Home | History | Annotate | Download | only in x86
      1 /*
      2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #include <immintrin.h>
     13 
     14 #include "./vp9_rtcd.h"
     15 #include "vpx/vpx_integer.h"
     16 #include "vpx_dsp/vpx_dsp_common.h"
     17 #include "vpx_dsp/x86/bitdepth_conversion_avx2.h"
     18 
     19 int64_t vp9_block_error_avx2(const tran_low_t *coeff, const tran_low_t *dqcoeff,
     20                              intptr_t block_size, int64_t *ssz) {
     21   __m256i sse_256, ssz_256;
     22   __m256i exp_dqcoeff_lo, exp_dqcoeff_hi, exp_coeff_lo, exp_coeff_hi;
     23   __m256i sse_hi, ssz_hi;
     24   __m128i sse_128, ssz_128;
     25   int64_t sse;
     26   const __m256i zero = _mm256_setzero_si256();
     27 
     28   // If the block size is 16 then the results will fit in 32 bits.
     29   if (block_size == 16) {
     30     __m256i coeff_256, dqcoeff_256, coeff_hi, dqcoeff_hi;
     31     // Load 16 elements for coeff and dqcoeff.
     32     coeff_256 = load_tran_low(coeff);
     33     dqcoeff_256 = load_tran_low(dqcoeff);
     34     // dqcoeff - coeff
     35     dqcoeff_256 = _mm256_sub_epi16(dqcoeff_256, coeff_256);
     36     // madd (dqcoeff - coeff)
     37     dqcoeff_256 = _mm256_madd_epi16(dqcoeff_256, dqcoeff_256);
     38     // madd coeff
     39     coeff_256 = _mm256_madd_epi16(coeff_256, coeff_256);
     40     // Save the higher 64 bit of each 128 bit lane.
     41     dqcoeff_hi = _mm256_srli_si256(dqcoeff_256, 8);
     42     coeff_hi = _mm256_srli_si256(coeff_256, 8);
     43     // Add the higher 64 bit to the low 64 bit.
     44     dqcoeff_256 = _mm256_add_epi32(dqcoeff_256, dqcoeff_hi);
     45     coeff_256 = _mm256_add_epi32(coeff_256, coeff_hi);
     46     // Expand each double word in the lower 64 bits to quad word.
     47     sse_256 = _mm256_unpacklo_epi32(dqcoeff_256, zero);
     48     ssz_256 = _mm256_unpacklo_epi32(coeff_256, zero);
     49   } else {
     50     int i;
     51     assert(block_size % 32 == 0);
     52     sse_256 = zero;
     53     ssz_256 = zero;
     54 
     55     for (i = 0; i < block_size; i += 32) {
     56       __m256i coeff_0, coeff_1, dqcoeff_0, dqcoeff_1;
     57       // Load 32 elements for coeff and dqcoeff.
     58       coeff_0 = load_tran_low(coeff + i);
     59       dqcoeff_0 = load_tran_low(dqcoeff + i);
     60       coeff_1 = load_tran_low(coeff + i + 16);
     61       dqcoeff_1 = load_tran_low(dqcoeff + i + 16);
     62       // dqcoeff - coeff
     63       dqcoeff_0 = _mm256_sub_epi16(dqcoeff_0, coeff_0);
     64       dqcoeff_1 = _mm256_sub_epi16(dqcoeff_1, coeff_1);
     65       // madd (dqcoeff - coeff)
     66       dqcoeff_0 = _mm256_madd_epi16(dqcoeff_0, dqcoeff_0);
     67       dqcoeff_1 = _mm256_madd_epi16(dqcoeff_1, dqcoeff_1);
     68       // madd coeff
     69       coeff_0 = _mm256_madd_epi16(coeff_0, coeff_0);
     70       coeff_1 = _mm256_madd_epi16(coeff_1, coeff_1);
     71       // Add the first madd (dqcoeff - coeff) with the second.
     72       dqcoeff_0 = _mm256_add_epi32(dqcoeff_0, dqcoeff_1);
     73       // Add the first madd (coeff) with the second.
     74       coeff_0 = _mm256_add_epi32(coeff_0, coeff_1);
     75       // Expand each double word of madd (dqcoeff - coeff) to quad word.
     76       exp_dqcoeff_lo = _mm256_unpacklo_epi32(dqcoeff_0, zero);
     77       exp_dqcoeff_hi = _mm256_unpackhi_epi32(dqcoeff_0, zero);
     78       // expand each double word of madd (coeff) to quad word
     79       exp_coeff_lo = _mm256_unpacklo_epi32(coeff_0, zero);
     80       exp_coeff_hi = _mm256_unpackhi_epi32(coeff_0, zero);
     81       // Add each quad word of madd (dqcoeff - coeff) and madd (coeff).
     82       sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_lo);
     83       ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_lo);
     84       sse_256 = _mm256_add_epi64(sse_256, exp_dqcoeff_hi);
     85       ssz_256 = _mm256_add_epi64(ssz_256, exp_coeff_hi);
     86     }
     87   }
     88   // Save the higher 64 bit of each 128 bit lane.
     89   sse_hi = _mm256_srli_si256(sse_256, 8);
     90   ssz_hi = _mm256_srli_si256(ssz_256, 8);
     91   // Add the higher 64 bit to the low 64 bit.
     92   sse_256 = _mm256_add_epi64(sse_256, sse_hi);
     93   ssz_256 = _mm256_add_epi64(ssz_256, ssz_hi);
     94 
     95   // Add each 64 bit from each of the 128 bit lane of the 256 bit.
     96   sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
     97                           _mm256_extractf128_si256(sse_256, 1));
     98 
     99   ssz_128 = _mm_add_epi64(_mm256_castsi256_si128(ssz_256),
    100                           _mm256_extractf128_si256(ssz_256, 1));
    101 
    102   // Store the results.
    103   _mm_storel_epi64((__m128i *)(&sse), sse_128);
    104 
    105   _mm_storel_epi64((__m128i *)(ssz), ssz_128);
    106   return sse;
    107 }
    108 
    109 int64_t vp9_block_error_fp_avx2(const tran_low_t *coeff,
    110                                 const tran_low_t *dqcoeff, int block_size) {
    111   int i;
    112   const __m256i zero = _mm256_setzero_si256();
    113   __m256i sse_256 = zero;
    114   __m256i sse_hi;
    115   __m128i sse_128;
    116   int64_t sse;
    117 
    118   if (block_size == 16) {
    119     // Load 16 elements for coeff and dqcoeff.
    120     const __m256i _coeff = load_tran_low(coeff);
    121     const __m256i _dqcoeff = load_tran_low(dqcoeff);
    122     // dqcoeff - coeff
    123     const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
    124     // madd (dqcoeff - coeff)
    125     const __m256i error_lo = _mm256_madd_epi16(diff, diff);
    126     // Save the higher 64 bit of each 128 bit lane.
    127     const __m256i error_hi = _mm256_srli_si256(error_lo, 8);
    128     // Add the higher 64 bit to the low 64 bit.
    129     const __m256i error = _mm256_add_epi32(error_lo, error_hi);
    130     // Expand each double word in the lower 64 bits to quad word.
    131     sse_256 = _mm256_unpacklo_epi32(error, zero);
    132   } else {
    133     for (i = 0; i < block_size; i += 16) {
    134       // Load 16 elements for coeff and dqcoeff.
    135       const __m256i _coeff = load_tran_low(coeff);
    136       const __m256i _dqcoeff = load_tran_low(dqcoeff);
    137       const __m256i diff = _mm256_sub_epi16(_dqcoeff, _coeff);
    138       const __m256i error = _mm256_madd_epi16(diff, diff);
    139       // Expand each double word of madd (dqcoeff - coeff) to quad word.
    140       const __m256i exp_error_lo = _mm256_unpacklo_epi32(error, zero);
    141       const __m256i exp_error_hi = _mm256_unpackhi_epi32(error, zero);
    142       // Add each quad word of madd (dqcoeff - coeff).
    143       sse_256 = _mm256_add_epi64(sse_256, exp_error_lo);
    144       sse_256 = _mm256_add_epi64(sse_256, exp_error_hi);
    145       coeff += 16;
    146       dqcoeff += 16;
    147     }
    148   }
    149   // Save the higher 64 bit of each 128 bit lane.
    150   sse_hi = _mm256_srli_si256(sse_256, 8);
    151   // Add the higher 64 bit to the low 64 bit.
    152   sse_256 = _mm256_add_epi64(sse_256, sse_hi);
    153 
    154   // Add each 64 bit from each of the 128 bit lane of the 256 bit.
    155   sse_128 = _mm_add_epi64(_mm256_castsi256_si128(sse_256),
    156                           _mm256_extractf128_si256(sse_256, 1));
    157 
    158   // Store the results.
    159   _mm_storel_epi64((__m128i *)&sse, sse_128);
    160   return sse;
    161 }
    162