Home | History | Annotate | Download | only in vpx_dsp
      1 /*
      2  *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #include "./vpx_dsp_rtcd.h"
     13 #include "vpx_dsp/fwd_txfm.h"
     14 
     15 void vpx_fdct4x4_c(const int16_t *input, tran_low_t *output, int stride) {
     16   // The 2D transform is done with two passes which are actually pretty
     17   // similar. In the first one, we transform the columns and transpose
     18   // the results. In the second one, we transform the rows. To achieve that,
     19   // as the first pass results are transposed, we transpose the columns (that
     20   // is the transposed rows) and transpose the results (so that it goes back
     21   // in normal/row positions).
     22   int pass;
     23   // We need an intermediate buffer between passes.
     24   tran_low_t intermediate[4 * 4];
     25   const tran_low_t *in_low = NULL;
     26   tran_low_t *out = intermediate;
     27   // Do the two transform/transpose passes
     28   for (pass = 0; pass < 2; ++pass) {
     29     tran_high_t in_high[4];    // canbe16
     30     tran_high_t step[4];       // canbe16
     31     tran_high_t temp1, temp2;  // needs32
     32     int i;
     33     for (i = 0; i < 4; ++i) {
     34       // Load inputs.
     35       if (pass == 0) {
     36         in_high[0] = input[0 * stride] * 16;
     37         in_high[1] = input[1 * stride] * 16;
     38         in_high[2] = input[2 * stride] * 16;
     39         in_high[3] = input[3 * stride] * 16;
     40         if (i == 0 && in_high[0]) {
     41           ++in_high[0];
     42         }
     43       } else {
     44         assert(in_low != NULL);
     45         in_high[0] = in_low[0 * 4];
     46         in_high[1] = in_low[1 * 4];
     47         in_high[2] = in_low[2 * 4];
     48         in_high[3] = in_low[3 * 4];
     49         ++in_low;
     50       }
     51       // Transform.
     52       step[0] = in_high[0] + in_high[3];
     53       step[1] = in_high[1] + in_high[2];
     54       step[2] = in_high[1] - in_high[2];
     55       step[3] = in_high[0] - in_high[3];
     56       temp1 = (step[0] + step[1]) * cospi_16_64;
     57       temp2 = (step[0] - step[1]) * cospi_16_64;
     58       out[0] = (tran_low_t)fdct_round_shift(temp1);
     59       out[2] = (tran_low_t)fdct_round_shift(temp2);
     60       temp1 = step[2] * cospi_24_64 + step[3] * cospi_8_64;
     61       temp2 = -step[2] * cospi_8_64 + step[3] * cospi_24_64;
     62       out[1] = (tran_low_t)fdct_round_shift(temp1);
     63       out[3] = (tran_low_t)fdct_round_shift(temp2);
     64       // Do next column (which is a transposed row in second/horizontal pass)
     65       ++input;
     66       out += 4;
     67     }
     68     // Setup in/out for next pass.
     69     in_low = intermediate;
     70     out = output;
     71   }
     72 
     73   {
     74     int i, j;
     75     for (i = 0; i < 4; ++i) {
     76       for (j = 0; j < 4; ++j) output[j + i * 4] = (output[j + i * 4] + 1) >> 2;
     77     }
     78   }
     79 }
     80 
     81 void vpx_fdct4x4_1_c(const int16_t *input, tran_low_t *output, int stride) {
     82   int r, c;
     83   tran_low_t sum = 0;
     84   for (r = 0; r < 4; ++r)
     85     for (c = 0; c < 4; ++c) sum += input[r * stride + c];
     86 
     87   output[0] = sum * 2;
     88 }
     89 
     90 void vpx_fdct8x8_c(const int16_t *input, tran_low_t *final_output, int stride) {
     91   int i, j;
     92   tran_low_t intermediate[64];
     93   int pass;
     94   tran_low_t *output = intermediate;
     95   const tran_low_t *in = NULL;
     96 
     97   // Transform columns
     98   for (pass = 0; pass < 2; ++pass) {
     99     tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
    100     tran_high_t t0, t1, t2, t3;                  // needs32
    101     tran_high_t x0, x1, x2, x3;                  // canbe16
    102 
    103     for (i = 0; i < 8; i++) {
    104       // stage 1
    105       if (pass == 0) {
    106         s0 = (input[0 * stride] + input[7 * stride]) * 4;
    107         s1 = (input[1 * stride] + input[6 * stride]) * 4;
    108         s2 = (input[2 * stride] + input[5 * stride]) * 4;
    109         s3 = (input[3 * stride] + input[4 * stride]) * 4;
    110         s4 = (input[3 * stride] - input[4 * stride]) * 4;
    111         s5 = (input[2 * stride] - input[5 * stride]) * 4;
    112         s6 = (input[1 * stride] - input[6 * stride]) * 4;
    113         s7 = (input[0 * stride] - input[7 * stride]) * 4;
    114         ++input;
    115       } else {
    116         s0 = in[0 * 8] + in[7 * 8];
    117         s1 = in[1 * 8] + in[6 * 8];
    118         s2 = in[2 * 8] + in[5 * 8];
    119         s3 = in[3 * 8] + in[4 * 8];
    120         s4 = in[3 * 8] - in[4 * 8];
    121         s5 = in[2 * 8] - in[5 * 8];
    122         s6 = in[1 * 8] - in[6 * 8];
    123         s7 = in[0 * 8] - in[7 * 8];
    124         ++in;
    125       }
    126 
    127       // fdct4(step, step);
    128       x0 = s0 + s3;
    129       x1 = s1 + s2;
    130       x2 = s1 - s2;
    131       x3 = s0 - s3;
    132       t0 = (x0 + x1) * cospi_16_64;
    133       t1 = (x0 - x1) * cospi_16_64;
    134       t2 = x2 * cospi_24_64 + x3 * cospi_8_64;
    135       t3 = -x2 * cospi_8_64 + x3 * cospi_24_64;
    136       output[0] = (tran_low_t)fdct_round_shift(t0);
    137       output[2] = (tran_low_t)fdct_round_shift(t2);
    138       output[4] = (tran_low_t)fdct_round_shift(t1);
    139       output[6] = (tran_low_t)fdct_round_shift(t3);
    140 
    141       // Stage 2
    142       t0 = (s6 - s5) * cospi_16_64;
    143       t1 = (s6 + s5) * cospi_16_64;
    144       t2 = fdct_round_shift(t0);
    145       t3 = fdct_round_shift(t1);
    146 
    147       // Stage 3
    148       x0 = s4 + t2;
    149       x1 = s4 - t2;
    150       x2 = s7 - t3;
    151       x3 = s7 + t3;
    152 
    153       // Stage 4
    154       t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
    155       t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
    156       t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
    157       t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
    158       output[1] = (tran_low_t)fdct_round_shift(t0);
    159       output[3] = (tran_low_t)fdct_round_shift(t2);
    160       output[5] = (tran_low_t)fdct_round_shift(t1);
    161       output[7] = (tran_low_t)fdct_round_shift(t3);
    162       output += 8;
    163     }
    164     in = intermediate;
    165     output = final_output;
    166   }
    167 
    168   // Rows
    169   for (i = 0; i < 8; ++i) {
    170     for (j = 0; j < 8; ++j) final_output[j + i * 8] /= 2;
    171   }
    172 }
    173 
    174 void vpx_fdct8x8_1_c(const int16_t *input, tran_low_t *output, int stride) {
    175   int r, c;
    176   tran_low_t sum = 0;
    177   for (r = 0; r < 8; ++r)
    178     for (c = 0; c < 8; ++c) sum += input[r * stride + c];
    179 
    180   output[0] = sum;
    181 }
    182 
    183 void vpx_fdct16x16_c(const int16_t *input, tran_low_t *output, int stride) {
    184   // The 2D transform is done with two passes which are actually pretty
    185   // similar. In the first one, we transform the columns and transpose
    186   // the results. In the second one, we transform the rows. To achieve that,
    187   // as the first pass results are transposed, we transpose the columns (that
    188   // is the transposed rows) and transpose the results (so that it goes back
    189   // in normal/row positions).
    190   int pass;
    191   // We need an intermediate buffer between passes.
    192   tran_low_t intermediate[256];
    193   const tran_low_t *in_low = NULL;
    194   tran_low_t *out = intermediate;
    195   // Do the two transform/transpose passes
    196   for (pass = 0; pass < 2; ++pass) {
    197     tran_high_t step1[8];      // canbe16
    198     tran_high_t step2[8];      // canbe16
    199     tran_high_t step3[8];      // canbe16
    200     tran_high_t in_high[8];    // canbe16
    201     tran_high_t temp1, temp2;  // needs32
    202     int i;
    203     for (i = 0; i < 16; i++) {
    204       if (0 == pass) {
    205         // Calculate input for the first 8 results.
    206         in_high[0] = (input[0 * stride] + input[15 * stride]) * 4;
    207         in_high[1] = (input[1 * stride] + input[14 * stride]) * 4;
    208         in_high[2] = (input[2 * stride] + input[13 * stride]) * 4;
    209         in_high[3] = (input[3 * stride] + input[12 * stride]) * 4;
    210         in_high[4] = (input[4 * stride] + input[11 * stride]) * 4;
    211         in_high[5] = (input[5 * stride] + input[10 * stride]) * 4;
    212         in_high[6] = (input[6 * stride] + input[9 * stride]) * 4;
    213         in_high[7] = (input[7 * stride] + input[8 * stride]) * 4;
    214         // Calculate input for the next 8 results.
    215         step1[0] = (input[7 * stride] - input[8 * stride]) * 4;
    216         step1[1] = (input[6 * stride] - input[9 * stride]) * 4;
    217         step1[2] = (input[5 * stride] - input[10 * stride]) * 4;
    218         step1[3] = (input[4 * stride] - input[11 * stride]) * 4;
    219         step1[4] = (input[3 * stride] - input[12 * stride]) * 4;
    220         step1[5] = (input[2 * stride] - input[13 * stride]) * 4;
    221         step1[6] = (input[1 * stride] - input[14 * stride]) * 4;
    222         step1[7] = (input[0 * stride] - input[15 * stride]) * 4;
    223       } else {
    224         // Calculate input for the first 8 results.
    225         assert(in_low != NULL);
    226         in_high[0] = ((in_low[0 * 16] + 1) >> 2) + ((in_low[15 * 16] + 1) >> 2);
    227         in_high[1] = ((in_low[1 * 16] + 1) >> 2) + ((in_low[14 * 16] + 1) >> 2);
    228         in_high[2] = ((in_low[2 * 16] + 1) >> 2) + ((in_low[13 * 16] + 1) >> 2);
    229         in_high[3] = ((in_low[3 * 16] + 1) >> 2) + ((in_low[12 * 16] + 1) >> 2);
    230         in_high[4] = ((in_low[4 * 16] + 1) >> 2) + ((in_low[11 * 16] + 1) >> 2);
    231         in_high[5] = ((in_low[5 * 16] + 1) >> 2) + ((in_low[10 * 16] + 1) >> 2);
    232         in_high[6] = ((in_low[6 * 16] + 1) >> 2) + ((in_low[9 * 16] + 1) >> 2);
    233         in_high[7] = ((in_low[7 * 16] + 1) >> 2) + ((in_low[8 * 16] + 1) >> 2);
    234         // Calculate input for the next 8 results.
    235         step1[0] = ((in_low[7 * 16] + 1) >> 2) - ((in_low[8 * 16] + 1) >> 2);
    236         step1[1] = ((in_low[6 * 16] + 1) >> 2) - ((in_low[9 * 16] + 1) >> 2);
    237         step1[2] = ((in_low[5 * 16] + 1) >> 2) - ((in_low[10 * 16] + 1) >> 2);
    238         step1[3] = ((in_low[4 * 16] + 1) >> 2) - ((in_low[11 * 16] + 1) >> 2);
    239         step1[4] = ((in_low[3 * 16] + 1) >> 2) - ((in_low[12 * 16] + 1) >> 2);
    240         step1[5] = ((in_low[2 * 16] + 1) >> 2) - ((in_low[13 * 16] + 1) >> 2);
    241         step1[6] = ((in_low[1 * 16] + 1) >> 2) - ((in_low[14 * 16] + 1) >> 2);
    242         step1[7] = ((in_low[0 * 16] + 1) >> 2) - ((in_low[15 * 16] + 1) >> 2);
    243         in_low++;
    244       }
    245       // Work on the first eight values; fdct8(input, even_results);
    246       {
    247         tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;  // canbe16
    248         tran_high_t t0, t1, t2, t3;                  // needs32
    249         tran_high_t x0, x1, x2, x3;                  // canbe16
    250 
    251         // stage 1
    252         s0 = in_high[0] + in_high[7];
    253         s1 = in_high[1] + in_high[6];
    254         s2 = in_high[2] + in_high[5];
    255         s3 = in_high[3] + in_high[4];
    256         s4 = in_high[3] - in_high[4];
    257         s5 = in_high[2] - in_high[5];
    258         s6 = in_high[1] - in_high[6];
    259         s7 = in_high[0] - in_high[7];
    260 
    261         // fdct4(step, step);
    262         x0 = s0 + s3;
    263         x1 = s1 + s2;
    264         x2 = s1 - s2;
    265         x3 = s0 - s3;
    266         t0 = (x0 + x1) * cospi_16_64;
    267         t1 = (x0 - x1) * cospi_16_64;
    268         t2 = x3 * cospi_8_64 + x2 * cospi_24_64;
    269         t3 = x3 * cospi_24_64 - x2 * cospi_8_64;
    270         out[0] = (tran_low_t)fdct_round_shift(t0);
    271         out[4] = (tran_low_t)fdct_round_shift(t2);
    272         out[8] = (tran_low_t)fdct_round_shift(t1);
    273         out[12] = (tran_low_t)fdct_round_shift(t3);
    274 
    275         // Stage 2
    276         t0 = (s6 - s5) * cospi_16_64;
    277         t1 = (s6 + s5) * cospi_16_64;
    278         t2 = fdct_round_shift(t0);
    279         t3 = fdct_round_shift(t1);
    280 
    281         // Stage 3
    282         x0 = s4 + t2;
    283         x1 = s4 - t2;
    284         x2 = s7 - t3;
    285         x3 = s7 + t3;
    286 
    287         // Stage 4
    288         t0 = x0 * cospi_28_64 + x3 * cospi_4_64;
    289         t1 = x1 * cospi_12_64 + x2 * cospi_20_64;
    290         t2 = x2 * cospi_12_64 + x1 * -cospi_20_64;
    291         t3 = x3 * cospi_28_64 + x0 * -cospi_4_64;
    292         out[2] = (tran_low_t)fdct_round_shift(t0);
    293         out[6] = (tran_low_t)fdct_round_shift(t2);
    294         out[10] = (tran_low_t)fdct_round_shift(t1);
    295         out[14] = (tran_low_t)fdct_round_shift(t3);
    296       }
    297       // Work on the next eight values; step1 -> odd_results
    298       {
    299         // step 2
    300         temp1 = (step1[5] - step1[2]) * cospi_16_64;
    301         temp2 = (step1[4] - step1[3]) * cospi_16_64;
    302         step2[2] = fdct_round_shift(temp1);
    303         step2[3] = fdct_round_shift(temp2);
    304         temp1 = (step1[4] + step1[3]) * cospi_16_64;
    305         temp2 = (step1[5] + step1[2]) * cospi_16_64;
    306         step2[4] = fdct_round_shift(temp1);
    307         step2[5] = fdct_round_shift(temp2);
    308         // step 3
    309         step3[0] = step1[0] + step2[3];
    310         step3[1] = step1[1] + step2[2];
    311         step3[2] = step1[1] - step2[2];
    312         step3[3] = step1[0] - step2[3];
    313         step3[4] = step1[7] - step2[4];
    314         step3[5] = step1[6] - step2[5];
    315         step3[6] = step1[6] + step2[5];
    316         step3[7] = step1[7] + step2[4];
    317         // step 4
    318         temp1 = step3[1] * -cospi_8_64 + step3[6] * cospi_24_64;
    319         temp2 = step3[2] * cospi_24_64 + step3[5] * cospi_8_64;
    320         step2[1] = fdct_round_shift(temp1);
    321         step2[2] = fdct_round_shift(temp2);
    322         temp1 = step3[2] * cospi_8_64 - step3[5] * cospi_24_64;
    323         temp2 = step3[1] * cospi_24_64 + step3[6] * cospi_8_64;
    324         step2[5] = fdct_round_shift(temp1);
    325         step2[6] = fdct_round_shift(temp2);
    326         // step 5
    327         step1[0] = step3[0] + step2[1];
    328         step1[1] = step3[0] - step2[1];
    329         step1[2] = step3[3] + step2[2];
    330         step1[3] = step3[3] - step2[2];
    331         step1[4] = step3[4] - step2[5];
    332         step1[5] = step3[4] + step2[5];
    333         step1[6] = step3[7] - step2[6];
    334         step1[7] = step3[7] + step2[6];
    335         // step 6
    336         temp1 = step1[0] * cospi_30_64 + step1[7] * cospi_2_64;
    337         temp2 = step1[1] * cospi_14_64 + step1[6] * cospi_18_64;
    338         out[1] = (tran_low_t)fdct_round_shift(temp1);
    339         out[9] = (tran_low_t)fdct_round_shift(temp2);
    340         temp1 = step1[2] * cospi_22_64 + step1[5] * cospi_10_64;
    341         temp2 = step1[3] * cospi_6_64 + step1[4] * cospi_26_64;
    342         out[5] = (tran_low_t)fdct_round_shift(temp1);
    343         out[13] = (tran_low_t)fdct_round_shift(temp2);
    344         temp1 = step1[3] * -cospi_26_64 + step1[4] * cospi_6_64;
    345         temp2 = step1[2] * -cospi_10_64 + step1[5] * cospi_22_64;
    346         out[3] = (tran_low_t)fdct_round_shift(temp1);
    347         out[11] = (tran_low_t)fdct_round_shift(temp2);
    348         temp1 = step1[1] * -cospi_18_64 + step1[6] * cospi_14_64;
    349         temp2 = step1[0] * -cospi_2_64 + step1[7] * cospi_30_64;
    350         out[7] = (tran_low_t)fdct_round_shift(temp1);
    351         out[15] = (tran_low_t)fdct_round_shift(temp2);
    352       }
    353       // Do next column (which is a transposed row in second/horizontal pass)
    354       input++;
    355       out += 16;
    356     }
    357     // Setup in/out for next pass.
    358     in_low = intermediate;
    359     out = output;
    360   }
    361 }
    362 
    363 void vpx_fdct16x16_1_c(const int16_t *input, tran_low_t *output, int stride) {
    364   int r, c;
    365   int sum = 0;
    366   for (r = 0; r < 16; ++r)
    367     for (c = 0; c < 16; ++c) sum += input[r * stride + c];
    368 
    369   output[0] = (tran_low_t)(sum >> 1);
    370 }
    371 
    372 static INLINE tran_high_t dct_32_round(tran_high_t input) {
    373   tran_high_t rv = ROUND_POWER_OF_TWO(input, DCT_CONST_BITS);
    374   // TODO(debargha, peter.derivaz): Find new bounds for this assert,
    375   // and make the bounds consts.
    376   // assert(-131072 <= rv && rv <= 131071);
    377   return rv;
    378 }
    379 
    380 static INLINE tran_high_t half_round_shift(tran_high_t input) {
    381   tran_high_t rv = (input + 1 + (input < 0)) >> 2;
    382   return rv;
    383 }
    384 
    385 void vpx_fdct32(const tran_high_t *input, tran_high_t *output, int round) {
    386   tran_high_t step[32];
    387   // Stage 1
    388   step[0] = input[0] + input[(32 - 1)];
    389   step[1] = input[1] + input[(32 - 2)];
    390   step[2] = input[2] + input[(32 - 3)];
    391   step[3] = input[3] + input[(32 - 4)];
    392   step[4] = input[4] + input[(32 - 5)];
    393   step[5] = input[5] + input[(32 - 6)];
    394   step[6] = input[6] + input[(32 - 7)];
    395   step[7] = input[7] + input[(32 - 8)];
    396   step[8] = input[8] + input[(32 - 9)];
    397   step[9] = input[9] + input[(32 - 10)];
    398   step[10] = input[10] + input[(32 - 11)];
    399   step[11] = input[11] + input[(32 - 12)];
    400   step[12] = input[12] + input[(32 - 13)];
    401   step[13] = input[13] + input[(32 - 14)];
    402   step[14] = input[14] + input[(32 - 15)];
    403   step[15] = input[15] + input[(32 - 16)];
    404   step[16] = -input[16] + input[(32 - 17)];
    405   step[17] = -input[17] + input[(32 - 18)];
    406   step[18] = -input[18] + input[(32 - 19)];
    407   step[19] = -input[19] + input[(32 - 20)];
    408   step[20] = -input[20] + input[(32 - 21)];
    409   step[21] = -input[21] + input[(32 - 22)];
    410   step[22] = -input[22] + input[(32 - 23)];
    411   step[23] = -input[23] + input[(32 - 24)];
    412   step[24] = -input[24] + input[(32 - 25)];
    413   step[25] = -input[25] + input[(32 - 26)];
    414   step[26] = -input[26] + input[(32 - 27)];
    415   step[27] = -input[27] + input[(32 - 28)];
    416   step[28] = -input[28] + input[(32 - 29)];
    417   step[29] = -input[29] + input[(32 - 30)];
    418   step[30] = -input[30] + input[(32 - 31)];
    419   step[31] = -input[31] + input[(32 - 32)];
    420 
    421   // Stage 2
    422   output[0] = step[0] + step[16 - 1];
    423   output[1] = step[1] + step[16 - 2];
    424   output[2] = step[2] + step[16 - 3];
    425   output[3] = step[3] + step[16 - 4];
    426   output[4] = step[4] + step[16 - 5];
    427   output[5] = step[5] + step[16 - 6];
    428   output[6] = step[6] + step[16 - 7];
    429   output[7] = step[7] + step[16 - 8];
    430   output[8] = -step[8] + step[16 - 9];
    431   output[9] = -step[9] + step[16 - 10];
    432   output[10] = -step[10] + step[16 - 11];
    433   output[11] = -step[11] + step[16 - 12];
    434   output[12] = -step[12] + step[16 - 13];
    435   output[13] = -step[13] + step[16 - 14];
    436   output[14] = -step[14] + step[16 - 15];
    437   output[15] = -step[15] + step[16 - 16];
    438 
    439   output[16] = step[16];
    440   output[17] = step[17];
    441   output[18] = step[18];
    442   output[19] = step[19];
    443 
    444   output[20] = dct_32_round((-step[20] + step[27]) * cospi_16_64);
    445   output[21] = dct_32_round((-step[21] + step[26]) * cospi_16_64);
    446   output[22] = dct_32_round((-step[22] + step[25]) * cospi_16_64);
    447   output[23] = dct_32_round((-step[23] + step[24]) * cospi_16_64);
    448 
    449   output[24] = dct_32_round((step[24] + step[23]) * cospi_16_64);
    450   output[25] = dct_32_round((step[25] + step[22]) * cospi_16_64);
    451   output[26] = dct_32_round((step[26] + step[21]) * cospi_16_64);
    452   output[27] = dct_32_round((step[27] + step[20]) * cospi_16_64);
    453 
    454   output[28] = step[28];
    455   output[29] = step[29];
    456   output[30] = step[30];
    457   output[31] = step[31];
    458 
    459   // dump the magnitude by 4, hence the intermediate values are within
    460   // the range of 16 bits.
    461   if (round) {
    462     output[0] = half_round_shift(output[0]);
    463     output[1] = half_round_shift(output[1]);
    464     output[2] = half_round_shift(output[2]);
    465     output[3] = half_round_shift(output[3]);
    466     output[4] = half_round_shift(output[4]);
    467     output[5] = half_round_shift(output[5]);
    468     output[6] = half_round_shift(output[6]);
    469     output[7] = half_round_shift(output[7]);
    470     output[8] = half_round_shift(output[8]);
    471     output[9] = half_round_shift(output[9]);
    472     output[10] = half_round_shift(output[10]);
    473     output[11] = half_round_shift(output[11]);
    474     output[12] = half_round_shift(output[12]);
    475     output[13] = half_round_shift(output[13]);
    476     output[14] = half_round_shift(output[14]);
    477     output[15] = half_round_shift(output[15]);
    478 
    479     output[16] = half_round_shift(output[16]);
    480     output[17] = half_round_shift(output[17]);
    481     output[18] = half_round_shift(output[18]);
    482     output[19] = half_round_shift(output[19]);
    483     output[20] = half_round_shift(output[20]);
    484     output[21] = half_round_shift(output[21]);
    485     output[22] = half_round_shift(output[22]);
    486     output[23] = half_round_shift(output[23]);
    487     output[24] = half_round_shift(output[24]);
    488     output[25] = half_round_shift(output[25]);
    489     output[26] = half_round_shift(output[26]);
    490     output[27] = half_round_shift(output[27]);
    491     output[28] = half_round_shift(output[28]);
    492     output[29] = half_round_shift(output[29]);
    493     output[30] = half_round_shift(output[30]);
    494     output[31] = half_round_shift(output[31]);
    495   }
    496 
    497   // Stage 3
    498   step[0] = output[0] + output[(8 - 1)];
    499   step[1] = output[1] + output[(8 - 2)];
    500   step[2] = output[2] + output[(8 - 3)];
    501   step[3] = output[3] + output[(8 - 4)];
    502   step[4] = -output[4] + output[(8 - 5)];
    503   step[5] = -output[5] + output[(8 - 6)];
    504   step[6] = -output[6] + output[(8 - 7)];
    505   step[7] = -output[7] + output[(8 - 8)];
    506   step[8] = output[8];
    507   step[9] = output[9];
    508   step[10] = dct_32_round((-output[10] + output[13]) * cospi_16_64);
    509   step[11] = dct_32_round((-output[11] + output[12]) * cospi_16_64);
    510   step[12] = dct_32_round((output[12] + output[11]) * cospi_16_64);
    511   step[13] = dct_32_round((output[13] + output[10]) * cospi_16_64);
    512   step[14] = output[14];
    513   step[15] = output[15];
    514 
    515   step[16] = output[16] + output[23];
    516   step[17] = output[17] + output[22];
    517   step[18] = output[18] + output[21];
    518   step[19] = output[19] + output[20];
    519   step[20] = -output[20] + output[19];
    520   step[21] = -output[21] + output[18];
    521   step[22] = -output[22] + output[17];
    522   step[23] = -output[23] + output[16];
    523   step[24] = -output[24] + output[31];
    524   step[25] = -output[25] + output[30];
    525   step[26] = -output[26] + output[29];
    526   step[27] = -output[27] + output[28];
    527   step[28] = output[28] + output[27];
    528   step[29] = output[29] + output[26];
    529   step[30] = output[30] + output[25];
    530   step[31] = output[31] + output[24];
    531 
    532   // Stage 4
    533   output[0] = step[0] + step[3];
    534   output[1] = step[1] + step[2];
    535   output[2] = -step[2] + step[1];
    536   output[3] = -step[3] + step[0];
    537   output[4] = step[4];
    538   output[5] = dct_32_round((-step[5] + step[6]) * cospi_16_64);
    539   output[6] = dct_32_round((step[6] + step[5]) * cospi_16_64);
    540   output[7] = step[7];
    541   output[8] = step[8] + step[11];
    542   output[9] = step[9] + step[10];
    543   output[10] = -step[10] + step[9];
    544   output[11] = -step[11] + step[8];
    545   output[12] = -step[12] + step[15];
    546   output[13] = -step[13] + step[14];
    547   output[14] = step[14] + step[13];
    548   output[15] = step[15] + step[12];
    549 
    550   output[16] = step[16];
    551   output[17] = step[17];
    552   output[18] = dct_32_round(step[18] * -cospi_8_64 + step[29] * cospi_24_64);
    553   output[19] = dct_32_round(step[19] * -cospi_8_64 + step[28] * cospi_24_64);
    554   output[20] = dct_32_round(step[20] * -cospi_24_64 + step[27] * -cospi_8_64);
    555   output[21] = dct_32_round(step[21] * -cospi_24_64 + step[26] * -cospi_8_64);
    556   output[22] = step[22];
    557   output[23] = step[23];
    558   output[24] = step[24];
    559   output[25] = step[25];
    560   output[26] = dct_32_round(step[26] * cospi_24_64 + step[21] * -cospi_8_64);
    561   output[27] = dct_32_round(step[27] * cospi_24_64 + step[20] * -cospi_8_64);
    562   output[28] = dct_32_round(step[28] * cospi_8_64 + step[19] * cospi_24_64);
    563   output[29] = dct_32_round(step[29] * cospi_8_64 + step[18] * cospi_24_64);
    564   output[30] = step[30];
    565   output[31] = step[31];
    566 
    567   // Stage 5
    568   step[0] = dct_32_round((output[0] + output[1]) * cospi_16_64);
    569   step[1] = dct_32_round((-output[1] + output[0]) * cospi_16_64);
    570   step[2] = dct_32_round(output[2] * cospi_24_64 + output[3] * cospi_8_64);
    571   step[3] = dct_32_round(output[3] * cospi_24_64 - output[2] * cospi_8_64);
    572   step[4] = output[4] + output[5];
    573   step[5] = -output[5] + output[4];
    574   step[6] = -output[6] + output[7];
    575   step[7] = output[7] + output[6];
    576   step[8] = output[8];
    577   step[9] = dct_32_round(output[9] * -cospi_8_64 + output[14] * cospi_24_64);
    578   step[10] = dct_32_round(output[10] * -cospi_24_64 + output[13] * -cospi_8_64);
    579   step[11] = output[11];
    580   step[12] = output[12];
    581   step[13] = dct_32_round(output[13] * cospi_24_64 + output[10] * -cospi_8_64);
    582   step[14] = dct_32_round(output[14] * cospi_8_64 + output[9] * cospi_24_64);
    583   step[15] = output[15];
    584 
    585   step[16] = output[16] + output[19];
    586   step[17] = output[17] + output[18];
    587   step[18] = -output[18] + output[17];
    588   step[19] = -output[19] + output[16];
    589   step[20] = -output[20] + output[23];
    590   step[21] = -output[21] + output[22];
    591   step[22] = output[22] + output[21];
    592   step[23] = output[23] + output[20];
    593   step[24] = output[24] + output[27];
    594   step[25] = output[25] + output[26];
    595   step[26] = -output[26] + output[25];
    596   step[27] = -output[27] + output[24];
    597   step[28] = -output[28] + output[31];
    598   step[29] = -output[29] + output[30];
    599   step[30] = output[30] + output[29];
    600   step[31] = output[31] + output[28];
    601 
    602   // Stage 6
    603   output[0] = step[0];
    604   output[1] = step[1];
    605   output[2] = step[2];
    606   output[3] = step[3];
    607   output[4] = dct_32_round(step[4] * cospi_28_64 + step[7] * cospi_4_64);
    608   output[5] = dct_32_round(step[5] * cospi_12_64 + step[6] * cospi_20_64);
    609   output[6] = dct_32_round(step[6] * cospi_12_64 + step[5] * -cospi_20_64);
    610   output[7] = dct_32_round(step[7] * cospi_28_64 + step[4] * -cospi_4_64);
    611   output[8] = step[8] + step[9];
    612   output[9] = -step[9] + step[8];
    613   output[10] = -step[10] + step[11];
    614   output[11] = step[11] + step[10];
    615   output[12] = step[12] + step[13];
    616   output[13] = -step[13] + step[12];
    617   output[14] = -step[14] + step[15];
    618   output[15] = step[15] + step[14];
    619 
    620   output[16] = step[16];
    621   output[17] = dct_32_round(step[17] * -cospi_4_64 + step[30] * cospi_28_64);
    622   output[18] = dct_32_round(step[18] * -cospi_28_64 + step[29] * -cospi_4_64);
    623   output[19] = step[19];
    624   output[20] = step[20];
    625   output[21] = dct_32_round(step[21] * -cospi_20_64 + step[26] * cospi_12_64);
    626   output[22] = dct_32_round(step[22] * -cospi_12_64 + step[25] * -cospi_20_64);
    627   output[23] = step[23];
    628   output[24] = step[24];
    629   output[25] = dct_32_round(step[25] * cospi_12_64 + step[22] * -cospi_20_64);
    630   output[26] = dct_32_round(step[26] * cospi_20_64 + step[21] * cospi_12_64);
    631   output[27] = step[27];
    632   output[28] = step[28];
    633   output[29] = dct_32_round(step[29] * cospi_28_64 + step[18] * -cospi_4_64);
    634   output[30] = dct_32_round(step[30] * cospi_4_64 + step[17] * cospi_28_64);
    635   output[31] = step[31];
    636 
    637   // Stage 7
    638   step[0] = output[0];
    639   step[1] = output[1];
    640   step[2] = output[2];
    641   step[3] = output[3];
    642   step[4] = output[4];
    643   step[5] = output[5];
    644   step[6] = output[6];
    645   step[7] = output[7];
    646   step[8] = dct_32_round(output[8] * cospi_30_64 + output[15] * cospi_2_64);
    647   step[9] = dct_32_round(output[9] * cospi_14_64 + output[14] * cospi_18_64);
    648   step[10] = dct_32_round(output[10] * cospi_22_64 + output[13] * cospi_10_64);
    649   step[11] = dct_32_round(output[11] * cospi_6_64 + output[12] * cospi_26_64);
    650   step[12] = dct_32_round(output[12] * cospi_6_64 + output[11] * -cospi_26_64);
    651   step[13] = dct_32_round(output[13] * cospi_22_64 + output[10] * -cospi_10_64);
    652   step[14] = dct_32_round(output[14] * cospi_14_64 + output[9] * -cospi_18_64);
    653   step[15] = dct_32_round(output[15] * cospi_30_64 + output[8] * -cospi_2_64);
    654 
    655   step[16] = output[16] + output[17];
    656   step[17] = -output[17] + output[16];
    657   step[18] = -output[18] + output[19];
    658   step[19] = output[19] + output[18];
    659   step[20] = output[20] + output[21];
    660   step[21] = -output[21] + output[20];
    661   step[22] = -output[22] + output[23];
    662   step[23] = output[23] + output[22];
    663   step[24] = output[24] + output[25];
    664   step[25] = -output[25] + output[24];
    665   step[26] = -output[26] + output[27];
    666   step[27] = output[27] + output[26];
    667   step[28] = output[28] + output[29];
    668   step[29] = -output[29] + output[28];
    669   step[30] = -output[30] + output[31];
    670   step[31] = output[31] + output[30];
    671 
    672   // Final stage --- outputs indices are bit-reversed.
    673   output[0] = step[0];
    674   output[16] = step[1];
    675   output[8] = step[2];
    676   output[24] = step[3];
    677   output[4] = step[4];
    678   output[20] = step[5];
    679   output[12] = step[6];
    680   output[28] = step[7];
    681   output[2] = step[8];
    682   output[18] = step[9];
    683   output[10] = step[10];
    684   output[26] = step[11];
    685   output[6] = step[12];
    686   output[22] = step[13];
    687   output[14] = step[14];
    688   output[30] = step[15];
    689 
    690   output[1] = dct_32_round(step[16] * cospi_31_64 + step[31] * cospi_1_64);
    691   output[17] = dct_32_round(step[17] * cospi_15_64 + step[30] * cospi_17_64);
    692   output[9] = dct_32_round(step[18] * cospi_23_64 + step[29] * cospi_9_64);
    693   output[25] = dct_32_round(step[19] * cospi_7_64 + step[28] * cospi_25_64);
    694   output[5] = dct_32_round(step[20] * cospi_27_64 + step[27] * cospi_5_64);
    695   output[21] = dct_32_round(step[21] * cospi_11_64 + step[26] * cospi_21_64);
    696   output[13] = dct_32_round(step[22] * cospi_19_64 + step[25] * cospi_13_64);
    697   output[29] = dct_32_round(step[23] * cospi_3_64 + step[24] * cospi_29_64);
    698   output[3] = dct_32_round(step[24] * cospi_3_64 + step[23] * -cospi_29_64);
    699   output[19] = dct_32_round(step[25] * cospi_19_64 + step[22] * -cospi_13_64);
    700   output[11] = dct_32_round(step[26] * cospi_11_64 + step[21] * -cospi_21_64);
    701   output[27] = dct_32_round(step[27] * cospi_27_64 + step[20] * -cospi_5_64);
    702   output[7] = dct_32_round(step[28] * cospi_7_64 + step[19] * -cospi_25_64);
    703   output[23] = dct_32_round(step[29] * cospi_23_64 + step[18] * -cospi_9_64);
    704   output[15] = dct_32_round(step[30] * cospi_15_64 + step[17] * -cospi_17_64);
    705   output[31] = dct_32_round(step[31] * cospi_31_64 + step[16] * -cospi_1_64);
    706 }
    707 
    708 void vpx_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
    709   int i, j;
    710   tran_high_t output[32 * 32];
    711 
    712   // Columns
    713   for (i = 0; i < 32; ++i) {
    714     tran_high_t temp_in[32], temp_out[32];
    715     for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4;
    716     vpx_fdct32(temp_in, temp_out, 0);
    717     for (j = 0; j < 32; ++j)
    718       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
    719   }
    720 
    721   // Rows
    722   for (i = 0; i < 32; ++i) {
    723     tran_high_t temp_in[32], temp_out[32];
    724     for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
    725     vpx_fdct32(temp_in, temp_out, 0);
    726     for (j = 0; j < 32; ++j)
    727       out[j + i * 32] =
    728           (tran_low_t)((temp_out[j] + 1 + (temp_out[j] < 0)) >> 2);
    729   }
    730 }
    731 
    732 // Note that although we use dct_32_round in dct32 computation flow,
    733 // this 2d fdct32x32 for rate-distortion optimization loop is operating
    734 // within 16 bits precision.
    735 void vpx_fdct32x32_rd_c(const int16_t *input, tran_low_t *out, int stride) {
    736   int i, j;
    737   tran_high_t output[32 * 32];
    738 
    739   // Columns
    740   for (i = 0; i < 32; ++i) {
    741     tran_high_t temp_in[32], temp_out[32];
    742     for (j = 0; j < 32; ++j) temp_in[j] = input[j * stride + i] * 4;
    743     vpx_fdct32(temp_in, temp_out, 0);
    744     for (j = 0; j < 32; ++j)
    745       // TODO(cd): see quality impact of only doing
    746       //           output[j * 32 + i] = (temp_out[j] + 1) >> 2;
    747       //           PS: also change code in vpx_dsp/x86/vpx_dct_sse2.c
    748       output[j * 32 + i] = (temp_out[j] + 1 + (temp_out[j] > 0)) >> 2;
    749   }
    750 
    751   // Rows
    752   for (i = 0; i < 32; ++i) {
    753     tran_high_t temp_in[32], temp_out[32];
    754     for (j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
    755     vpx_fdct32(temp_in, temp_out, 1);
    756     for (j = 0; j < 32; ++j) out[j + i * 32] = (tran_low_t)temp_out[j];
    757   }
    758 }
    759 
    760 void vpx_fdct32x32_1_c(const int16_t *input, tran_low_t *output, int stride) {
    761   int r, c;
    762   int sum = 0;
    763   for (r = 0; r < 32; ++r)
    764     for (c = 0; c < 32; ++c) sum += input[r * stride + c];
    765 
    766   output[0] = (tran_low_t)(sum >> 3);
    767 }
    768 
    769 #if CONFIG_VP9_HIGHBITDEPTH
    770 void vpx_highbd_fdct4x4_c(const int16_t *input, tran_low_t *output,
    771                           int stride) {
    772   vpx_fdct4x4_c(input, output, stride);
    773 }
    774 
    775 void vpx_highbd_fdct8x8_c(const int16_t *input, tran_low_t *final_output,
    776                           int stride) {
    777   vpx_fdct8x8_c(input, final_output, stride);
    778 }
    779 
    780 void vpx_highbd_fdct8x8_1_c(const int16_t *input, tran_low_t *final_output,
    781                             int stride) {
    782   vpx_fdct8x8_1_c(input, final_output, stride);
    783 }
    784 
    785 void vpx_highbd_fdct16x16_c(const int16_t *input, tran_low_t *output,
    786                             int stride) {
    787   vpx_fdct16x16_c(input, output, stride);
    788 }
    789 
    790 void vpx_highbd_fdct16x16_1_c(const int16_t *input, tran_low_t *output,
    791                               int stride) {
    792   vpx_fdct16x16_1_c(input, output, stride);
    793 }
    794 
    795 void vpx_highbd_fdct32x32_c(const int16_t *input, tran_low_t *out, int stride) {
    796   vpx_fdct32x32_c(input, out, stride);
    797 }
    798 
    799 void vpx_highbd_fdct32x32_rd_c(const int16_t *input, tran_low_t *out,
    800                                int stride) {
    801   vpx_fdct32x32_rd_c(input, out, stride);
    802 }
    803 
    804 void vpx_highbd_fdct32x32_1_c(const int16_t *input, tran_low_t *out,
    805                               int stride) {
    806   vpx_fdct32x32_1_c(input, out, stride);
    807 }
    808 #endif  // CONFIG_VP9_HIGHBITDEPTH
    809