Home | History | Annotate | Download | only in libvpx
      1 /*
      2  * This code implements the MD5 message-digest algorithm.
      3  * The algorithm is due to Ron Rivest.  This code was
      4  * written by Colin Plumb in 1993, no copyright is claimed.
      5  * This code is in the public domain; do with it what you wish.
      6  *
      7  * Equivalent code is available from RSA Data Security, Inc.
      8  * This code has been tested against that, and is equivalent,
      9  * except that you don't need to include two pages of legalese
     10  * with every copy.
     11  *
     12  * To compute the message digest of a chunk of bytes, declare an
     13  * MD5Context structure, pass it to MD5Init, call MD5Update as
     14  * needed on buffers full of bytes, and then call MD5Final, which
     15  * will fill a supplied 16-byte array with the digest.
     16  *
     17  * Changed so as no longer to depend on Colin Plumb's `usual.h' header
     18  * definitions
     19  *  - Ian Jackson <ian (at) chiark.greenend.org.uk>.
     20  * Still in the public domain.
     21  */
     22 
     23 #include <string.h> /* for memcpy() */
     24 
     25 #include "md5_utils.h"
     26 
     27 static void byteSwap(UWORD32 *buf, unsigned words) {
     28   md5byte *p;
     29 
     30   /* Only swap bytes for big endian machines */
     31   int i = 1;
     32 
     33   if (*(char *)&i == 1) return;
     34 
     35   p = (md5byte *)buf;
     36 
     37   do {
     38     *buf++ = (UWORD32)((unsigned)p[3] << 8 | p[2]) << 16 |
     39              ((unsigned)p[1] << 8 | p[0]);
     40     p += 4;
     41   } while (--words);
     42 }
     43 
     44 /*
     45  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
     46  * initialization constants.
     47  */
     48 void MD5Init(struct MD5Context *ctx) {
     49   ctx->buf[0] = 0x67452301;
     50   ctx->buf[1] = 0xefcdab89;
     51   ctx->buf[2] = 0x98badcfe;
     52   ctx->buf[3] = 0x10325476;
     53 
     54   ctx->bytes[0] = 0;
     55   ctx->bytes[1] = 0;
     56 }
     57 
     58 /*
     59  * Update context to reflect the concatenation of another buffer full
     60  * of bytes.
     61  */
     62 void MD5Update(struct MD5Context *ctx, md5byte const *buf, unsigned len) {
     63   UWORD32 t;
     64 
     65   /* Update byte count */
     66 
     67   t = ctx->bytes[0];
     68 
     69   if ((ctx->bytes[0] = t + len) < t)
     70     ctx->bytes[1]++; /* Carry from low to high */
     71 
     72   t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
     73 
     74   if (t > len) {
     75     memcpy((md5byte *)ctx->in + 64 - t, buf, len);
     76     return;
     77   }
     78 
     79   /* First chunk is an odd size */
     80   memcpy((md5byte *)ctx->in + 64 - t, buf, t);
     81   byteSwap(ctx->in, 16);
     82   MD5Transform(ctx->buf, ctx->in);
     83   buf += t;
     84   len -= t;
     85 
     86   /* Process data in 64-byte chunks */
     87   while (len >= 64) {
     88     memcpy(ctx->in, buf, 64);
     89     byteSwap(ctx->in, 16);
     90     MD5Transform(ctx->buf, ctx->in);
     91     buf += 64;
     92     len -= 64;
     93   }
     94 
     95   /* Handle any remaining bytes of data. */
     96   memcpy(ctx->in, buf, len);
     97 }
     98 
     99 /*
    100  * Final wrapup - pad to 64-byte boundary with the bit pattern
    101  * 1 0* (64-bit count of bits processed, MSB-first)
    102  */
    103 void MD5Final(md5byte digest[16], struct MD5Context *ctx) {
    104   int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
    105   md5byte *p = (md5byte *)ctx->in + count;
    106 
    107   /* Set the first char of padding to 0x80.  There is always room. */
    108   *p++ = 0x80;
    109 
    110   /* Bytes of padding needed to make 56 bytes (-8..55) */
    111   count = 56 - 1 - count;
    112 
    113   if (count < 0) { /* Padding forces an extra block */
    114     memset(p, 0, count + 8);
    115     byteSwap(ctx->in, 16);
    116     MD5Transform(ctx->buf, ctx->in);
    117     p = (md5byte *)ctx->in;
    118     count = 56;
    119   }
    120 
    121   memset(p, 0, count);
    122   byteSwap(ctx->in, 14);
    123 
    124   /* Append length in bits and transform */
    125   ctx->in[14] = ctx->bytes[0] << 3;
    126   ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
    127   MD5Transform(ctx->buf, ctx->in);
    128 
    129   byteSwap(ctx->buf, 4);
    130   memcpy(digest, ctx->buf, 16);
    131   memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
    132 }
    133 
    134 #ifndef ASM_MD5
    135 
    136 /* The four core functions - F1 is optimized somewhat */
    137 
    138 /* #define F1(x, y, z) (x & y | ~x & z) */
    139 #define F1(x, y, z) (z ^ (x & (y ^ z)))
    140 #define F2(x, y, z) F1(z, x, y)
    141 #define F3(x, y, z) (x ^ y ^ z)
    142 #define F4(x, y, z) (y ^ (x | ~z))
    143 
    144 /* This is the central step in the MD5 algorithm. */
    145 #define MD5STEP(f, w, x, y, z, in, s) \
    146   (w += f(x, y, z) + in, w = (w << s | w >> (32 - s)) + x)
    147 
    148 #if defined(__clang__) && defined(__has_attribute)
    149 #if __has_attribute(no_sanitize)
    150 #define VPX_NO_UNSIGNED_OVERFLOW_CHECK \
    151   __attribute__((no_sanitize("unsigned-integer-overflow")))
    152 #endif
    153 #endif
    154 
    155 #ifndef VPX_NO_UNSIGNED_OVERFLOW_CHECK
    156 #define VPX_NO_UNSIGNED_OVERFLOW_CHECK
    157 #endif
    158 
    159 /*
    160  * The core of the MD5 algorithm, this alters an existing MD5 hash to
    161  * reflect the addition of 16 longwords of new data.  MD5Update blocks
    162  * the data and converts bytes into longwords for this routine.
    163  */
    164 VPX_NO_UNSIGNED_OVERFLOW_CHECK void MD5Transform(UWORD32 buf[4],
    165                                                  UWORD32 const in[16]) {
    166   register UWORD32 a, b, c, d;
    167 
    168   a = buf[0];
    169   b = buf[1];
    170   c = buf[2];
    171   d = buf[3];
    172 
    173   MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
    174   MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
    175   MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
    176   MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
    177   MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
    178   MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
    179   MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
    180   MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
    181   MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
    182   MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
    183   MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
    184   MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
    185   MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
    186   MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
    187   MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
    188   MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
    189 
    190   MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
    191   MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
    192   MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
    193   MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
    194   MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
    195   MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
    196   MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
    197   MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
    198   MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
    199   MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
    200   MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
    201   MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
    202   MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
    203   MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
    204   MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
    205   MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
    206 
    207   MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
    208   MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
    209   MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
    210   MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
    211   MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
    212   MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
    213   MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
    214   MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
    215   MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
    216   MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
    217   MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
    218   MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
    219   MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
    220   MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
    221   MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
    222   MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
    223 
    224   MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
    225   MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
    226   MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
    227   MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
    228   MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
    229   MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
    230   MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
    231   MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
    232   MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
    233   MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
    234   MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
    235   MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
    236   MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
    237   MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
    238   MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
    239   MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
    240 
    241   buf[0] += a;
    242   buf[1] += b;
    243   buf[2] += c;
    244   buf[3] += d;
    245 }
    246 
    247 #undef VPX_NO_UNSIGNED_OVERFLOW_CHECK
    248 
    249 #endif
    250