Home | History | Annotate | Download | only in mach-o
      1 //===------------------ mach-o/compact_unwind_encoding.h ------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //
      9 // Darwin's alternative to DWARF based unwind encodings.
     10 //
     11 //===----------------------------------------------------------------------===//
     12 
     13 
     14 #ifndef __COMPACT_UNWIND_ENCODING__
     15 #define __COMPACT_UNWIND_ENCODING__
     16 
     17 #include <stdint.h>
     18 
     19 //
     20 // Compilers can emit standard DWARF FDEs in the __TEXT,__eh_frame section
     21 // of object files. Or compilers can emit compact unwind information in
     22 // the __LD,__compact_unwind section.
     23 //
     24 // When the linker creates a final linked image, it will create a
     25 // __TEXT,__unwind_info section.  This section is a small and fast way for the
     26 // runtime to access unwind info for any given function.  If the compiler
     27 // emitted compact unwind info for the function, that compact unwind info will
     28 // be encoded in the __TEXT,__unwind_info section. If the compiler emitted
     29 // DWARF unwind info, the __TEXT,__unwind_info section will contain the offset
     30 // of the FDE in the __TEXT,__eh_frame section in the final linked image.
     31 //
     32 // Note: Previously, the linker would transform some DWARF unwind infos into
     33 //       compact unwind info.  But that is fragile and no longer done.
     34 
     35 
     36 //
     37 // The compact unwind endoding is a 32-bit value which encoded in an
     38 // architecture specific way, which registers to restore from where, and how
     39 // to unwind out of the function.
     40 //
     41 typedef uint32_t compact_unwind_encoding_t;
     42 
     43 
     44 // architecture independent bits
     45 enum {
     46     UNWIND_IS_NOT_FUNCTION_START           = 0x80000000,
     47     UNWIND_HAS_LSDA                        = 0x40000000,
     48     UNWIND_PERSONALITY_MASK                = 0x30000000,
     49 };
     50 
     51 
     52 
     53 
     54 //
     55 // x86
     56 //
     57 // 1-bit: start
     58 // 1-bit: has lsda
     59 // 2-bit: personality index
     60 //
     61 // 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=DWARF
     62 //  ebp based:
     63 //        15-bits (5*3-bits per reg) register permutation
     64 //        8-bits for stack offset
     65 //  frameless:
     66 //        8-bits stack size
     67 //        3-bits stack adjust
     68 //        3-bits register count
     69 //        10-bits register permutation
     70 //
     71 enum {
     72     UNWIND_X86_MODE_MASK                         = 0x0F000000,
     73     UNWIND_X86_MODE_EBP_FRAME                    = 0x01000000,
     74     UNWIND_X86_MODE_STACK_IMMD                   = 0x02000000,
     75     UNWIND_X86_MODE_STACK_IND                    = 0x03000000,
     76     UNWIND_X86_MODE_DWARF                        = 0x04000000,
     77 
     78     UNWIND_X86_EBP_FRAME_REGISTERS               = 0x00007FFF,
     79     UNWIND_X86_EBP_FRAME_OFFSET                  = 0x00FF0000,
     80 
     81     UNWIND_X86_FRAMELESS_STACK_SIZE              = 0x00FF0000,
     82     UNWIND_X86_FRAMELESS_STACK_ADJUST            = 0x0000E000,
     83     UNWIND_X86_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
     84     UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
     85 
     86     UNWIND_X86_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
     87 };
     88 
     89 enum {
     90     UNWIND_X86_REG_NONE     = 0,
     91     UNWIND_X86_REG_EBX      = 1,
     92     UNWIND_X86_REG_ECX      = 2,
     93     UNWIND_X86_REG_EDX      = 3,
     94     UNWIND_X86_REG_EDI      = 4,
     95     UNWIND_X86_REG_ESI      = 5,
     96     UNWIND_X86_REG_EBP      = 6,
     97 };
     98 
     99 //
    100 // For x86 there are four modes for the compact unwind encoding:
    101 // UNWIND_X86_MODE_EBP_FRAME:
    102 //    EBP based frame where EBP is push on stack immediately after return address,
    103 //    then ESP is moved to EBP. Thus, to unwind ESP is restored with the current
    104 //    EPB value, then EBP is restored by popping off the stack, and the return
    105 //    is done by popping the stack once more into the pc.
    106 //    All non-volatile registers that need to be restored must have been saved
    107 //    in a small range in the stack that starts EBP-4 to EBP-1020.  The offset/4
    108 //    is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits.  The registers saved
    109 //    are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries.
    110 //    Each entry contains which register to restore.
    111 // UNWIND_X86_MODE_STACK_IMMD:
    112 //    A "frameless" (EBP not used as frame pointer) function with a small
    113 //    constant stack size.  To return, a constant (encoded in the compact
    114 //    unwind encoding) is added to the ESP. Then the return is done by
    115 //    popping the stack into the pc.
    116 //    All non-volatile registers that need to be restored must have been saved
    117 //    on the stack immediately after the return address.  The stack_size/4 is
    118 //    encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024).
    119 //    The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT.
    120 //    UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
    121 //    saved and their order.
    122 // UNWIND_X86_MODE_STACK_IND:
    123 //    A "frameless" (EBP not used as frame pointer) function large constant
    124 //    stack size.  This case is like the previous, except the stack size is too
    125 //    large to encode in the compact unwind encoding.  Instead it requires that
    126 //    the function contains "subl $nnnnnnnn,ESP" in its prolog.  The compact
    127 //    encoding contains the offset to the nnnnnnnn value in the function in
    128 //    UNWIND_X86_FRAMELESS_STACK_SIZE.
    129 // UNWIND_X86_MODE_DWARF:
    130 //    No compact unwind encoding is available.  Instead the low 24-bits of the
    131 //    compact encoding is the offset of the DWARF FDE in the __eh_frame section.
    132 //    This mode is never used in object files.  It is only generated by the
    133 //    linker in final linked images which have only DWARF unwind info for a
    134 //    function.
    135 //
    136 // The permutation encoding is a Lehmer code sequence encoded into a
    137 // single variable-base number so we can encode the ordering of up to
    138 // six registers in a 10-bit space.
    139 //
    140 // The following is the algorithm used to create the permutation encoding used
    141 // with frameless stacks.  It is passed the number of registers to be saved and
    142 // an array of the register numbers saved.
    143 //
    144 //uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6])
    145 //{
    146 //    uint32_t renumregs[6];
    147 //    for (int i=6-registerCount; i < 6; ++i) {
    148 //        int countless = 0;
    149 //        for (int j=6-registerCount; j < i; ++j) {
    150 //            if ( registers[j] < registers[i] )
    151 //                ++countless;
    152 //        }
    153 //        renumregs[i] = registers[i] - countless -1;
    154 //    }
    155 //    uint32_t permutationEncoding = 0;
    156 //    switch ( registerCount ) {
    157 //        case 6:
    158 //            permutationEncoding |= (120*renumregs[0] + 24*renumregs[1]
    159 //                                    + 6*renumregs[2] + 2*renumregs[3]
    160 //                                      + renumregs[4]);
    161 //            break;
    162 //        case 5:
    163 //            permutationEncoding |= (120*renumregs[1] + 24*renumregs[2]
    164 //                                    + 6*renumregs[3] + 2*renumregs[4]
    165 //                                      + renumregs[5]);
    166 //            break;
    167 //        case 4:
    168 //            permutationEncoding |= (60*renumregs[2] + 12*renumregs[3]
    169 //                                   + 3*renumregs[4] + renumregs[5]);
    170 //            break;
    171 //        case 3:
    172 //            permutationEncoding |= (20*renumregs[3] + 4*renumregs[4]
    173 //                                     + renumregs[5]);
    174 //            break;
    175 //        case 2:
    176 //            permutationEncoding |= (5*renumregs[4] + renumregs[5]);
    177 //            break;
    178 //        case 1:
    179 //            permutationEncoding |= (renumregs[5]);
    180 //            break;
    181 //    }
    182 //    return permutationEncoding;
    183 //}
    184 //
    185 
    186 
    187 
    188 
    189 //
    190 // x86_64
    191 //
    192 // 1-bit: start
    193 // 1-bit: has lsda
    194 // 2-bit: personality index
    195 //
    196 // 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=DWARF
    197 //  rbp based:
    198 //        15-bits (5*3-bits per reg) register permutation
    199 //        8-bits for stack offset
    200 //  frameless:
    201 //        8-bits stack size
    202 //        3-bits stack adjust
    203 //        3-bits register count
    204 //        10-bits register permutation
    205 //
    206 enum {
    207     UNWIND_X86_64_MODE_MASK                         = 0x0F000000,
    208     UNWIND_X86_64_MODE_RBP_FRAME                    = 0x01000000,
    209     UNWIND_X86_64_MODE_STACK_IMMD                   = 0x02000000,
    210     UNWIND_X86_64_MODE_STACK_IND                    = 0x03000000,
    211     UNWIND_X86_64_MODE_DWARF                        = 0x04000000,
    212 
    213     UNWIND_X86_64_RBP_FRAME_REGISTERS               = 0x00007FFF,
    214     UNWIND_X86_64_RBP_FRAME_OFFSET                  = 0x00FF0000,
    215 
    216     UNWIND_X86_64_FRAMELESS_STACK_SIZE              = 0x00FF0000,
    217     UNWIND_X86_64_FRAMELESS_STACK_ADJUST            = 0x0000E000,
    218     UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT         = 0x00001C00,
    219     UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION   = 0x000003FF,
    220 
    221     UNWIND_X86_64_DWARF_SECTION_OFFSET              = 0x00FFFFFF,
    222 };
    223 
    224 enum {
    225     UNWIND_X86_64_REG_NONE       = 0,
    226     UNWIND_X86_64_REG_RBX        = 1,
    227     UNWIND_X86_64_REG_R12        = 2,
    228     UNWIND_X86_64_REG_R13        = 3,
    229     UNWIND_X86_64_REG_R14        = 4,
    230     UNWIND_X86_64_REG_R15        = 5,
    231     UNWIND_X86_64_REG_RBP        = 6,
    232 };
    233 //
    234 // For x86_64 there are four modes for the compact unwind encoding:
    235 // UNWIND_X86_64_MODE_RBP_FRAME:
    236 //    RBP based frame where RBP is push on stack immediately after return address,
    237 //    then RSP is moved to RBP. Thus, to unwind RSP is restored with the current
    238 //    EPB value, then RBP is restored by popping off the stack, and the return
    239 //    is done by popping the stack once more into the pc.
    240 //    All non-volatile registers that need to be restored must have been saved
    241 //    in a small range in the stack that starts RBP-8 to RBP-2040.  The offset/8
    242 //    is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits.  The registers saved
    243 //    are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries.
    244 //    Each entry contains which register to restore.
    245 // UNWIND_X86_64_MODE_STACK_IMMD:
    246 //    A "frameless" (RBP not used as frame pointer) function with a small
    247 //    constant stack size.  To return, a constant (encoded in the compact
    248 //    unwind encoding) is added to the RSP. Then the return is done by
    249 //    popping the stack into the pc.
    250 //    All non-volatile registers that need to be restored must have been saved
    251 //    on the stack immediately after the return address.  The stack_size/8 is
    252 //    encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048).
    253 //    The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT.
    254 //    UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
    255 //    saved and their order.
    256 // UNWIND_X86_64_MODE_STACK_IND:
    257 //    A "frameless" (RBP not used as frame pointer) function large constant
    258 //    stack size.  This case is like the previous, except the stack size is too
    259 //    large to encode in the compact unwind encoding.  Instead it requires that
    260 //    the function contains "subq $nnnnnnnn,RSP" in its prolog.  The compact
    261 //    encoding contains the offset to the nnnnnnnn value in the function in
    262 //    UNWIND_X86_64_FRAMELESS_STACK_SIZE.
    263 // UNWIND_X86_64_MODE_DWARF:
    264 //    No compact unwind encoding is available.  Instead the low 24-bits of the
    265 //    compact encoding is the offset of the DWARF FDE in the __eh_frame section.
    266 //    This mode is never used in object files.  It is only generated by the
    267 //    linker in final linked images which have only DWARF unwind info for a
    268 //    function.
    269 //
    270 
    271 
    272 // ARM64
    273 //
    274 // 1-bit: start
    275 // 1-bit: has lsda
    276 // 2-bit: personality index
    277 //
    278 // 4-bits: 4=frame-based, 3=DWARF, 2=frameless
    279 //  frameless:
    280 //        12-bits of stack size
    281 //  frame-based:
    282 //        4-bits D reg pairs saved
    283 //        5-bits X reg pairs saved
    284 //  DWARF:
    285 //        24-bits offset of DWARF FDE in __eh_frame section
    286 //
    287 enum {
    288     UNWIND_ARM64_MODE_MASK                     = 0x0F000000,
    289     UNWIND_ARM64_MODE_FRAMELESS                = 0x02000000,
    290     UNWIND_ARM64_MODE_DWARF                    = 0x03000000,
    291     UNWIND_ARM64_MODE_FRAME                    = 0x04000000,
    292 
    293     UNWIND_ARM64_FRAME_X19_X20_PAIR            = 0x00000001,
    294     UNWIND_ARM64_FRAME_X21_X22_PAIR            = 0x00000002,
    295     UNWIND_ARM64_FRAME_X23_X24_PAIR            = 0x00000004,
    296     UNWIND_ARM64_FRAME_X25_X26_PAIR            = 0x00000008,
    297     UNWIND_ARM64_FRAME_X27_X28_PAIR            = 0x00000010,
    298     UNWIND_ARM64_FRAME_D8_D9_PAIR              = 0x00000100,
    299     UNWIND_ARM64_FRAME_D10_D11_PAIR            = 0x00000200,
    300     UNWIND_ARM64_FRAME_D12_D13_PAIR            = 0x00000400,
    301     UNWIND_ARM64_FRAME_D14_D15_PAIR            = 0x00000800,
    302 
    303     UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK     = 0x00FFF000,
    304     UNWIND_ARM64_DWARF_SECTION_OFFSET          = 0x00FFFFFF,
    305 };
    306 // For arm64 there are three modes for the compact unwind encoding:
    307 // UNWIND_ARM64_MODE_FRAME:
    308 //    This is a standard arm64 prolog where FP/LR are immediately pushed on the
    309 //    stack, then SP is copied to FP. If there are any non-volatile registers
    310 //    saved, then are copied into the stack frame in pairs in a contiguous
    311 //    range right below the saved FP/LR pair.  Any subset of the five X pairs
    312 //    and four D pairs can be saved, but the memory layout must be in register
    313 //    number order.
    314 // UNWIND_ARM64_MODE_FRAMELESS:
    315 //    A "frameless" leaf function, where FP/LR are not saved. The return address
    316 //    remains in LR throughout the function. If any non-volatile registers
    317 //    are saved, they must be pushed onto the stack before any stack space is
    318 //    allocated for local variables.  The stack sized (including any saved
    319 //    non-volatile registers) divided by 16 is encoded in the bits
    320 //    UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK.
    321 // UNWIND_ARM64_MODE_DWARF:
    322 //    No compact unwind encoding is available.  Instead the low 24-bits of the
    323 //    compact encoding is the offset of the DWARF FDE in the __eh_frame section.
    324 //    This mode is never used in object files.  It is only generated by the
    325 //    linker in final linked images which have only DWARF unwind info for a
    326 //    function.
    327 //
    328 
    329 
    330 
    331 
    332 
    333 ////////////////////////////////////////////////////////////////////////////////
    334 //
    335 //  Relocatable Object Files: __LD,__compact_unwind
    336 //
    337 ////////////////////////////////////////////////////////////////////////////////
    338 
    339 //
    340 // A compiler can generated compact unwind information for a function by adding
    341 // a "row" to the __LD,__compact_unwind section.  This section has the
    342 // S_ATTR_DEBUG bit set, so the section will be ignored by older linkers.
    343 // It is removed by the new linker, so never ends up in final executables.
    344 // This section is a table, initially with one row per function (that needs
    345 // unwind info).  The table columns and some conceptual entries are:
    346 //
    347 //     range-start               pointer to start of function/range
    348 //     range-length
    349 //     compact-unwind-encoding   32-bit encoding
    350 //     personality-function      or zero if no personality function
    351 //     lsda                      or zero if no LSDA data
    352 //
    353 // The length and encoding fields are 32-bits.  The other are all pointer sized.
    354 //
    355 // In x86_64 assembly, these entry would look like:
    356 //
    357 //     .section __LD,__compact_unwind,regular,debug
    358 //
    359 //     #compact unwind for _foo
    360 //     .quad    _foo
    361 //     .set     L1,LfooEnd-_foo
    362 //     .long    L1
    363 //     .long    0x01010001
    364 //     .quad    0
    365 //     .quad    0
    366 //
    367 //     #compact unwind for _bar
    368 //     .quad    _bar
    369 //     .set     L2,LbarEnd-_bar
    370 //     .long    L2
    371 //     .long    0x01020011
    372 //     .quad    __gxx_personality
    373 //     .quad    except_tab1
    374 //
    375 //
    376 // Notes: There is no need for any labels in the the __compact_unwind section.
    377 //        The use of the .set directive is to force the evaluation of the
    378 //        range-length at assembly time, instead of generating relocations.
    379 //
    380 // To support future compiler optimizations where which non-volatile registers
    381 // are saved changes within a function (e.g. delay saving non-volatiles until
    382 // necessary), there can by multiple lines in the __compact_unwind table for one
    383 // function, each with a different (non-overlapping) range and each with
    384 // different compact unwind encodings that correspond to the non-volatiles
    385 // saved at that range of the function.
    386 //
    387 // If a particular function is so wacky that there is no compact unwind way
    388 // to encode it, then the compiler can emit traditional DWARF unwind info.
    389 // The runtime will use which ever is available.
    390 //
    391 // Runtime support for compact unwind encodings are only available on 10.6
    392 // and later.  So, the compiler should not generate it when targeting pre-10.6.
    393 
    394 
    395 
    396 
    397 ////////////////////////////////////////////////////////////////////////////////
    398 //
    399 //  Final Linked Images: __TEXT,__unwind_info
    400 //
    401 ////////////////////////////////////////////////////////////////////////////////
    402 
    403 //
    404 // The __TEXT,__unwind_info section is laid out for an efficient two level lookup.
    405 // The header of the section contains a coarse index that maps function address
    406 // to the page (4096 byte block) containing the unwind info for that function.
    407 //
    408 
    409 #define UNWIND_SECTION_VERSION 1
    410 struct unwind_info_section_header
    411 {
    412     uint32_t    version;            // UNWIND_SECTION_VERSION
    413     uint32_t    commonEncodingsArraySectionOffset;
    414     uint32_t    commonEncodingsArrayCount;
    415     uint32_t    personalityArraySectionOffset;
    416     uint32_t    personalityArrayCount;
    417     uint32_t    indexSectionOffset;
    418     uint32_t    indexCount;
    419     // compact_unwind_encoding_t[]
    420     // uint32_t personalities[]
    421     // unwind_info_section_header_index_entry[]
    422     // unwind_info_section_header_lsda_index_entry[]
    423 };
    424 
    425 struct unwind_info_section_header_index_entry
    426 {
    427     uint32_t        functionOffset;
    428     uint32_t        secondLevelPagesSectionOffset;  // section offset to start of regular or compress page
    429     uint32_t        lsdaIndexArraySectionOffset;    // section offset to start of lsda_index array for this range
    430 };
    431 
    432 struct unwind_info_section_header_lsda_index_entry
    433 {
    434     uint32_t        functionOffset;
    435     uint32_t        lsdaOffset;
    436 };
    437 
    438 //
    439 // There are two kinds of second level index pages: regular and compressed.
    440 // A compressed page can hold up to 1021 entries, but it cannot be used
    441 // if too many different encoding types are used.  The regular page holds
    442 // 511 entries.
    443 //
    444 
    445 struct unwind_info_regular_second_level_entry
    446 {
    447     uint32_t                    functionOffset;
    448     compact_unwind_encoding_t    encoding;
    449 };
    450 
    451 #define UNWIND_SECOND_LEVEL_REGULAR 2
    452 struct unwind_info_regular_second_level_page_header
    453 {
    454     uint32_t    kind;    // UNWIND_SECOND_LEVEL_REGULAR
    455     uint16_t    entryPageOffset;
    456     uint16_t    entryCount;
    457     // entry array
    458 };
    459 
    460 #define UNWIND_SECOND_LEVEL_COMPRESSED 3
    461 struct unwind_info_compressed_second_level_page_header
    462 {
    463     uint32_t    kind;    // UNWIND_SECOND_LEVEL_COMPRESSED
    464     uint16_t    entryPageOffset;
    465     uint16_t    entryCount;
    466     uint16_t    encodingsPageOffset;
    467     uint16_t    encodingsCount;
    468     // 32-bit entry array
    469     // encodings array
    470 };
    471 
    472 #define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry)            (entry & 0x00FFFFFF)
    473 #define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry)        ((entry >> 24) & 0xFF)
    474 
    475 
    476 
    477 #endif
    478 
    479