surname='Maxwell' fullname='G. Maxwell'>
   7731 <organization /></author>
   7732 <author initials='C.' surname='Montgomery' fullname='C. Montgomery'>
   7733 <organization /></author>
   7734 <date year='2010' month='July' />
   7735 <abstract>
   7736 <t></t>
   7737 </abstract></front>
   7738 <seriesInfo name='Internet-Draft' value='draft-valin-celt-codec-02' />
   7739 <format type='TXT' target='http://tools.ietf.org/html/draft-valin-celt-codec-02' />
   7740 </reference>
   7741 
   7742 <reference anchor='SRTP-VBR'>
   7743 <front>
   7744 <title>Guidelines for the use of Variable Bit Rate Audio with Secure RTP</title>
   7745 <author initials='C.' surname='Perkins' fullname='K. Vos'>
   7746 <organization /></author>
   7747 <author initials='J.M.' surname='Valin' fullname='J.M. Valin'>
   7748 <organization /></author>
   7749 <date year='2011' month='July' />
   7750 <abstract>
   7751 <t></t>
   7752 </abstract></front>
   7753 <seriesInfo name='RFC' value='6562' />
   7754 <format type='TXT' target='http://tools.ietf.org/html/rfc6562' />
   7755 </reference>
   7756 
   7757 <reference anchor='DOS'>
   7758 <front>
   7759 <title>Internet Denial-of-Service Considerations</title>
   7760 <author initials='M.' surname='Handley' fullname='M. Handley'>
   7761 <organization /></author>
   7762 <author initials='E.' surname='Rescorla' fullname='E. Rescorla'>
   7763 <organization /></author>
   7764 <author>
   7765 <organization>IAB</organization></author>
   7766 <date year='2006' month='December' />
   7767 <abstract>
   7768 <t>This document provides an overview of possible avenues for denial-of-service (DoS) attack on Internet systems.  The aim is to encourage protocol designers and network engineers towards designs that are more robust.  We discuss partial solutions that reduce the effectiveness of attacks, and how some solutions might inadvertently open up alternative vulnerabilities.  This memo provides information for the Internet community.</t></abstract></front>
   7769 <seriesInfo name='RFC' value='4732' />
   7770 <format type='TXT' octets='91844' target='ftp://ftp.isi.edu/in-notes/rfc4732.txt' />
   7771 </reference>
   7772 
   7773 <reference anchor="Martin79">
   7774 <front>
   7775 <title>Range encoding: An algorithm for removing redundancy from a digitised message</title>
   7776 <author initials="G.N.N." surname="Martin" fullname="G. Nigel N. Martin"><organization/></author>
   7777 <date year="1979" />
   7778 </front>
   7779 <seriesInfo name="Proc. Institution of Electronic and Radio Engineers International Conference on Video and Data Recording" value="" />
   7780 </reference>
   7781 
   7782 <reference anchor="coding-thesis">
   7783 <front>
   7784 <title>Source coding algorithms for fast data compression</title>
   7785 <author initials="R." surname="Pasco" fullname=""><organization/></author>
   7786 <date month="May" year="1976" />
   7787 </front>
   7788 <seriesInfo name="Ph.D. thesis" value="Dept. of Electrical Engineering, Stanford University" />
   7789 </reference>
   7790 
   7791 <reference anchor="PVQ">
   7792 <front>
   7793 <title>A Pyramid Vector Quantizer</title>
   7794 <author initials="T." surname="Fischer" fullname=""><organization/></author>
   7795 <date month="July" year="1986" />
   7796 </front>
   7797 <seriesInfo name="IEEE Trans. on Information Theory, Vol. 32" value="pp. 568-583" />
   7798 </reference>
   7799 
   7800 <reference anchor="Kabal86">
   7801 <front>
   7802 <title>The Computation of Line Spectral Frequencies Using Chebyshev Polynomials</title>
   7803 <author initials="P." surname="Kabal" fullname="P. Kabal"><organization/></author>
   7804 <author initials="R." surname="Ramachandran" fullname="R. P. Ramachandran"><organization/></author>
   7805 <date month="December" year="1986" />
   7806 </front>
   7807 <seriesInfo name="IEEE Trans. Acoustics, Speech, Signal Processing, vol. 34, no. 6" value="pp. 1419-1426" />
   7808 </reference>
   7809 
   7810 
   7811 <reference anchor="Valgrind" target="http://valgrind.org/">
   7812 <front>
   7813 <title>Valgrind website</title>
   7814 <author></author>
   7815 </front>
   7816 </reference>
   7817 
   7818 <reference anchor="Google-NetEQ" target="http://code.google.com/p/webrtc/source/browse/trunk/src/modules/audio_coding/NetEQ/main/source/?r=583">
   7819 <front>
   7820 <title>Google NetEQ code</title>
   7821 <author></author>
   7822 </front>
   7823 </reference>
   7824 
   7825 <reference anchor="Google-WebRTC" target="http://code.google.com/p/webrtc/">
   7826 <front>
   7827 <title>Google WebRTC code</title>
   7828 <author></author>
   7829 </front>
   7830 </reference>
   7831 
   7832 
   7833 <reference anchor="Opus-git" target="git://git.xiph.org/opus.git">
   7834 <front>
   7835 <title>Opus Git Repository</title>
   7836 <author></author>
   7837 </front>
   7838 </reference>
   7839 
   7840 <reference anchor="Opus-website" target="http://opus-codec.org/">
   7841 <front>
   7842 <title>Opus website</title>
   7843 <author></author>
   7844 </front>
   7845 </reference>
   7846 
   7847 <reference anchor="Vorbis-website" target="http://xiph.org/vorbis/">
   7848 <front>
   7849 <title>Vorbis website</title>
   7850 <author></author>
   7851 </front>
   7852 </reference>
   7853 
   7854 <reference anchor="Matroska-website" target="http://matroska.org/">
   7855 <front>
   7856 <title>Matroska website</title>
   7857 <author></author>
   7858 </front>
   7859 </reference>
   7860 
   7861 <reference anchor="Vectors-website" target="http://opus-codec.org/testvectors/">
   7862 <front>
   7863 <title>Opus Testvectors (webside)</title>
   7864 <author></author>
   7865 </front>
   7866 </reference>
   7867 
   7868 <reference anchor="Vectors-proc" target="http://www.ietf.org/proceedings/83/slides/slides-83-codec-0.gz">
   7869 <front>
   7870 <title>Opus Testvectors (proceedings)</title>
   7871 <author></author>
   7872 </front>
   7873 </reference>
   7874 
   7875 <reference anchor="line-spectral-pairs" target="http://en.wikipedia.org/wiki/Line_spectral_pairs">
   7876 <front>
   7877 <title>Line Spectral Pairs</title>
   7878 <author><organization>Wikipedia</organization></author>
   7879 </front>
   7880 </reference>
   7881 
   7882 <reference anchor="range-coding" target="http://en.wikipedia.org/wiki/Range_coding">
   7883 <front>
   7884 <title>Range Coding</title>
   7885 <author><organization>Wikipedia</organization></author>
   7886 </front>
   7887 </reference>
   7888 
   7889 <reference anchor="Hadamard" target="http://en.wikipedia.org/wiki/Hadamard_transform">
   7890 <front>
   7891 <title>Hadamard Transform</title>
   7892 <author><organization>Wikipedia</organization></author>
   7893 </front>
   7894 </reference>
   7895 
   7896 <reference anchor="Viterbi" target="http://en.wikipedia.org/wiki/Viterbi_algorithm">
   7897 <front>
   7898 <title>Viterbi Algorithm</title>
   7899 <author><organization>Wikipedia</organization></author>
   7900 </front>
   7901 </reference>
   7902 
   7903 <reference anchor="Whitening" target="http://en.wikipedia.org/wiki/White_noise">
   7904 <front>
   7905 <title>White Noise</title>
   7906 <author><organization>Wikipedia</organization></author>
   7907 </front>
   7908 </reference>
   7909 
   7910 <reference anchor="LPC" target="http://en.wikipedia.org/wiki/Linear_prediction">
   7911 <front>
   7912 <title>Linear Prediction</title>
   7913 <author><organization>Wikipedia</organization></author>
   7914 </front>
   7915 </reference>
   7916 
   7917 <reference anchor="MDCT" target="http://en.wikipedia.org/wiki/Modified_discrete_cosine_transform">
   7918 <front>
   7919 <title>Modified Discrete Cosine Transform</title>
   7920 <author><organization>Wikipedia</organization></author>
   7921 </front>
   7922 </reference>
   7923 
   7924 <reference anchor="FFT" target="http://en.wikipedia.org/wiki/Fast_Fourier_transform">
   7925 <front>
   7926 <title>Fast Fourier Transform</title>
   7927 <author><organization>Wikipedia</organization></author>
   7928 </front>
   7929 </reference>
   7930 
   7931 <reference anchor="z-transform" target="http://en.wikipedia.org/wiki/Z-transform">
   7932 <front>
   7933 <title>Z-transform</title>
   7934 <author><organization>Wikipedia</organization></author>
   7935 </front>
   7936 </reference>
   7937 
   7938 
   7939 <reference anchor="Burg">
   7940 <front>
   7941 <title>Maximum Entropy Spectral Analysis</title>
   7942 <author initials="JP." surname="Burg" fullname="J.P. Burg"><organization/></author>
   7943 </front>
   7944 </reference>
   7945 
   7946 <reference anchor="Schur">
   7947 <front>
   7948 <title>A fixed point computation of partial correlation coefficients</title>
   7949 <author initials="J." surname="Le Roux" fullname="J. Le Roux"><organization/></author>
   7950 <author initials="C." surname="Gueguen" fullname="C. Gueguen"><organization/></author>
   7951 </front>
   7952 <seriesInfo name="ICASSP-1977, Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, pp. 257-259, October" value="1977"/>
   7953 </reference>
   7954 
   7955 <reference anchor="Princen86">
   7956 <front>
   7957 <title>Analysis/synthesis filter bank design based on time domain aliasing cancellation</title>
   7958 <author initials="J." surname="Princen" fullname="John P. Princen"><organization/></author>
   7959 <author initials="A." surname="Bradley" fullname="Alan B. Bradley"><organization/></author>
   7960 </front>
   7961 <seriesInfo name="IEEE Trans. Acoust. Speech Sig. Proc. ASSP-34 (5), 1153-1161" value="1986"/>
   7962 </reference>
   7963 
   7964 <reference anchor="Valin2010">
   7965 <front>
   7966 <title>A High-Quality Speech and Audio Codec With Less Than 10 ms delay</title>
   7967 <author initials="JM" surname="Valin" fullname="Jean-Marc Valin"><organization/>
   7968 </author>
   7969 <author initials="T. B." surname="Terriberry" fullname="Timothy Terriberry"><organization/></author>
   7970 <author initials="C." surname="Montgomery" fullname="Christopher Montgomery"><organization/></author>
   7971 <author initials="G." surname="Maxwell" fullname="Gregory Maxwell"><organization/></author>
   7972 </front>
   7973 <seriesInfo name="IEEE Trans. on Audio, Speech and Language Processing, Vol. 18, No. 1, pp. 58-67" value="2010" />
   7974 </reference>
   7975 
   7976 
   7977 <reference anchor="Zwicker61">
   7978 <front>
   7979 <title>Subdivision of the audible frequency range into critical bands</title>
   7980 <author initials="E." surname="Zwicker" fullname="E. Zwicker"><organization/></author>
   7981 <date month="February" year="1961" />
   7982 </front>
   7983 <seriesInfo name="The Journal of the Acoustical Society of America, Vol. 33, No 2" value="p. 248" />
   7984 </reference>
   7985 
   7986 
   7987 </references>
   7988 
   7989 <section anchor="ref-implementation" title="Reference Implementation">
   7990 
   7991 <t>This appendix contains the complete source code for the
   7992 reference implementation of the Opus codec written in C. By default,
   7993 this implementation relies on floating-point arithmetic, but it can be
   7994 compiled to use only fixed-point arithmetic by defining the FIXED_POINT
   7995 macro. Information on building and using the reference implementation is
   7996 available in the README file.
   7997 </t>
   7998 
   7999 <t>The implementation can be compiled with either a C89 or a C99
   8000 compiler. It is reasonably optimized for most platforms such that
   8001 only architecture-specific optimizations are likely to be useful.
   8002 The FFT <xref target="FFT"/> used is a slightly modified version of the KISS-FFT library,
   8003 but it is easy to substitute any other FFT library.
   8004 </t>
   8005 
   8006 <t>
   8007 While the reference implementation does not rely on any
   8008 <spanx style="emph">undefined behavior</spanx> as defined by C89 or C99,
   8009 it relies on common <spanx style="emph">implementation-defined behavior</spanx>
   8010 for two's complement architectures:
   8011 <list style="symbols">
   8012 <t>Right shifts of negative values are consistent with two's complement arithmetic, so that a>>b is equivalent to floor(a/(2**b)),</t>
   8013 <t>For conversion to a signed integer of N bits, the value is reduced modulo 2**N to be within range of the type,</t>
   8014 <t>The result of integer division of a negative value is truncated towards zero, and</t>
   8015 <t>The compiler provides a 64-bit integer type (a C99 requirement which is supported by most C89 compilers).</t>
   8016 </list>
   8017 </t>
   8018 
   8019 <t>
   8020 In its current form, the reference implementation also requires the following
   8021 architectural characteristics to obtain acceptable performance:
   8022 <list style="symbols">
   8023 <t>Two's complement arithmetic,</t>
   8024 <t>At least a 16 bit by 16 bit integer multiplier (32-bit result), and</t>
   8025 <t>At least a 32-bit adder/accumulator.</t>
   8026 </list>
   8027 </t>
   8028 
   8029 
   8030 <section title="Extracting the source">
   8031 <t>
   8032 The complete source code can be extracted from this draft, by running the
   8033 following command line:
   8034 
   8035 <list style="symbols">
   8036 <t><![CDATA[
   8037 cat draft-ietf-codec-opus.txt | grep '^\ \ \ ###' | sed -e 's/...###//' | base64 -d > opus_source.tar.gz
   8038 ]]></t>
   8039 <t>
   8040 tar xzvf opus_source.tar.gz
   8041 </t>
   8042 <t>cd opus_source</t>
   8043 <t>make</t>
   8044 </list>
   8045 On systems where the provided Makefile does not work, the following command line may be used to compile
   8046 the source code:
   8047 <list style="symbols">
   8048 <t><![CDATA[
   8049 cc -O2 -g -o opus_demo src/opus_demo.c `cat *.mk | grep -v fixed | sed -e 's/.*=//' -e 's/\\\\//'` -DOPUS_BUILD -Iinclude -Icelt -Isilk -Isilk/float -DUSE_ALLOCA -Drestrict= -lm
   8050 ]]></t></list>
   8051 </t>
   8052 
   8053 <t>
   8054 On systems where the base64 utility is not present, the following commands can be used instead:
   8055 <list style="symbols">
   8056 <t><![CDATA[
   8057 cat draft-ietf-codec-opus.txt | grep '^\ \ \ ###' | sed -e 's/...###//' > opus.b64
   8058 ]]></t>
   8059 <t>openssl base64 -d -in opus.b64 > opus_source.tar.gz</t>
   8060 </list>
   8061 
   8062 </t>
   8063 </section>
   8064 
   8065 <section title="Up-to-date Implementation">
   8066 <t>
   8067 As of the time of publication of this memo, an up-to-date implementation conforming to
   8068 this standard is available in a
   8069  <xref target='Opus-git'>Git repository</xref>.
   8070 Releases and other resources are available at
   8071  <xref target='Opus-website'/>. However, although that implementation is expected to
   8072  remain conformant with the standard, it is the code in this document that shall
   8073  remain normative.
   8074 </t>
   8075 </section>
   8076 
   8077 <section title="Base64-encoded Source Code">
   8078 <t>
   8079 <?rfc include="opus_source.base64"?>
   8080 </t>
   8081 </section>
   8082 
   8083 <section anchor="test-vectors" title="Test Vectors">
   8084 <t>
   8085 Because of size constraints, the Opus test vectors are not distributed in this
   8086 draft. They are available in the proceedings of the 83th IETF meeting (Paris) <xref target="Vectors-proc"/> and from the Opus codec website at
   8087 <xref target="Vectors-website"/>. These test vectors were created specifically to exercise
   8088 all aspects of the decoder and therefore the audio quality of the decoded output is
   8089 significantly lower than what Opus can achieve in normal operation.
   8090 </t>
   8091 
   8092 <t>
   8093 The SHA1 hash of the files in the test vector package are
   8094 <?rfc include="testvectors_sha1"?>
   8095 </t>
   8096 
   8097 </section>
   8098 
   8099 </section>
   8100 
   8101 <section anchor="self-delimiting-framing" title="Self-Delimiting Framing">
   8102 <t>
   8103 To use the internal framing described in <xref target="modes"/>, the decoder
   8104  must know the total length of the Opus packet, in bytes.
   8105 This section describes a simple variation of that framing which can be used
   8106  when the total length of the packet is not known.
   8107 Nothing in the encoding of the packet itself allows a decoder to distinguish
   8108  between the regular, undelimited framing and the self-delimiting framing
   8109  described in this appendix.
   8110 Which one is used and where must be established by context at the transport
   8111  layer.
   8112 It is RECOMMENDED that a transport layer choose exactly one framing scheme,
   8113  rather than allowing an encoder to signal which one it wants to use.
   8114 </t>
   8115 
   8116 <t>
   8117 For example, although a regular Opus stream does not support more than two
   8118  channels, a multi-channel Opus stream may be formed from several one- and
   8119  two-channel streams.
   8120 To pack an Opus packet from each of these streams together in a single packet
   8121  at the transport layer, one could use the self-delimiting framing for all but
   8122  the last stream, and then the regular, undelimited framing for the last one.
   8123 Reverting to the undelimited framing for the last stream saves overhead
   8124  (because the total size of the transport-layer packet will still be known),
   8125  and ensures that a "multi-channel" stream which only has a single Opus stream
   8126  uses the same framing as a regular Opus stream does.
   8127 This avoids the need for signaling to distinguish these two cases.
   8128 </t>
   8129 
   8130 <t>
   8131 The self-delimiting framing is identical to the regular, undelimited framing
   8132  from <xref target="modes"/>, except that each Opus packet contains one extra
   8133  length field, encoded using the same one- or two-byte scheme from
   8134  <xref target="frame-length-coding"/>.
   8135 This extra length immediately precedes the compressed data of the first Opus
   8136  frame in the packet, and is interpreted in the various modes as follows:
   8137 <list style="symbols">
   8138 <t>
   8139 Code&nbsp;0 packets: It is the length of the single Opus frame (see
   8140  <xref target="sd_code0_packet"/>).
   8141 </t>
   8142 <t>
   8143 Code&nbsp;1 packets: It is the length used for both of the Opus frames (see
   8144  <xref target="sd_code1_packet"/>).
   8145 </t>
   8146 <t>
   8147 Code&nbsp;2 packets: It is the length of the second Opus frame (see
   8148  <xref target="sd_code2_packet"/>).</t>
   8149 <t>
   8150 CBR Code&nbsp;3 packets: It is the length used for all of the Opus frames (see
   8151  <xref target="sd_code3cbr_packet"/>).
   8152 </t>
   8153 <t>VBR Code&nbsp;3 packets: It is the length of the last Opus frame (see
   8154  <xref target="sd_code3vbr_packet"/>).
   8155 </t>
   8156 </list>
   8157 </t>
   8158 
   8159 <figure anchor="sd_code0_packet" title="A Self-Delimited Code 0 Packet"
   8160  align="center">
   8161 <artwork align="center"><![CDATA[
   8162  0                   1                   2                   3
   8163  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   8164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8165 | config  |s|0|0| N1 (1-2 bytes):                               |
   8166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
   8167 |               Compressed frame 1 (N1 bytes)...                :
   8168 :                                                               |
   8169 |                                                               |
   8170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8171 ]]></artwork>
   8172 </figure>
   8173 
   8174 <figure anchor="sd_code1_packet" title="A Self-Delimited Code 1 Packet"
   8175  align="center">
   8176 <artwork align="center"><![CDATA[
   8177  0                   1                   2                   3
   8178  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   8179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8180 | config  |s|0|1| N1 (1-2 bytes):                               |
   8181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               :
   8182 |               Compressed frame 1 (N1 bytes)...                |
   8183 :                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8184 |                               |                               |
   8185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               :
   8186 |               Compressed frame 2 (N1 bytes)...                |
   8187 :                                               +-+-+-+-+-+-+-+-+
   8188 |                                               |
   8189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8190 ]]></artwork>
   8191 </figure>
   8192 
   8193 <figure anchor="sd_code2_packet" title="A Self-Delimited Code 2 Packet"
   8194  align="center">
   8195 <artwork align="center"><![CDATA[
   8196  0                   1                   2                   3
   8197  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   8198 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8199 | config  |s|1|0| N1 (1-2 bytes): N2 (1-2 bytes :               |
   8200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+               :
   8201 |               Compressed frame 1 (N1 bytes)...                |
   8202 :                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8203 |                               |                               |
   8204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               |
   8205 |               Compressed frame 2 (N2 bytes)...                :
   8206 :                                                               |
   8207 |                                                               |
   8208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8209 ]]></artwork>
   8210 </figure>
   8211 
   8212 <figure anchor="sd_code3cbr_packet" title="A Self-Delimited CBR Code 3 Packet"
   8213  align="center">
   8214 <artwork align="center"><![CDATA[
   8215  0                   1                   2                   3
   8216  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   8217 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8218 | config  |s|1|1|0|p|     M     | Pad len (Opt) : N1 (1-2 bytes):
   8219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8220 |                                                               |
   8221 :               Compressed frame 1 (N1 bytes)...                :
   8222 |                                                               |
   8223 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8224 |                                                               |
   8225 :               Compressed frame 2 (N1 bytes)...                :
   8226 |                                                               |
   8227 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8228 |                                                               |
   8229 :                              ...                              :
   8230 |                                                               |
   8231 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8232 |                                                               |
   8233 :               Compressed frame M (N1 bytes)...                :
   8234 |                                                               |
   8235 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8236 :                  Opus Padding (Optional)...                   |
   8237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8238 ]]></artwork>
   8239 </figure>
   8240 
   8241 <figure anchor="sd_code3vbr_packet" title="A Self-Delimited VBR Code 3 Packet"
   8242  align="center">
   8243 <artwork align="center"><![CDATA[
   8244  0                   1                   2                   3
   8245  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   8246 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8247 | config  |s|1|1|1|p|     M     | Padding length (Optional)     :
   8248 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8249 : N1 (1-2 bytes):     ...       :     N[M-1]    |     N[M]      :
   8250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8251 |                                                               |
   8252 :               Compressed frame 1 (N1 bytes)...                :
   8253 |                                                               |
   8254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8255 |                                                               |
   8256 :               Compressed frame 2 (N2 bytes)...                :
   8257 |                                                               |
   8258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8259 |                                                               |
   8260 :                              ...                              :
   8261 |                                                               |
   8262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8263 |                                                               |
   8264 :              Compressed frame M (N[M] bytes)...               :
   8265 |                                                               |
   8266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8267 :                  Opus Padding (Optional)...                   |
   8268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   8269 ]]></artwork>
   8270 </figure>
   8271 
   8272 </section>
   8273 
   8274 </back>
   8275 
   8276 </rfc>
   8277