Home | History | Annotate | Download | only in vpx_dsp
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #include <math.h>
     13 #include "./vpx_dsp_rtcd.h"
     14 #include "vpx_dsp/ssim.h"
     15 #include "vpx_ports/mem.h"
     16 #include "vpx_ports/system_state.h"
     17 
     18 void vpx_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
     19                             uint32_t *sum_s, uint32_t *sum_r,
     20                             uint32_t *sum_sq_s, uint32_t *sum_sq_r,
     21                             uint32_t *sum_sxr) {
     22   int i, j;
     23   for (i = 0; i < 16; i++, s += sp, r += rp) {
     24     for (j = 0; j < 16; j++) {
     25       *sum_s += s[j];
     26       *sum_r += r[j];
     27       *sum_sq_s += s[j] * s[j];
     28       *sum_sq_r += r[j] * r[j];
     29       *sum_sxr += s[j] * r[j];
     30     }
     31   }
     32 }
     33 void vpx_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp,
     34                           uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s,
     35                           uint32_t *sum_sq_r, uint32_t *sum_sxr) {
     36   int i, j;
     37   for (i = 0; i < 8; i++, s += sp, r += rp) {
     38     for (j = 0; j < 8; j++) {
     39       *sum_s += s[j];
     40       *sum_r += r[j];
     41       *sum_sq_s += s[j] * s[j];
     42       *sum_sq_r += r[j] * r[j];
     43       *sum_sxr += s[j] * r[j];
     44     }
     45   }
     46 }
     47 
     48 #if CONFIG_VP9_HIGHBITDEPTH
     49 void vpx_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r,
     50                                  int rp, uint32_t *sum_s, uint32_t *sum_r,
     51                                  uint32_t *sum_sq_s, uint32_t *sum_sq_r,
     52                                  uint32_t *sum_sxr) {
     53   int i, j;
     54   for (i = 0; i < 8; i++, s += sp, r += rp) {
     55     for (j = 0; j < 8; j++) {
     56       *sum_s += s[j];
     57       *sum_r += r[j];
     58       *sum_sq_s += s[j] * s[j];
     59       *sum_sq_r += r[j] * r[j];
     60       *sum_sxr += s[j] * r[j];
     61     }
     62   }
     63 }
     64 #endif  // CONFIG_VP9_HIGHBITDEPTH
     65 
     66 static const int64_t cc1 = 26634;        // (64^2*(.01*255)^2
     67 static const int64_t cc2 = 239708;       // (64^2*(.03*255)^2
     68 static const int64_t cc1_10 = 428658;    // (64^2*(.01*1023)^2
     69 static const int64_t cc2_10 = 3857925;   // (64^2*(.03*1023)^2
     70 static const int64_t cc1_12 = 6868593;   // (64^2*(.01*4095)^2
     71 static const int64_t cc2_12 = 61817334;  // (64^2*(.03*4095)^2
     72 
     73 static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s,
     74                          uint32_t sum_sq_r, uint32_t sum_sxr, int count,
     75                          uint32_t bd) {
     76   int64_t ssim_n, ssim_d;
     77   int64_t c1, c2;
     78   if (bd == 8) {
     79     // scale the constants by number of pixels
     80     c1 = (cc1 * count * count) >> 12;
     81     c2 = (cc2 * count * count) >> 12;
     82   } else if (bd == 10) {
     83     c1 = (cc1_10 * count * count) >> 12;
     84     c2 = (cc2_10 * count * count) >> 12;
     85   } else if (bd == 12) {
     86     c1 = (cc1_12 * count * count) >> 12;
     87     c2 = (cc2_12 * count * count) >> 12;
     88   } else {
     89     c1 = c2 = 0;
     90     assert(0);
     91   }
     92 
     93   ssim_n = (2 * sum_s * sum_r + c1) *
     94            ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2);
     95 
     96   ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
     97            ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
     98             (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2);
     99 
    100   return ssim_n * 1.0 / ssim_d;
    101 }
    102 
    103 static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) {
    104   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
    105   vpx_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
    106                      &sum_sxr);
    107   return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8);
    108 }
    109 
    110 #if CONFIG_VP9_HIGHBITDEPTH
    111 static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r,
    112                               int rp, uint32_t bd, uint32_t shift) {
    113   uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
    114   vpx_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
    115                             &sum_sxr);
    116   return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift),
    117                     sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd);
    118 }
    119 #endif  // CONFIG_VP9_HIGHBITDEPTH
    120 
    121 // We are using a 8x8 moving window with starting location of each 8x8 window
    122 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
    123 // block boundaries to penalize blocking artifacts.
    124 static double vpx_ssim2(const uint8_t *img1, const uint8_t *img2,
    125                         int stride_img1, int stride_img2, int width,
    126                         int height) {
    127   int i, j;
    128   int samples = 0;
    129   double ssim_total = 0;
    130 
    131   // sample point start with each 4x4 location
    132   for (i = 0; i <= height - 8;
    133        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
    134     for (j = 0; j <= width - 8; j += 4) {
    135       double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
    136       ssim_total += v;
    137       samples++;
    138     }
    139   }
    140   ssim_total /= samples;
    141   return ssim_total;
    142 }
    143 
    144 #if CONFIG_VP9_HIGHBITDEPTH
    145 static double vpx_highbd_ssim2(const uint8_t *img1, const uint8_t *img2,
    146                                int stride_img1, int stride_img2, int width,
    147                                int height, uint32_t bd, uint32_t shift) {
    148   int i, j;
    149   int samples = 0;
    150   double ssim_total = 0;
    151 
    152   // sample point start with each 4x4 location
    153   for (i = 0; i <= height - 8;
    154        i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
    155     for (j = 0; j <= width - 8; j += 4) {
    156       double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
    157                                  CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd,
    158                                  shift);
    159       ssim_total += v;
    160       samples++;
    161     }
    162   }
    163   ssim_total /= samples;
    164   return ssim_total;
    165 }
    166 #endif  // CONFIG_VP9_HIGHBITDEPTH
    167 
    168 double vpx_calc_ssim(const YV12_BUFFER_CONFIG *source,
    169                      const YV12_BUFFER_CONFIG *dest, double *weight) {
    170   double a, b, c;
    171   double ssimv;
    172 
    173   a = vpx_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
    174                 dest->y_stride, source->y_crop_width, source->y_crop_height);
    175 
    176   b = vpx_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
    177                 dest->uv_stride, source->uv_crop_width, source->uv_crop_height);
    178 
    179   c = vpx_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
    180                 dest->uv_stride, source->uv_crop_width, source->uv_crop_height);
    181 
    182   ssimv = a * .8 + .1 * (b + c);
    183 
    184   *weight = 1;
    185 
    186   return ssimv;
    187 }
    188 
    189 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
    190 //
    191 // Re working out the math ->
    192 //
    193 // ssim(x,y) =  (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
    194 //   ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
    195 //
    196 // mean(x) = sum(x) / n
    197 //
    198 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
    199 //
    200 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
    201 //
    202 // ssim(x,y) =
    203 //   (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
    204 //   (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
    205 //    ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
    206 //     (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
    207 //
    208 // factoring out n*n
    209 //
    210 // ssim(x,y) =
    211 //   (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
    212 //   (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
    213 //    (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
    214 //
    215 // Replace c1 with n*n * c1 for the final step that leads to this code:
    216 // The final step scales by 12 bits so we don't lose precision in the constants.
    217 
    218 static double ssimv_similarity(const Ssimv *sv, int64_t n) {
    219   // Scale the constants by number of pixels.
    220   const int64_t c1 = (cc1 * n * n) >> 12;
    221   const int64_t c2 = (cc2 * n * n) >> 12;
    222 
    223   const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
    224                    (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
    225 
    226   // Since these variables are unsigned sums, convert to double so
    227   // math is done in double arithmetic.
    228   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
    229                    (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
    230                     n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
    231 
    232   return l * v;
    233 }
    234 
    235 // The first term of the ssim metric is a luminance factor.
    236 //
    237 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
    238 //
    239 // This luminance factor is super sensitive to the dark side of luminance
    240 // values and completely insensitive on the white side.  check out 2 sets
    241 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
    242 // 2*250*252/ (250^2+252^2) => .99999997
    243 //
    244 // As a result in this tweaked version of the calculation in which the
    245 // luminance is taken as percentage off from peak possible.
    246 //
    247 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
    248 //
    249 static double ssimv_similarity2(const Ssimv *sv, int64_t n) {
    250   // Scale the constants by number of pixels.
    251   const int64_t c1 = (cc1 * n * n) >> 12;
    252   const int64_t c2 = (cc2 * n * n) >> 12;
    253 
    254   const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
    255   const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
    256 
    257   // Since these variables are unsigned, sums convert to double so
    258   // math is done in double arithmetic.
    259   const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) /
    260                    (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
    261                     n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
    262 
    263   return l * v;
    264 }
    265 static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2,
    266                         int img2_pitch, Ssimv *sv) {
    267   vpx_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r,
    268                      &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr);
    269 }
    270 
    271 double vpx_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2,
    272                             int img2_pitch, int width, int height, Ssimv *sv2,
    273                             Metrics *m, int do_inconsistency) {
    274   double dssim_total = 0;
    275   double ssim_total = 0;
    276   double ssim2_total = 0;
    277   double inconsistency_total = 0;
    278   int i, j;
    279   int c = 0;
    280   double norm;
    281   double old_ssim_total = 0;
    282   vpx_clear_system_state();
    283   // We can sample points as frequently as we like start with 1 per 4x4.
    284   for (i = 0; i < height;
    285        i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
    286     for (j = 0; j < width; j += 4, ++c) {
    287       Ssimv sv = { 0 };
    288       double ssim;
    289       double ssim2;
    290       double dssim;
    291       uint32_t var_new;
    292       uint32_t var_old;
    293       uint32_t mean_new;
    294       uint32_t mean_old;
    295       double ssim_new;
    296       double ssim_old;
    297 
    298       // Not sure there's a great way to handle the edge pixels
    299       // in ssim when using a window. Seems biased against edge pixels
    300       // however you handle this. This uses only samples that are
    301       // fully in the frame.
    302       if (j + 8 <= width && i + 8 <= height) {
    303         ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
    304       }
    305 
    306       ssim = ssimv_similarity(&sv, 64);
    307       ssim2 = ssimv_similarity2(&sv, 64);
    308 
    309       sv.ssim = ssim2;
    310 
    311       // dssim is calculated to use as an actual error metric and
    312       // is scaled up to the same range as sum square error.
    313       // Since we are subsampling every 16th point maybe this should be
    314       // *16 ?
    315       dssim = 255 * 255 * (1 - ssim2) / 2;
    316 
    317       // Here I introduce a new error metric: consistency-weighted
    318       // SSIM-inconsistency.  This metric isolates frames where the
    319       // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
    320       // sharper or blurrier than the others. Higher values indicate a
    321       // temporally inconsistent SSIM. There are two ideas at work:
    322       //
    323       // 1) 'SSIM-inconsistency': the total inconsistency value
    324       // reflects how much SSIM values are changing between this
    325       // source / reference frame pair and the previous pair.
    326       //
    327       // 2) 'consistency-weighted': weights de-emphasize areas in the
    328       // frame where the scene content has changed. Changes in scene
    329       // content are detected via changes in local variance and local
    330       // mean.
    331       //
    332       // Thus the overall measure reflects how inconsistent the SSIM
    333       // values are, over consistent regions of the frame.
    334       //
    335       // The metric has three terms:
    336       //
    337       // term 1 -> uses change in scene Variance to weight error score
    338       //  2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
    339       //  larger changes from one frame to the next mean we care
    340       //  less about consistency.
    341       //
    342       // term 2 -> uses change in local scene luminance to weight error
    343       //  2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
    344       //  larger changes from one frame to the next mean we care
    345       //  less about consistency.
    346       //
    347       // term3 -> measures inconsistency in ssim scores between frames
    348       //   1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
    349       //
    350       // This term compares the ssim score for the same location in 2
    351       // subsequent frames.
    352       var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
    353       var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
    354       mean_new = sv.sum_s;
    355       mean_old = sv2[c].sum_s;
    356       ssim_new = sv.ssim;
    357       ssim_old = sv2[c].ssim;
    358 
    359       if (do_inconsistency) {
    360         // We do the metric once for every 4x4 block in the image. Since
    361         // we are scaling the error to SSE for use in a psnr calculation
    362         // 1.0 = 4x4x255x255 the worst error we can possibly have.
    363         static const double kScaling = 4. * 4 * 255 * 255;
    364 
    365         // The constants have to be non 0 to avoid potential divide by 0
    366         // issues other than that they affect kind of a weighting between
    367         // the terms.  No testing of what the right terms should be has been
    368         // done.
    369         static const double c1 = 1, c2 = 1, c3 = 1;
    370 
    371         // This measures how much consistent variance is in two consecutive
    372         // source frames. 1.0 means they have exactly the same variance.
    373         const double variance_term =
    374             (2.0 * var_old * var_new + c1) /
    375             (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
    376 
    377         // This measures how consistent the local mean are between two
    378         // consecutive frames. 1.0 means they have exactly the same mean.
    379         const double mean_term =
    380             (2.0 * mean_old * mean_new + c2) /
    381             (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
    382 
    383         // This measures how consistent the ssims of two
    384         // consecutive frames is. 1.0 means they are exactly the same.
    385         double ssim_term =
    386             pow((2.0 * ssim_old * ssim_new + c3) /
    387                     (ssim_old * ssim_old + ssim_new * ssim_new + c3),
    388                 5);
    389 
    390         double this_inconsistency;
    391 
    392         // Floating point math sometimes makes this > 1 by a tiny bit.
    393         // We want the metric to scale between 0 and 1.0 so we can convert
    394         // it to an snr scaled value.
    395         if (ssim_term > 1) ssim_term = 1;
    396 
    397         // This converts the consistency metric to an inconsistency metric
    398         // ( so we can scale it like psnr to something like sum square error.
    399         // The reason for the variance and mean terms is the assumption that
    400         // if there are big changes in the source we shouldn't penalize
    401         // inconsistency in ssim scores a bit less as it will be less visible
    402         // to the user.
    403         this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
    404 
    405         this_inconsistency *= kScaling;
    406         inconsistency_total += this_inconsistency;
    407       }
    408       sv2[c] = sv;
    409       ssim_total += ssim;
    410       ssim2_total += ssim2;
    411       dssim_total += dssim;
    412 
    413       old_ssim_total += ssim_old;
    414     }
    415     old_ssim_total += 0;
    416   }
    417 
    418   norm = 1. / (width / 4) / (height / 4);
    419   ssim_total *= norm;
    420   ssim2_total *= norm;
    421   m->ssim2 = ssim2_total;
    422   m->ssim = ssim_total;
    423   if (old_ssim_total == 0) inconsistency_total = 0;
    424 
    425   m->ssimc = inconsistency_total;
    426 
    427   m->dssim = dssim_total;
    428   return inconsistency_total;
    429 }
    430 
    431 #if CONFIG_VP9_HIGHBITDEPTH
    432 double vpx_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source,
    433                             const YV12_BUFFER_CONFIG *dest, double *weight,
    434                             uint32_t bd, uint32_t in_bd) {
    435   double a, b, c;
    436   double ssimv;
    437   uint32_t shift = 0;
    438 
    439   assert(bd >= in_bd);
    440   shift = bd - in_bd;
    441 
    442   a = vpx_highbd_ssim2(source->y_buffer, dest->y_buffer, source->y_stride,
    443                        dest->y_stride, source->y_crop_width,
    444                        source->y_crop_height, in_bd, shift);
    445 
    446   b = vpx_highbd_ssim2(source->u_buffer, dest->u_buffer, source->uv_stride,
    447                        dest->uv_stride, source->uv_crop_width,
    448                        source->uv_crop_height, in_bd, shift);
    449 
    450   c = vpx_highbd_ssim2(source->v_buffer, dest->v_buffer, source->uv_stride,
    451                        dest->uv_stride, source->uv_crop_width,
    452                        source->uv_crop_height, in_bd, shift);
    453 
    454   ssimv = a * .8 + .1 * (b + c);
    455 
    456   *weight = 1;
    457 
    458   return ssimv;
    459 }
    460 
    461 #endif  // CONFIG_VP9_HIGHBITDEPTH
    462