Home | History | Annotate | Download | only in timers
      1 /*
      2  * This test checks the response of the system clock to frequency
      3  * steps made with adjtimex(). The frequency error and stability of
      4  * the CLOCK_MONOTONIC clock relative to the CLOCK_MONOTONIC_RAW clock
      5  * is measured in two intervals following the step. The test fails if
      6  * values from the second interval exceed specified limits.
      7  *
      8  * Copyright (C) Miroslav Lichvar <mlichvar (at) redhat.com>  2017
      9  *
     10  * This program is free software; you can redistribute it and/or modify
     11  * it under the terms of version 2 of the GNU General Public License as
     12  * published by the Free Software Foundation.
     13  *
     14  * This program is distributed in the hope that it will be useful, but
     15  * WITHOUT ANY WARRANTY; without even the implied warranty of
     16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
     17  * General Public License for more details.
     18  */
     19 
     20 #include <math.h>
     21 #include <stdio.h>
     22 #include <sys/timex.h>
     23 #include <time.h>
     24 #include <unistd.h>
     25 
     26 #include "../kselftest.h"
     27 
     28 #define SAMPLES 100
     29 #define SAMPLE_READINGS 10
     30 #define MEAN_SAMPLE_INTERVAL 0.1
     31 #define STEP_INTERVAL 1.0
     32 #define MAX_PRECISION 100e-9
     33 #define MAX_FREQ_ERROR 10e-6
     34 #define MAX_STDDEV 1000e-9
     35 
     36 #ifndef ADJ_SETOFFSET
     37   #define ADJ_SETOFFSET 0x0100
     38 #endif
     39 
     40 struct sample {
     41 	double offset;
     42 	double time;
     43 };
     44 
     45 static time_t mono_raw_base;
     46 static time_t mono_base;
     47 static long user_hz;
     48 static double precision;
     49 static double mono_freq_offset;
     50 
     51 static double diff_timespec(struct timespec *ts1, struct timespec *ts2)
     52 {
     53 	return ts1->tv_sec - ts2->tv_sec + (ts1->tv_nsec - ts2->tv_nsec) / 1e9;
     54 }
     55 
     56 static double get_sample(struct sample *sample)
     57 {
     58 	double delay, mindelay = 0.0;
     59 	struct timespec ts1, ts2, ts3;
     60 	int i;
     61 
     62 	for (i = 0; i < SAMPLE_READINGS; i++) {
     63 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts1);
     64 		clock_gettime(CLOCK_MONOTONIC, &ts2);
     65 		clock_gettime(CLOCK_MONOTONIC_RAW, &ts3);
     66 
     67 		ts1.tv_sec -= mono_raw_base;
     68 		ts2.tv_sec -= mono_base;
     69 		ts3.tv_sec -= mono_raw_base;
     70 
     71 		delay = diff_timespec(&ts3, &ts1);
     72 		if (delay <= 1e-9) {
     73 			i--;
     74 			continue;
     75 		}
     76 
     77 		if (!i || delay < mindelay) {
     78 			sample->offset = diff_timespec(&ts2, &ts1);
     79 			sample->offset -= delay / 2.0;
     80 			sample->time = ts1.tv_sec + ts1.tv_nsec / 1e9;
     81 			mindelay = delay;
     82 		}
     83 	}
     84 
     85 	return mindelay;
     86 }
     87 
     88 static void reset_ntp_error(void)
     89 {
     90 	struct timex txc;
     91 
     92 	txc.modes = ADJ_SETOFFSET;
     93 	txc.time.tv_sec = 0;
     94 	txc.time.tv_usec = 0;
     95 
     96 	if (adjtimex(&txc) < 0) {
     97 		perror("[FAIL] adjtimex");
     98 		ksft_exit_fail();
     99 	}
    100 }
    101 
    102 static void set_frequency(double freq)
    103 {
    104 	struct timex txc;
    105 	int tick_offset;
    106 
    107 	tick_offset = 1e6 * freq / user_hz;
    108 
    109 	txc.modes = ADJ_TICK | ADJ_FREQUENCY;
    110 	txc.tick = 1000000 / user_hz + tick_offset;
    111 	txc.freq = (1e6 * freq - user_hz * tick_offset) * (1 << 16);
    112 
    113 	if (adjtimex(&txc) < 0) {
    114 		perror("[FAIL] adjtimex");
    115 		ksft_exit_fail();
    116 	}
    117 }
    118 
    119 static void regress(struct sample *samples, int n, double *intercept,
    120 		    double *slope, double *r_stddev, double *r_max)
    121 {
    122 	double x, y, r, x_sum, y_sum, xy_sum, x2_sum, r2_sum;
    123 	int i;
    124 
    125 	x_sum = 0.0, y_sum = 0.0, xy_sum = 0.0, x2_sum = 0.0;
    126 
    127 	for (i = 0; i < n; i++) {
    128 		x = samples[i].time;
    129 		y = samples[i].offset;
    130 
    131 		x_sum += x;
    132 		y_sum += y;
    133 		xy_sum += x * y;
    134 		x2_sum += x * x;
    135 	}
    136 
    137 	*slope = (xy_sum - x_sum * y_sum / n) / (x2_sum - x_sum * x_sum / n);
    138 	*intercept = (y_sum - *slope * x_sum) / n;
    139 
    140 	*r_max = 0.0, r2_sum = 0.0;
    141 
    142 	for (i = 0; i < n; i++) {
    143 		x = samples[i].time;
    144 		y = samples[i].offset;
    145 		r = fabs(x * *slope + *intercept - y);
    146 		if (*r_max < r)
    147 			*r_max = r;
    148 		r2_sum += r * r;
    149 	}
    150 
    151 	*r_stddev = sqrt(r2_sum / n);
    152 }
    153 
    154 static int run_test(int calibration, double freq_base, double freq_step)
    155 {
    156 	struct sample samples[SAMPLES];
    157 	double intercept, slope, stddev1, max1, stddev2, max2;
    158 	double freq_error1, freq_error2;
    159 	int i;
    160 
    161 	set_frequency(freq_base);
    162 
    163 	for (i = 0; i < 10; i++)
    164 		usleep(1e6 * MEAN_SAMPLE_INTERVAL / 10);
    165 
    166 	reset_ntp_error();
    167 
    168 	set_frequency(freq_base + freq_step);
    169 
    170 	for (i = 0; i < 10; i++)
    171 		usleep(rand() % 2000000 * STEP_INTERVAL / 10);
    172 
    173 	set_frequency(freq_base);
    174 
    175 	for (i = 0; i < SAMPLES; i++) {
    176 		usleep(rand() % 2000000 * MEAN_SAMPLE_INTERVAL);
    177 		get_sample(&samples[i]);
    178 	}
    179 
    180 	if (calibration) {
    181 		regress(samples, SAMPLES, &intercept, &slope, &stddev1, &max1);
    182 		mono_freq_offset = slope;
    183 		printf("CLOCK_MONOTONIC_RAW frequency offset: %11.3f ppm\n",
    184 		       1e6 * mono_freq_offset);
    185 		return 0;
    186 	}
    187 
    188 	regress(samples, SAMPLES / 2, &intercept, &slope, &stddev1, &max1);
    189 	freq_error1 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
    190 			freq_base;
    191 
    192 	regress(samples + SAMPLES / 2, SAMPLES / 2, &intercept, &slope,
    193 		&stddev2, &max2);
    194 	freq_error2 = slope * (1.0 - mono_freq_offset) - mono_freq_offset -
    195 			freq_base;
    196 
    197 	printf("%6.0f %+10.3f %6.0f %7.0f %+10.3f %6.0f %7.0f\t",
    198 	       1e6 * freq_step,
    199 	       1e6 * freq_error1, 1e9 * stddev1, 1e9 * max1,
    200 	       1e6 * freq_error2, 1e9 * stddev2, 1e9 * max2);
    201 
    202 	if (fabs(freq_error2) > MAX_FREQ_ERROR || stddev2 > MAX_STDDEV) {
    203 		printf("[FAIL]\n");
    204 		return 1;
    205 	}
    206 
    207 	printf("[OK]\n");
    208 	return 0;
    209 }
    210 
    211 static void init_test(void)
    212 {
    213 	struct timespec ts;
    214 	struct sample sample;
    215 
    216 	if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts)) {
    217 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC_RAW)");
    218 		ksft_exit_fail();
    219 	}
    220 
    221 	mono_raw_base = ts.tv_sec;
    222 
    223 	if (clock_gettime(CLOCK_MONOTONIC, &ts)) {
    224 		perror("[FAIL] clock_gettime(CLOCK_MONOTONIC)");
    225 		ksft_exit_fail();
    226 	}
    227 
    228 	mono_base = ts.tv_sec;
    229 
    230 	user_hz = sysconf(_SC_CLK_TCK);
    231 
    232 	precision = get_sample(&sample) / 2.0;
    233 	printf("CLOCK_MONOTONIC_RAW+CLOCK_MONOTONIC precision: %.0f ns\t\t",
    234 	       1e9 * precision);
    235 
    236 	if (precision > MAX_PRECISION)
    237 		ksft_exit_skip("precision: %.0f ns > MAX_PRECISION: %.0f ns\n",
    238 				1e9 * precision, 1e9 * MAX_PRECISION);
    239 
    240 	printf("[OK]\n");
    241 	srand(ts.tv_sec ^ ts.tv_nsec);
    242 
    243 	run_test(1, 0.0, 0.0);
    244 }
    245 
    246 int main(int argc, char **argv)
    247 {
    248 	double freq_base, freq_step;
    249 	int i, j, fails = 0;
    250 
    251 	init_test();
    252 
    253 	printf("Checking response to frequency step:\n");
    254 	printf("  Step           1st interval              2nd interval\n");
    255 	printf("             Freq    Dev     Max       Freq    Dev     Max\n");
    256 
    257 	for (i = 2; i >= 0; i--) {
    258 		for (j = 0; j < 5; j++) {
    259 			freq_base = (rand() % (1 << 24) - (1 << 23)) / 65536e6;
    260 			freq_step = 10e-6 * (1 << (6 * i));
    261 			fails += run_test(0, freq_base, freq_step);
    262 		}
    263 	}
    264 
    265 	set_frequency(0.0);
    266 
    267 	if (fails)
    268 		return ksft_exit_fail();
    269 
    270 	return ksft_exit_pass();
    271 }
    272