Home | History | Annotate | Download | only in encoder
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "vp8/common/onyxc_int.h"
     12 #include "onyx_int.h"
     13 #include "vp8/common/systemdependent.h"
     14 #include "vp8/encoder/quantize.h"
     15 #include "vp8/common/alloccommon.h"
     16 #include "mcomp.h"
     17 #include "firstpass.h"
     18 #include "vpx_scale/vpx_scale.h"
     19 #include "vp8/common/extend.h"
     20 #include "ratectrl.h"
     21 #include "vp8/common/quant_common.h"
     22 #include "segmentation.h"
     23 #include "temporal_filter.h"
     24 #include "vpx_mem/vpx_mem.h"
     25 #include "vp8/common/swapyv12buffer.h"
     26 #include "vp8/common/threading.h"
     27 #include "vpx_ports/vpx_timer.h"
     28 
     29 #include <math.h>
     30 #include <limits.h>
     31 
     32 #define ALT_REF_MC_ENABLED 1     /* toggle MC in AltRef filtering */
     33 #define ALT_REF_SUBPEL_ENABLED 1 /* toggle subpel in MC AltRef filtering */
     34 
     35 #if VP8_TEMPORAL_ALT_REF
     36 
     37 static void vp8_temporal_filter_predictors_mb_c(
     38     MACROBLOCKD *x, unsigned char *y_mb_ptr, unsigned char *u_mb_ptr,
     39     unsigned char *v_mb_ptr, int stride, int mv_row, int mv_col,
     40     unsigned char *pred) {
     41   int offset;
     42   unsigned char *yptr, *uptr, *vptr;
     43 
     44   /* Y */
     45   yptr = y_mb_ptr + (mv_row >> 3) * stride + (mv_col >> 3);
     46 
     47   if ((mv_row | mv_col) & 7) {
     48     x->subpixel_predict16x16(yptr, stride, mv_col & 7, mv_row & 7, &pred[0],
     49                              16);
     50   } else {
     51     vp8_copy_mem16x16(yptr, stride, &pred[0], 16);
     52   }
     53 
     54   /* U & V */
     55   mv_row >>= 1;
     56   mv_col >>= 1;
     57   stride = (stride + 1) >> 1;
     58   offset = (mv_row >> 3) * stride + (mv_col >> 3);
     59   uptr = u_mb_ptr + offset;
     60   vptr = v_mb_ptr + offset;
     61 
     62   if ((mv_row | mv_col) & 7) {
     63     x->subpixel_predict8x8(uptr, stride, mv_col & 7, mv_row & 7, &pred[256], 8);
     64     x->subpixel_predict8x8(vptr, stride, mv_col & 7, mv_row & 7, &pred[320], 8);
     65   } else {
     66     vp8_copy_mem8x8(uptr, stride, &pred[256], 8);
     67     vp8_copy_mem8x8(vptr, stride, &pred[320], 8);
     68   }
     69 }
     70 void vp8_temporal_filter_apply_c(unsigned char *frame1, unsigned int stride,
     71                                  unsigned char *frame2, unsigned int block_size,
     72                                  int strength, int filter_weight,
     73                                  unsigned int *accumulator,
     74                                  unsigned short *count) {
     75   unsigned int i, j, k;
     76   int modifier;
     77   int byte = 0;
     78   const int rounding = strength > 0 ? 1 << (strength - 1) : 0;
     79 
     80   for (i = 0, k = 0; i < block_size; ++i) {
     81     for (j = 0; j < block_size; j++, k++) {
     82       int src_byte = frame1[byte];
     83       int pixel_value = *frame2++;
     84 
     85       modifier = src_byte - pixel_value;
     86       /* This is an integer approximation of:
     87        * float coeff = (3.0 * modifer * modifier) / pow(2, strength);
     88        * modifier =  (int)roundf(coeff > 16 ? 0 : 16-coeff);
     89        */
     90       modifier *= modifier;
     91       modifier *= 3;
     92       modifier += rounding;
     93       modifier >>= strength;
     94 
     95       if (modifier > 16) modifier = 16;
     96 
     97       modifier = 16 - modifier;
     98       modifier *= filter_weight;
     99 
    100       count[k] += modifier;
    101       accumulator[k] += modifier * pixel_value;
    102 
    103       byte++;
    104     }
    105 
    106     byte += stride - block_size;
    107   }
    108 }
    109 
    110 #if ALT_REF_MC_ENABLED
    111 
    112 static int vp8_temporal_filter_find_matching_mb_c(VP8_COMP *cpi,
    113                                                   YV12_BUFFER_CONFIG *arf_frame,
    114                                                   YV12_BUFFER_CONFIG *frame_ptr,
    115                                                   int mb_offset,
    116                                                   int error_thresh) {
    117   MACROBLOCK *x = &cpi->mb;
    118   int step_param;
    119   int sadpb = x->sadperbit16;
    120   int bestsme = INT_MAX;
    121 
    122   BLOCK *b = &x->block[0];
    123   BLOCKD *d = &x->e_mbd.block[0];
    124   int_mv best_ref_mv1;
    125   int_mv best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
    126 
    127   /* Save input state */
    128   unsigned char **base_src = b->base_src;
    129   int src = b->src;
    130   int src_stride = b->src_stride;
    131   unsigned char *base_pre = x->e_mbd.pre.y_buffer;
    132   int pre = d->offset;
    133   int pre_stride = x->e_mbd.pre.y_stride;
    134 
    135   (void)error_thresh;
    136 
    137   best_ref_mv1.as_int = 0;
    138   best_ref_mv1_full.as_mv.col = best_ref_mv1.as_mv.col >> 3;
    139   best_ref_mv1_full.as_mv.row = best_ref_mv1.as_mv.row >> 3;
    140 
    141   /* Setup frame pointers */
    142   b->base_src = &arf_frame->y_buffer;
    143   b->src_stride = arf_frame->y_stride;
    144   b->src = mb_offset;
    145 
    146   x->e_mbd.pre.y_buffer = frame_ptr->y_buffer;
    147   x->e_mbd.pre.y_stride = frame_ptr->y_stride;
    148   d->offset = mb_offset;
    149 
    150   /* Further step/diamond searches as necessary */
    151   if (cpi->Speed < 8) {
    152     step_param = cpi->sf.first_step + (cpi->Speed > 5);
    153   } else {
    154     step_param = cpi->sf.first_step + 2;
    155   }
    156 
    157   /* TODO Check that the 16x16 vf & sdf are selected here */
    158   /* Ignore mv costing by sending NULL cost arrays */
    159   bestsme =
    160       vp8_hex_search(x, b, d, &best_ref_mv1_full, &d->bmi.mv, step_param, sadpb,
    161                      &cpi->fn_ptr[BLOCK_16X16], NULL, NULL, &best_ref_mv1);
    162 
    163 #if ALT_REF_SUBPEL_ENABLED
    164   /* Try sub-pixel MC? */
    165   {
    166     int distortion;
    167     unsigned int sse;
    168     /* Ignore mv costing by sending NULL cost array */
    169     bestsme = cpi->find_fractional_mv_step(
    170         x, b, d, &d->bmi.mv, &best_ref_mv1, x->errorperbit,
    171         &cpi->fn_ptr[BLOCK_16X16], NULL, &distortion, &sse);
    172   }
    173 #endif
    174 
    175   /* Save input state */
    176   b->base_src = base_src;
    177   b->src = src;
    178   b->src_stride = src_stride;
    179   x->e_mbd.pre.y_buffer = base_pre;
    180   d->offset = pre;
    181   x->e_mbd.pre.y_stride = pre_stride;
    182 
    183   return bestsme;
    184 }
    185 #endif
    186 
    187 static void vp8_temporal_filter_iterate_c(VP8_COMP *cpi, int frame_count,
    188                                           int alt_ref_index, int strength) {
    189   int byte;
    190   int frame;
    191   int mb_col, mb_row;
    192   unsigned int filter_weight;
    193   int mb_cols = cpi->common.mb_cols;
    194   int mb_rows = cpi->common.mb_rows;
    195   int mb_y_offset = 0;
    196   int mb_uv_offset = 0;
    197   DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 + 8 * 8 + 8 * 8]);
    198   DECLARE_ALIGNED(16, unsigned short, count[16 * 16 + 8 * 8 + 8 * 8]);
    199   MACROBLOCKD *mbd = &cpi->mb.e_mbd;
    200   YV12_BUFFER_CONFIG *f = cpi->frames[alt_ref_index];
    201   unsigned char *dst1, *dst2;
    202   DECLARE_ALIGNED(16, unsigned char, predictor[16 * 16 + 8 * 8 + 8 * 8]);
    203 
    204   /* Save input state */
    205   unsigned char *y_buffer = mbd->pre.y_buffer;
    206   unsigned char *u_buffer = mbd->pre.u_buffer;
    207   unsigned char *v_buffer = mbd->pre.v_buffer;
    208 
    209   for (mb_row = 0; mb_row < mb_rows; ++mb_row) {
    210 #if ALT_REF_MC_ENABLED
    211     /* Source frames are extended to 16 pixels.  This is different than
    212      *  L/A/G reference frames that have a border of 32 (VP8BORDERINPIXELS)
    213      * A 6 tap filter is used for motion search.  This requires 2 pixels
    214      *  before and 3 pixels after.  So the largest Y mv on a border would
    215      *  then be 16 - 3.  The UV blocks are half the size of the Y and
    216      *  therefore only extended by 8.  The largest mv that a UV block
    217      *  can support is 8 - 3.  A UV mv is half of a Y mv.
    218      *  (16 - 3) >> 1 == 6 which is greater than 8 - 3.
    219      * To keep the mv in play for both Y and UV planes the max that it
    220      *  can be on a border is therefore 16 - 5.
    221      */
    222     cpi->mb.mv_row_min = -((mb_row * 16) + (16 - 5));
    223     cpi->mb.mv_row_max = ((cpi->common.mb_rows - 1 - mb_row) * 16) + (16 - 5);
    224 #endif
    225 
    226     for (mb_col = 0; mb_col < mb_cols; ++mb_col) {
    227       int i, j, k;
    228       int stride;
    229 
    230       memset(accumulator, 0, 384 * sizeof(unsigned int));
    231       memset(count, 0, 384 * sizeof(unsigned short));
    232 
    233 #if ALT_REF_MC_ENABLED
    234       cpi->mb.mv_col_min = -((mb_col * 16) + (16 - 5));
    235       cpi->mb.mv_col_max = ((cpi->common.mb_cols - 1 - mb_col) * 16) + (16 - 5);
    236 #endif
    237 
    238       for (frame = 0; frame < frame_count; ++frame) {
    239         if (cpi->frames[frame] == NULL) continue;
    240 
    241         mbd->block[0].bmi.mv.as_mv.row = 0;
    242         mbd->block[0].bmi.mv.as_mv.col = 0;
    243 
    244         if (frame == alt_ref_index) {
    245           filter_weight = 2;
    246         } else {
    247           int err = 0;
    248 #if ALT_REF_MC_ENABLED
    249 #define THRESH_LOW 10000
    250 #define THRESH_HIGH 20000
    251           /* Find best match in this frame by MC */
    252           err = vp8_temporal_filter_find_matching_mb_c(
    253               cpi, cpi->frames[alt_ref_index], cpi->frames[frame], mb_y_offset,
    254               THRESH_LOW);
    255 #endif
    256           /* Assign higher weight to matching MB if it's error
    257            * score is lower. If not applying MC default behavior
    258            * is to weight all MBs equal.
    259            */
    260           filter_weight = err < THRESH_LOW ? 2 : err < THRESH_HIGH ? 1 : 0;
    261         }
    262 
    263         if (filter_weight != 0) {
    264           /* Construct the predictors */
    265           vp8_temporal_filter_predictors_mb_c(
    266               mbd, cpi->frames[frame]->y_buffer + mb_y_offset,
    267               cpi->frames[frame]->u_buffer + mb_uv_offset,
    268               cpi->frames[frame]->v_buffer + mb_uv_offset,
    269               cpi->frames[frame]->y_stride, mbd->block[0].bmi.mv.as_mv.row,
    270               mbd->block[0].bmi.mv.as_mv.col, predictor);
    271 
    272           /* Apply the filter (YUV) */
    273           vp8_temporal_filter_apply(f->y_buffer + mb_y_offset, f->y_stride,
    274                                     predictor, 16, strength, filter_weight,
    275                                     accumulator, count);
    276 
    277           vp8_temporal_filter_apply(f->u_buffer + mb_uv_offset, f->uv_stride,
    278                                     predictor + 256, 8, strength, filter_weight,
    279                                     accumulator + 256, count + 256);
    280 
    281           vp8_temporal_filter_apply(f->v_buffer + mb_uv_offset, f->uv_stride,
    282                                     predictor + 320, 8, strength, filter_weight,
    283                                     accumulator + 320, count + 320);
    284         }
    285       }
    286 
    287       /* Normalize filter output to produce AltRef frame */
    288       dst1 = cpi->alt_ref_buffer.y_buffer;
    289       stride = cpi->alt_ref_buffer.y_stride;
    290       byte = mb_y_offset;
    291       for (i = 0, k = 0; i < 16; ++i) {
    292         for (j = 0; j < 16; j++, k++) {
    293           unsigned int pval = accumulator[k] + (count[k] >> 1);
    294           pval *= cpi->fixed_divide[count[k]];
    295           pval >>= 19;
    296 
    297           dst1[byte] = (unsigned char)pval;
    298 
    299           /* move to next pixel */
    300           byte++;
    301         }
    302 
    303         byte += stride - 16;
    304       }
    305 
    306       dst1 = cpi->alt_ref_buffer.u_buffer;
    307       dst2 = cpi->alt_ref_buffer.v_buffer;
    308       stride = cpi->alt_ref_buffer.uv_stride;
    309       byte = mb_uv_offset;
    310       for (i = 0, k = 256; i < 8; ++i) {
    311         for (j = 0; j < 8; j++, k++) {
    312           int m = k + 64;
    313 
    314           /* U */
    315           unsigned int pval = accumulator[k] + (count[k] >> 1);
    316           pval *= cpi->fixed_divide[count[k]];
    317           pval >>= 19;
    318           dst1[byte] = (unsigned char)pval;
    319 
    320           /* V */
    321           pval = accumulator[m] + (count[m] >> 1);
    322           pval *= cpi->fixed_divide[count[m]];
    323           pval >>= 19;
    324           dst2[byte] = (unsigned char)pval;
    325 
    326           /* move to next pixel */
    327           byte++;
    328         }
    329 
    330         byte += stride - 8;
    331       }
    332 
    333       mb_y_offset += 16;
    334       mb_uv_offset += 8;
    335     }
    336 
    337     mb_y_offset += 16 * (f->y_stride - mb_cols);
    338     mb_uv_offset += 8 * (f->uv_stride - mb_cols);
    339   }
    340 
    341   /* Restore input state */
    342   mbd->pre.y_buffer = y_buffer;
    343   mbd->pre.u_buffer = u_buffer;
    344   mbd->pre.v_buffer = v_buffer;
    345 }
    346 
    347 void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance) {
    348   int frame = 0;
    349 
    350   int num_frames_backward = 0;
    351   int num_frames_forward = 0;
    352   int frames_to_blur_backward = 0;
    353   int frames_to_blur_forward = 0;
    354   int frames_to_blur = 0;
    355   int start_frame = 0;
    356 
    357   int strength = cpi->oxcf.arnr_strength;
    358 
    359   int blur_type = cpi->oxcf.arnr_type;
    360 
    361   int max_frames = cpi->active_arnr_frames;
    362 
    363   num_frames_backward = distance;
    364   num_frames_forward =
    365       vp8_lookahead_depth(cpi->lookahead) - (num_frames_backward + 1);
    366 
    367   switch (blur_type) {
    368     case 1:
    369       /* Backward Blur */
    370 
    371       frames_to_blur_backward = num_frames_backward;
    372 
    373       if (frames_to_blur_backward >= max_frames) {
    374         frames_to_blur_backward = max_frames - 1;
    375       }
    376 
    377       frames_to_blur = frames_to_blur_backward + 1;
    378       break;
    379 
    380     case 2:
    381       /* Forward Blur */
    382 
    383       frames_to_blur_forward = num_frames_forward;
    384 
    385       if (frames_to_blur_forward >= max_frames) {
    386         frames_to_blur_forward = max_frames - 1;
    387       }
    388 
    389       frames_to_blur = frames_to_blur_forward + 1;
    390       break;
    391 
    392     case 3:
    393     default:
    394       /* Center Blur */
    395       frames_to_blur_forward = num_frames_forward;
    396       frames_to_blur_backward = num_frames_backward;
    397 
    398       if (frames_to_blur_forward > frames_to_blur_backward) {
    399         frames_to_blur_forward = frames_to_blur_backward;
    400       }
    401 
    402       if (frames_to_blur_backward > frames_to_blur_forward) {
    403         frames_to_blur_backward = frames_to_blur_forward;
    404       }
    405 
    406       /* When max_frames is even we have 1 more frame backward than forward */
    407       if (frames_to_blur_forward > (max_frames - 1) / 2) {
    408         frames_to_blur_forward = ((max_frames - 1) / 2);
    409       }
    410 
    411       if (frames_to_blur_backward > (max_frames / 2)) {
    412         frames_to_blur_backward = (max_frames / 2);
    413       }
    414 
    415       frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1;
    416       break;
    417   }
    418 
    419   start_frame = distance + frames_to_blur_forward;
    420 
    421   /* Setup frame pointers, NULL indicates frame not included in filter */
    422   memset(cpi->frames, 0, max_frames * sizeof(YV12_BUFFER_CONFIG *));
    423   for (frame = 0; frame < frames_to_blur; ++frame) {
    424     int which_buffer = start_frame - frame;
    425     struct lookahead_entry *buf =
    426         vp8_lookahead_peek(cpi->lookahead, which_buffer, PEEK_FORWARD);
    427     cpi->frames[frames_to_blur - 1 - frame] = &buf->img;
    428   }
    429 
    430   vp8_temporal_filter_iterate_c(cpi, frames_to_blur, frames_to_blur_backward,
    431                                 strength);
    432 }
    433 #endif
    434