Home | History | Annotate | Download | only in neon
      1 /*
      2  *  Copyright (c) 2017 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <arm_neon.h>
     12 
     13 #include "./vpx_config.h"
     14 #include "./vp9_rtcd.h"
     15 
     16 #include "vpx/vpx_integer.h"
     17 #include "vp9/common/vp9_reconinter.h"
     18 #include "vp9/encoder/vp9_context_tree.h"
     19 #include "vp9/encoder/vp9_denoiser.h"
     20 #include "vpx_mem/vpx_mem.h"
     21 
     22 // Compute the sum of all pixel differences of this MB.
     23 static INLINE int horizontal_add_s8x16(const int8x16_t v_sum_diff_total) {
     24   const int16x8_t fe_dc_ba_98_76_54_32_10 = vpaddlq_s8(v_sum_diff_total);
     25   const int32x4_t fedc_ba98_7654_3210 = vpaddlq_s16(fe_dc_ba_98_76_54_32_10);
     26   const int64x2_t fedcba98_76543210 = vpaddlq_s32(fedc_ba98_7654_3210);
     27   const int64x1_t x = vqadd_s64(vget_high_s64(fedcba98_76543210),
     28                                 vget_low_s64(fedcba98_76543210));
     29   const int sum_diff = vget_lane_s32(vreinterpret_s32_s64(x), 0);
     30   return sum_diff;
     31 }
     32 
     33 // Denoise a 16x1 vector.
     34 static INLINE int8x16_t denoiser_16x1_neon(
     35     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
     36     const uint8x16_t v_level1_threshold, const uint8x16_t v_level2_threshold,
     37     const uint8x16_t v_level3_threshold, const uint8x16_t v_level1_adjustment,
     38     const uint8x16_t v_delta_level_1_and_2,
     39     const uint8x16_t v_delta_level_2_and_3, int8x16_t v_sum_diff_total) {
     40   const uint8x16_t v_sig = vld1q_u8(sig);
     41   const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y);
     42 
     43   /* Calculate absolute difference and sign masks. */
     44   const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y);
     45   const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y);
     46   const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y);
     47 
     48   /* Figure out which level that put us in. */
     49   const uint8x16_t v_level1_mask = vcleq_u8(v_level1_threshold, v_abs_diff);
     50   const uint8x16_t v_level2_mask = vcleq_u8(v_level2_threshold, v_abs_diff);
     51   const uint8x16_t v_level3_mask = vcleq_u8(v_level3_threshold, v_abs_diff);
     52 
     53   /* Calculate absolute adjustments for level 1, 2 and 3. */
     54   const uint8x16_t v_level2_adjustment =
     55       vandq_u8(v_level2_mask, v_delta_level_1_and_2);
     56   const uint8x16_t v_level3_adjustment =
     57       vandq_u8(v_level3_mask, v_delta_level_2_and_3);
     58   const uint8x16_t v_level1and2_adjustment =
     59       vaddq_u8(v_level1_adjustment, v_level2_adjustment);
     60   const uint8x16_t v_level1and2and3_adjustment =
     61       vaddq_u8(v_level1and2_adjustment, v_level3_adjustment);
     62 
     63   /* Figure adjustment absolute value by selecting between the absolute
     64    * difference if in level0 or the value for level 1, 2 and 3.
     65    */
     66   const uint8x16_t v_abs_adjustment =
     67       vbslq_u8(v_level1_mask, v_level1and2and3_adjustment, v_abs_diff);
     68 
     69   /* Calculate positive and negative adjustments. Apply them to the signal
     70    * and accumulate them. Adjustments are less than eight and the maximum
     71    * sum of them (7 * 16) can fit in a signed char.
     72    */
     73   const uint8x16_t v_pos_adjustment =
     74       vandq_u8(v_diff_pos_mask, v_abs_adjustment);
     75   const uint8x16_t v_neg_adjustment =
     76       vandq_u8(v_diff_neg_mask, v_abs_adjustment);
     77 
     78   uint8x16_t v_running_avg_y = vqaddq_u8(v_sig, v_pos_adjustment);
     79   v_running_avg_y = vqsubq_u8(v_running_avg_y, v_neg_adjustment);
     80 
     81   /* Store results. */
     82   vst1q_u8(running_avg_y, v_running_avg_y);
     83 
     84   /* Sum all the accumulators to have the sum of all pixel differences
     85    * for this macroblock.
     86    */
     87   {
     88     const int8x16_t v_sum_diff =
     89         vqsubq_s8(vreinterpretq_s8_u8(v_pos_adjustment),
     90                   vreinterpretq_s8_u8(v_neg_adjustment));
     91     v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff);
     92   }
     93   return v_sum_diff_total;
     94 }
     95 
     96 static INLINE int8x16_t denoiser_adjust_16x1_neon(
     97     const uint8_t *sig, const uint8_t *mc_running_avg_y, uint8_t *running_avg_y,
     98     const uint8x16_t k_delta, int8x16_t v_sum_diff_total) {
     99   uint8x16_t v_running_avg_y = vld1q_u8(running_avg_y);
    100   const uint8x16_t v_sig = vld1q_u8(sig);
    101   const uint8x16_t v_mc_running_avg_y = vld1q_u8(mc_running_avg_y);
    102 
    103   /* Calculate absolute difference and sign masks. */
    104   const uint8x16_t v_abs_diff = vabdq_u8(v_sig, v_mc_running_avg_y);
    105   const uint8x16_t v_diff_pos_mask = vcltq_u8(v_sig, v_mc_running_avg_y);
    106   const uint8x16_t v_diff_neg_mask = vcgtq_u8(v_sig, v_mc_running_avg_y);
    107   // Clamp absolute difference to delta to get the adjustment.
    108   const uint8x16_t v_abs_adjustment = vminq_u8(v_abs_diff, (k_delta));
    109 
    110   const uint8x16_t v_pos_adjustment =
    111       vandq_u8(v_diff_pos_mask, v_abs_adjustment);
    112   const uint8x16_t v_neg_adjustment =
    113       vandq_u8(v_diff_neg_mask, v_abs_adjustment);
    114 
    115   v_running_avg_y = vqsubq_u8(v_running_avg_y, v_pos_adjustment);
    116   v_running_avg_y = vqaddq_u8(v_running_avg_y, v_neg_adjustment);
    117 
    118   /* Store results. */
    119   vst1q_u8(running_avg_y, v_running_avg_y);
    120 
    121   {
    122     const int8x16_t v_sum_diff =
    123         vqsubq_s8(vreinterpretq_s8_u8(v_neg_adjustment),
    124                   vreinterpretq_s8_u8(v_pos_adjustment));
    125     v_sum_diff_total = vaddq_s8(v_sum_diff_total, v_sum_diff);
    126   }
    127   return v_sum_diff_total;
    128 }
    129 
    130 // Denoise 8x8 and 8x16 blocks.
    131 static int vp9_denoiser_8xN_neon(const uint8_t *sig, int sig_stride,
    132                                  const uint8_t *mc_running_avg_y,
    133                                  int mc_avg_y_stride, uint8_t *running_avg_y,
    134                                  int avg_y_stride, int increase_denoising,
    135                                  BLOCK_SIZE bs, int motion_magnitude,
    136                                  int width) {
    137   int sum_diff_thresh, r, sum_diff = 0;
    138   const int shift_inc =
    139       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
    140           ? 1
    141           : 0;
    142   uint8_t sig_buffer[8][16], mc_running_buffer[8][16], running_buffer[8][16];
    143 
    144   const uint8x16_t v_level1_adjustment = vmovq_n_u8(
    145       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3);
    146   const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1);
    147   const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2);
    148   const uint8x16_t v_level1_threshold = vdupq_n_u8(4 + shift_inc);
    149   const uint8x16_t v_level2_threshold = vdupq_n_u8(8);
    150   const uint8x16_t v_level3_threshold = vdupq_n_u8(16);
    151 
    152   const int b_height = (4 << b_height_log2_lookup[bs]) >> 1;
    153 
    154   int8x16_t v_sum_diff_total = vdupq_n_s8(0);
    155 
    156   for (r = 0; r < b_height; ++r) {
    157     memcpy(sig_buffer[r], sig, width);
    158     memcpy(sig_buffer[r] + width, sig + sig_stride, width);
    159     memcpy(mc_running_buffer[r], mc_running_avg_y, width);
    160     memcpy(mc_running_buffer[r] + width, mc_running_avg_y + mc_avg_y_stride,
    161            width);
    162     memcpy(running_buffer[r], running_avg_y, width);
    163     memcpy(running_buffer[r] + width, running_avg_y + avg_y_stride, width);
    164     v_sum_diff_total = denoiser_16x1_neon(
    165         sig_buffer[r], mc_running_buffer[r], running_buffer[r],
    166         v_level1_threshold, v_level2_threshold, v_level3_threshold,
    167         v_level1_adjustment, v_delta_level_1_and_2, v_delta_level_2_and_3,
    168         v_sum_diff_total);
    169     {
    170       const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]);
    171       const uint8x8_t v_running_buffer_high = vget_high_u8(v_running_buffer);
    172       const uint8x8_t v_running_buffer_low = vget_low_u8(v_running_buffer);
    173       vst1_u8(running_avg_y, v_running_buffer_low);
    174       vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high);
    175     }
    176     // Update pointers for next iteration.
    177     sig += (sig_stride << 1);
    178     mc_running_avg_y += (mc_avg_y_stride << 1);
    179     running_avg_y += (avg_y_stride << 1);
    180   }
    181 
    182   {
    183     sum_diff = horizontal_add_s8x16(v_sum_diff_total);
    184     sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
    185     if (abs(sum_diff) > sum_diff_thresh) {
    186       // Before returning to copy the block (i.e., apply no denoising),
    187       // check if we can still apply some (weaker) temporal filtering to
    188       // this block, that would otherwise not be denoised at all. Simplest
    189       // is to apply an additional adjustment to running_avg_y to bring it
    190       // closer to sig. The adjustment is capped by a maximum delta, and
    191       // chosen such that in most cases the resulting sum_diff will be
    192       // within the acceptable range given by sum_diff_thresh.
    193 
    194       // The delta is set by the excess of absolute pixel diff over the
    195       // threshold.
    196       const int delta =
    197           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
    198       // Only apply the adjustment for max delta up to 3.
    199       if (delta < 4) {
    200         const uint8x16_t k_delta = vmovq_n_u8(delta);
    201         running_avg_y -= avg_y_stride * (b_height << 1);
    202         for (r = 0; r < b_height; ++r) {
    203           v_sum_diff_total = denoiser_adjust_16x1_neon(
    204               sig_buffer[r], mc_running_buffer[r], running_buffer[r], k_delta,
    205               v_sum_diff_total);
    206           {
    207             const uint8x16_t v_running_buffer = vld1q_u8(running_buffer[r]);
    208             const uint8x8_t v_running_buffer_high =
    209                 vget_high_u8(v_running_buffer);
    210             const uint8x8_t v_running_buffer_low =
    211                 vget_low_u8(v_running_buffer);
    212             vst1_u8(running_avg_y, v_running_buffer_low);
    213             vst1_u8(running_avg_y + avg_y_stride, v_running_buffer_high);
    214           }
    215           // Update pointers for next iteration.
    216           running_avg_y += (avg_y_stride << 1);
    217         }
    218         sum_diff = horizontal_add_s8x16(v_sum_diff_total);
    219         if (abs(sum_diff) > sum_diff_thresh) {
    220           return COPY_BLOCK;
    221         }
    222       } else {
    223         return COPY_BLOCK;
    224       }
    225     }
    226   }
    227 
    228   return FILTER_BLOCK;
    229 }
    230 
    231 // Denoise 16x16, 16x32, 32x16, 32x32, 32x64, 64x32 and 64x64 blocks.
    232 static int vp9_denoiser_NxM_neon(const uint8_t *sig, int sig_stride,
    233                                  const uint8_t *mc_running_avg_y,
    234                                  int mc_avg_y_stride, uint8_t *running_avg_y,
    235                                  int avg_y_stride, int increase_denoising,
    236                                  BLOCK_SIZE bs, int motion_magnitude) {
    237   const int shift_inc =
    238       (increase_denoising && motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD)
    239           ? 1
    240           : 0;
    241   const uint8x16_t v_level1_adjustment = vmovq_n_u8(
    242       (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) ? 4 + shift_inc : 3);
    243   const uint8x16_t v_delta_level_1_and_2 = vdupq_n_u8(1);
    244   const uint8x16_t v_delta_level_2_and_3 = vdupq_n_u8(2);
    245   const uint8x16_t v_level1_threshold = vmovq_n_u8(4 + shift_inc);
    246   const uint8x16_t v_level2_threshold = vdupq_n_u8(8);
    247   const uint8x16_t v_level3_threshold = vdupq_n_u8(16);
    248 
    249   const int b_width = (4 << b_width_log2_lookup[bs]);
    250   const int b_height = (4 << b_height_log2_lookup[bs]);
    251   const int b_width_shift4 = b_width >> 4;
    252 
    253   int8x16_t v_sum_diff_total[4][4];
    254   int r, c, sum_diff = 0;
    255 
    256   for (r = 0; r < 4; ++r) {
    257     for (c = 0; c < b_width_shift4; ++c) {
    258       v_sum_diff_total[c][r] = vdupq_n_s8(0);
    259     }
    260   }
    261 
    262   for (r = 0; r < b_height; ++r) {
    263     for (c = 0; c < b_width_shift4; ++c) {
    264       v_sum_diff_total[c][r >> 4] = denoiser_16x1_neon(
    265           sig, mc_running_avg_y, running_avg_y, v_level1_threshold,
    266           v_level2_threshold, v_level3_threshold, v_level1_adjustment,
    267           v_delta_level_1_and_2, v_delta_level_2_and_3,
    268           v_sum_diff_total[c][r >> 4]);
    269 
    270       // Update pointers for next iteration.
    271       sig += 16;
    272       mc_running_avg_y += 16;
    273       running_avg_y += 16;
    274     }
    275 
    276     if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
    277       for (c = 0; c < b_width_shift4; ++c) {
    278         sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]);
    279       }
    280     }
    281 
    282     // Update pointers for next iteration.
    283     sig = sig - b_width + sig_stride;
    284     mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
    285     running_avg_y = running_avg_y - b_width + avg_y_stride;
    286   }
    287 
    288   {
    289     const int sum_diff_thresh = total_adj_strong_thresh(bs, increase_denoising);
    290     if (abs(sum_diff) > sum_diff_thresh) {
    291       const int delta =
    292           ((abs(sum_diff) - sum_diff_thresh) >> num_pels_log2_lookup[bs]) + 1;
    293       // Only apply the adjustment for max delta up to 3.
    294       if (delta < 4) {
    295         const uint8x16_t k_delta = vdupq_n_u8(delta);
    296         sig -= sig_stride * b_height;
    297         mc_running_avg_y -= mc_avg_y_stride * b_height;
    298         running_avg_y -= avg_y_stride * b_height;
    299         sum_diff = 0;
    300 
    301         for (r = 0; r < b_height; ++r) {
    302           for (c = 0; c < b_width_shift4; ++c) {
    303             v_sum_diff_total[c][r >> 4] =
    304                 denoiser_adjust_16x1_neon(sig, mc_running_avg_y, running_avg_y,
    305                                           k_delta, v_sum_diff_total[c][r >> 4]);
    306 
    307             // Update pointers for next iteration.
    308             sig += 16;
    309             mc_running_avg_y += 16;
    310             running_avg_y += 16;
    311           }
    312           if ((r & 0xf) == 0xf || (bs == BLOCK_16X8 && r == 7)) {
    313             for (c = 0; c < b_width_shift4; ++c) {
    314               sum_diff += horizontal_add_s8x16(v_sum_diff_total[c][r >> 4]);
    315             }
    316           }
    317 
    318           sig = sig - b_width + sig_stride;
    319           mc_running_avg_y = mc_running_avg_y - b_width + mc_avg_y_stride;
    320           running_avg_y = running_avg_y - b_width + avg_y_stride;
    321         }
    322 
    323         if (abs(sum_diff) > sum_diff_thresh) {
    324           return COPY_BLOCK;
    325         }
    326       } else {
    327         return COPY_BLOCK;
    328       }
    329     }
    330   }
    331   return FILTER_BLOCK;
    332 }
    333 
    334 int vp9_denoiser_filter_neon(const uint8_t *sig, int sig_stride,
    335                              const uint8_t *mc_avg, int mc_avg_stride,
    336                              uint8_t *avg, int avg_stride,
    337                              int increase_denoising, BLOCK_SIZE bs,
    338                              int motion_magnitude) {
    339   // Rank by frequency of the block type to have an early termination.
    340   if (bs == BLOCK_16X16 || bs == BLOCK_32X32 || bs == BLOCK_64X64 ||
    341       bs == BLOCK_16X32 || bs == BLOCK_16X8 || bs == BLOCK_32X16 ||
    342       bs == BLOCK_32X64 || bs == BLOCK_64X32) {
    343     return vp9_denoiser_NxM_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg,
    344                                  avg_stride, increase_denoising, bs,
    345                                  motion_magnitude);
    346   } else if (bs == BLOCK_8X8 || bs == BLOCK_8X16) {
    347     return vp9_denoiser_8xN_neon(sig, sig_stride, mc_avg, mc_avg_stride, avg,
    348                                  avg_stride, increase_denoising, bs,
    349                                  motion_magnitude, 8);
    350   }
    351   return COPY_BLOCK;
    352 }
    353