Home | History | Annotate | Download | only in docs
      1 =======================
      2 Writing an LLVM Backend
      3 =======================
      4 
      5 .. toctree::
      6    :hidden:
      7 
      8    HowToUseInstrMappings
      9 
     10 .. contents::
     11    :local:
     12 
     13 Introduction
     14 ============
     15 
     16 This document describes techniques for writing compiler backends that convert
     17 the LLVM Intermediate Representation (IR) to code for a specified machine or
     18 other languages.  Code intended for a specific machine can take the form of
     19 either assembly code or binary code (usable for a JIT compiler).
     20 
     21 The backend of LLVM features a target-independent code generator that may
     22 create output for several types of target CPUs --- including X86, PowerPC,
     23 ARM, and SPARC.  The backend may also be used to generate code targeted at SPUs
     24 of the Cell processor or GPUs to support the execution of compute kernels.
     25 
     26 The document focuses on existing examples found in subdirectories of
     27 ``llvm/lib/Target`` in a downloaded LLVM release.  In particular, this document
     28 focuses on the example of creating a static compiler (one that emits text
     29 assembly) for a SPARC target, because SPARC has fairly standard
     30 characteristics, such as a RISC instruction set and straightforward calling
     31 conventions.
     32 
     33 Audience
     34 --------
     35 
     36 The audience for this document is anyone who needs to write an LLVM backend to
     37 generate code for a specific hardware or software target.
     38 
     39 Prerequisite Reading
     40 --------------------
     41 
     42 These essential documents must be read before reading this document:
     43 
     44 * `LLVM Language Reference Manual <LangRef.html>`_ --- a reference manual for
     45   the LLVM assembly language.
     46 
     47 * :doc:`CodeGenerator` --- a guide to the components (classes and code
     48   generation algorithms) for translating the LLVM internal representation into
     49   machine code for a specified target.  Pay particular attention to the
     50   descriptions of code generation stages: Instruction Selection, Scheduling and
     51   Formation, SSA-based Optimization, Register Allocation, Prolog/Epilog Code
     52   Insertion, Late Machine Code Optimizations, and Code Emission.
     53 
     54 * :doc:`TableGen/index` --- a document that describes the TableGen
     55   (``tblgen``) application that manages domain-specific information to support
     56   LLVM code generation.  TableGen processes input from a target description
     57   file (``.td`` suffix) and generates C++ code that can be used for code
     58   generation.
     59 
     60 * :doc:`WritingAnLLVMPass` --- The assembly printer is a ``FunctionPass``, as
     61   are several ``SelectionDAG`` processing steps.
     62 
     63 To follow the SPARC examples in this document, have a copy of `The SPARC
     64 Architecture Manual, Version 8 <http://www.sparc.org/standards/V8.pdf>`_ for
     65 reference.  For details about the ARM instruction set, refer to the `ARM
     66 Architecture Reference Manual <http://infocenter.arm.com/>`_.  For more about
     67 the GNU Assembler format (``GAS``), see `Using As
     68 <http://sourceware.org/binutils/docs/as/index.html>`_, especially for the
     69 assembly printer.  "Using As" contains a list of target machine dependent
     70 features.
     71 
     72 Basic Steps
     73 -----------
     74 
     75 To write a compiler backend for LLVM that converts the LLVM IR to code for a
     76 specified target (machine or other language), follow these steps:
     77 
     78 * Create a subclass of the ``TargetMachine`` class that describes
     79   characteristics of your target machine.  Copy existing examples of specific
     80   ``TargetMachine`` class and header files; for example, start with
     81   ``SparcTargetMachine.cpp`` and ``SparcTargetMachine.h``, but change the file
     82   names for your target.  Similarly, change code that references "``Sparc``" to
     83   reference your target.
     84 
     85 * Describe the register set of the target.  Use TableGen to generate code for
     86   register definition, register aliases, and register classes from a
     87   target-specific ``RegisterInfo.td`` input file.  You should also write
     88   additional code for a subclass of the ``TargetRegisterInfo`` class that
     89   represents the class register file data used for register allocation and also
     90   describes the interactions between registers.
     91 
     92 * Describe the instruction set of the target.  Use TableGen to generate code
     93   for target-specific instructions from target-specific versions of
     94   ``TargetInstrFormats.td`` and ``TargetInstrInfo.td``.  You should write
     95   additional code for a subclass of the ``TargetInstrInfo`` class to represent
     96   machine instructions supported by the target machine.
     97 
     98 * Describe the selection and conversion of the LLVM IR from a Directed Acyclic
     99   Graph (DAG) representation of instructions to native target-specific
    100   instructions.  Use TableGen to generate code that matches patterns and
    101   selects instructions based on additional information in a target-specific
    102   version of ``TargetInstrInfo.td``.  Write code for ``XXXISelDAGToDAG.cpp``,
    103   where ``XXX`` identifies the specific target, to perform pattern matching and
    104   DAG-to-DAG instruction selection.  Also write code in ``XXXISelLowering.cpp``
    105   to replace or remove operations and data types that are not supported
    106   natively in a SelectionDAG.
    107 
    108 * Write code for an assembly printer that converts LLVM IR to a GAS format for
    109   your target machine.  You should add assembly strings to the instructions
    110   defined in your target-specific version of ``TargetInstrInfo.td``.  You
    111   should also write code for a subclass of ``AsmPrinter`` that performs the
    112   LLVM-to-assembly conversion and a trivial subclass of ``TargetAsmInfo``.
    113 
    114 * Optionally, add support for subtargets (i.e., variants with different
    115   capabilities).  You should also write code for a subclass of the
    116   ``TargetSubtarget`` class, which allows you to use the ``-mcpu=`` and
    117   ``-mattr=`` command-line options.
    118 
    119 * Optionally, add JIT support and create a machine code emitter (subclass of
    120   ``TargetJITInfo``) that is used to emit binary code directly into memory.
    121 
    122 In the ``.cpp`` and ``.h``. files, initially stub up these methods and then
    123 implement them later.  Initially, you may not know which private members that
    124 the class will need and which components will need to be subclassed.
    125 
    126 Preliminaries
    127 -------------
    128 
    129 To actually create your compiler backend, you need to create and modify a few
    130 files.  The absolute minimum is discussed here.  But to actually use the LLVM
    131 target-independent code generator, you must perform the steps described in the
    132 :doc:`LLVM Target-Independent Code Generator <CodeGenerator>` document.
    133 
    134 First, you should create a subdirectory under ``lib/Target`` to hold all the
    135 files related to your target.  If your target is called "Dummy", create the
    136 directory ``lib/Target/Dummy``.
    137 
    138 In this new directory, create a ``CMakeLists.txt``.  It is easiest to copy a
    139 ``CMakeLists.txt`` of another target and modify it.  It should at least contain
    140 the ``LLVM_TARGET_DEFINITIONS`` variable. The library can be named ``LLVMDummy``
    141 (for example, see the MIPS target).  Alternatively, you can split the library
    142 into ``LLVMDummyCodeGen`` and ``LLVMDummyAsmPrinter``, the latter of which
    143 should be implemented in a subdirectory below ``lib/Target/Dummy`` (for example,
    144 see the PowerPC target).
    145 
    146 Note that these two naming schemes are hardcoded into ``llvm-config``.  Using
    147 any other naming scheme will confuse ``llvm-config`` and produce a lot of
    148 (seemingly unrelated) linker errors when linking ``llc``.
    149 
    150 To make your target actually do something, you need to implement a subclass of
    151 ``TargetMachine``.  This implementation should typically be in the file
    152 ``lib/Target/DummyTargetMachine.cpp``, but any file in the ``lib/Target``
    153 directory will be built and should work.  To use LLVM's target independent code
    154 generator, you should do what all current machine backends do: create a
    155 subclass of ``LLVMTargetMachine``.  (To create a target from scratch, create a
    156 subclass of ``TargetMachine``.)
    157 
    158 To get LLVM to actually build and link your target, you need to run ``cmake``
    159 with ``-DLLVM_EXPERIMENTAL_TARGETS_TO_BUILD=Dummy``. This will build your
    160 target without needing to add it to the list of all the targets.
    161 
    162 Once your target is stable, you can add it to the ``LLVM_ALL_TARGETS`` variable
    163 located in the main ``CMakeLists.txt``.
    164 
    165 Target Machine
    166 ==============
    167 
    168 ``LLVMTargetMachine`` is designed as a base class for targets implemented with
    169 the LLVM target-independent code generator.  The ``LLVMTargetMachine`` class
    170 should be specialized by a concrete target class that implements the various
    171 virtual methods.  ``LLVMTargetMachine`` is defined as a subclass of
    172 ``TargetMachine`` in ``include/llvm/Target/TargetMachine.h``.  The
    173 ``TargetMachine`` class implementation (``TargetMachine.cpp``) also processes
    174 numerous command-line options.
    175 
    176 To create a concrete target-specific subclass of ``LLVMTargetMachine``, start
    177 by copying an existing ``TargetMachine`` class and header.  You should name the
    178 files that you create to reflect your specific target.  For instance, for the
    179 SPARC target, name the files ``SparcTargetMachine.h`` and
    180 ``SparcTargetMachine.cpp``.
    181 
    182 For a target machine ``XXX``, the implementation of ``XXXTargetMachine`` must
    183 have access methods to obtain objects that represent target components.  These
    184 methods are named ``get*Info``, and are intended to obtain the instruction set
    185 (``getInstrInfo``), register set (``getRegisterInfo``), stack frame layout
    186 (``getFrameInfo``), and similar information.  ``XXXTargetMachine`` must also
    187 implement the ``getDataLayout`` method to access an object with target-specific
    188 data characteristics, such as data type size and alignment requirements.
    189 
    190 For instance, for the SPARC target, the header file ``SparcTargetMachine.h``
    191 declares prototypes for several ``get*Info`` and ``getDataLayout`` methods that
    192 simply return a class member.
    193 
    194 .. code-block:: c++
    195 
    196   namespace llvm {
    197 
    198   class Module;
    199 
    200   class SparcTargetMachine : public LLVMTargetMachine {
    201     const DataLayout DataLayout;       // Calculates type size & alignment
    202     SparcSubtarget Subtarget;
    203     SparcInstrInfo InstrInfo;
    204     TargetFrameInfo FrameInfo;
    205 
    206   protected:
    207     virtual const TargetAsmInfo *createTargetAsmInfo() const;
    208 
    209   public:
    210     SparcTargetMachine(const Module &M, const std::string &FS);
    211 
    212     virtual const SparcInstrInfo *getInstrInfo() const {return &InstrInfo; }
    213     virtual const TargetFrameInfo *getFrameInfo() const {return &FrameInfo; }
    214     virtual const TargetSubtarget *getSubtargetImpl() const{return &Subtarget; }
    215     virtual const TargetRegisterInfo *getRegisterInfo() const {
    216       return &InstrInfo.getRegisterInfo();
    217     }
    218     virtual const DataLayout *getDataLayout() const { return &DataLayout; }
    219     static unsigned getModuleMatchQuality(const Module &M);
    220 
    221     // Pass Pipeline Configuration
    222     virtual bool addInstSelector(PassManagerBase &PM, bool Fast);
    223     virtual bool addPreEmitPass(PassManagerBase &PM, bool Fast);
    224   };
    225 
    226   } // end namespace llvm
    227 
    228 * ``getInstrInfo()``
    229 * ``getRegisterInfo()``
    230 * ``getFrameInfo()``
    231 * ``getDataLayout()``
    232 * ``getSubtargetImpl()``
    233 
    234 For some targets, you also need to support the following methods:
    235 
    236 * ``getTargetLowering()``
    237 * ``getJITInfo()``
    238 
    239 Some architectures, such as GPUs, do not support jumping to an arbitrary
    240 program location and implement branching using masked execution and loop using
    241 special instructions around the loop body. In order to avoid CFG modifications
    242 that introduce irreducible control flow not handled by such hardware, a target
    243 must call `setRequiresStructuredCFG(true)` when being initialized.
    244 
    245 In addition, the ``XXXTargetMachine`` constructor should specify a
    246 ``TargetDescription`` string that determines the data layout for the target
    247 machine, including characteristics such as pointer size, alignment, and
    248 endianness.  For example, the constructor for ``SparcTargetMachine`` contains
    249 the following:
    250 
    251 .. code-block:: c++
    252 
    253   SparcTargetMachine::SparcTargetMachine(const Module &M, const std::string &FS)
    254     : DataLayout("E-p:32:32-f128:128:128"),
    255       Subtarget(M, FS), InstrInfo(Subtarget),
    256       FrameInfo(TargetFrameInfo::StackGrowsDown, 8, 0) {
    257   }
    258 
    259 Hyphens separate portions of the ``TargetDescription`` string.
    260 
    261 * An upper-case "``E``" in the string indicates a big-endian target data model.
    262   A lower-case "``e``" indicates little-endian.
    263 
    264 * "``p:``" is followed by pointer information: size, ABI alignment, and
    265   preferred alignment.  If only two figures follow "``p:``", then the first
    266   value is pointer size, and the second value is both ABI and preferred
    267   alignment.
    268 
    269 * Then a letter for numeric type alignment: "``i``", "``f``", "``v``", or
    270   "``a``" (corresponding to integer, floating point, vector, or aggregate).
    271   "``i``", "``v``", or "``a``" are followed by ABI alignment and preferred
    272   alignment. "``f``" is followed by three values: the first indicates the size
    273   of a long double, then ABI alignment, and then ABI preferred alignment.
    274 
    275 Target Registration
    276 ===================
    277 
    278 You must also register your target with the ``TargetRegistry``, which is what
    279 other LLVM tools use to be able to lookup and use your target at runtime.  The
    280 ``TargetRegistry`` can be used directly, but for most targets there are helper
    281 templates which should take care of the work for you.
    282 
    283 All targets should declare a global ``Target`` object which is used to
    284 represent the target during registration.  Then, in the target's ``TargetInfo``
    285 library, the target should define that object and use the ``RegisterTarget``
    286 template to register the target.  For example, the Sparc registration code
    287 looks like this:
    288 
    289 .. code-block:: c++
    290 
    291   Target llvm::TheSparcTarget;
    292 
    293   extern "C" void LLVMInitializeSparcTargetInfo() {
    294     RegisterTarget<Triple::sparc, /*HasJIT=*/false>
    295       X(TheSparcTarget, "sparc", "Sparc");
    296   }
    297 
    298 This allows the ``TargetRegistry`` to look up the target by name or by target
    299 triple.  In addition, most targets will also register additional features which
    300 are available in separate libraries.  These registration steps are separate,
    301 because some clients may wish to only link in some parts of the target --- the
    302 JIT code generator does not require the use of the assembler printer, for
    303 example.  Here is an example of registering the Sparc assembly printer:
    304 
    305 .. code-block:: c++
    306 
    307   extern "C" void LLVMInitializeSparcAsmPrinter() {
    308     RegisterAsmPrinter<SparcAsmPrinter> X(TheSparcTarget);
    309   }
    310 
    311 For more information, see "`llvm/Target/TargetRegistry.h
    312 </doxygen/TargetRegistry_8h-source.html>`_".
    313 
    314 Register Set and Register Classes
    315 =================================
    316 
    317 You should describe a concrete target-specific class that represents the
    318 register file of a target machine.  This class is called ``XXXRegisterInfo``
    319 (where ``XXX`` identifies the target) and represents the class register file
    320 data that is used for register allocation.  It also describes the interactions
    321 between registers.
    322 
    323 You also need to define register classes to categorize related registers.  A
    324 register class should be added for groups of registers that are all treated the
    325 same way for some instruction.  Typical examples are register classes for
    326 integer, floating-point, or vector registers.  A register allocator allows an
    327 instruction to use any register in a specified register class to perform the
    328 instruction in a similar manner.  Register classes allocate virtual registers
    329 to instructions from these sets, and register classes let the
    330 target-independent register allocator automatically choose the actual
    331 registers.
    332 
    333 Much of the code for registers, including register definition, register
    334 aliases, and register classes, is generated by TableGen from
    335 ``XXXRegisterInfo.td`` input files and placed in ``XXXGenRegisterInfo.h.inc``
    336 and ``XXXGenRegisterInfo.inc`` output files.  Some of the code in the
    337 implementation of ``XXXRegisterInfo`` requires hand-coding.
    338 
    339 Defining a Register
    340 -------------------
    341 
    342 The ``XXXRegisterInfo.td`` file typically starts with register definitions for
    343 a target machine.  The ``Register`` class (specified in ``Target.td``) is used
    344 to define an object for each register.  The specified string ``n`` becomes the
    345 ``Name`` of the register.  The basic ``Register`` object does not have any
    346 subregisters and does not specify any aliases.
    347 
    348 .. code-block:: llvm
    349 
    350   class Register<string n> {
    351     string Namespace = "";
    352     string AsmName = n;
    353     string Name = n;
    354     int SpillSize = 0;
    355     int SpillAlignment = 0;
    356     list<Register> Aliases = [];
    357     list<Register> SubRegs = [];
    358     list<int> DwarfNumbers = [];
    359   }
    360 
    361 For example, in the ``X86RegisterInfo.td`` file, there are register definitions
    362 that utilize the ``Register`` class, such as:
    363 
    364 .. code-block:: llvm
    365 
    366   def AL : Register<"AL">, DwarfRegNum<[0, 0, 0]>;
    367 
    368 This defines the register ``AL`` and assigns it values (with ``DwarfRegNum``)
    369 that are used by ``gcc``, ``gdb``, or a debug information writer to identify a
    370 register.  For register ``AL``, ``DwarfRegNum`` takes an array of 3 values
    371 representing 3 different modes: the first element is for X86-64, the second for
    372 exception handling (EH) on X86-32, and the third is generic. -1 is a special
    373 Dwarf number that indicates the gcc number is undefined, and -2 indicates the
    374 register number is invalid for this mode.
    375 
    376 From the previously described line in the ``X86RegisterInfo.td`` file, TableGen
    377 generates this code in the ``X86GenRegisterInfo.inc`` file:
    378 
    379 .. code-block:: c++
    380 
    381   static const unsigned GR8[] = { X86::AL, ... };
    382 
    383   const unsigned AL_AliasSet[] = { X86::AX, X86::EAX, X86::RAX, 0 };
    384 
    385   const TargetRegisterDesc RegisterDescriptors[] = {
    386     ...
    387   { "AL", "AL", AL_AliasSet, Empty_SubRegsSet, Empty_SubRegsSet, AL_SuperRegsSet }, ...
    388 
    389 From the register info file, TableGen generates a ``TargetRegisterDesc`` object
    390 for each register.  ``TargetRegisterDesc`` is defined in
    391 ``include/llvm/Target/TargetRegisterInfo.h`` with the following fields:
    392 
    393 .. code-block:: c++
    394 
    395   struct TargetRegisterDesc {
    396     const char     *AsmName;      // Assembly language name for the register
    397     const char     *Name;         // Printable name for the reg (for debugging)
    398     const unsigned *AliasSet;     // Register Alias Set
    399     const unsigned *SubRegs;      // Sub-register set
    400     const unsigned *ImmSubRegs;   // Immediate sub-register set
    401     const unsigned *SuperRegs;    // Super-register set
    402   };
    403 
    404 TableGen uses the entire target description file (``.td``) to determine text
    405 names for the register (in the ``AsmName`` and ``Name`` fields of
    406 ``TargetRegisterDesc``) and the relationships of other registers to the defined
    407 register (in the other ``TargetRegisterDesc`` fields).  In this example, other
    408 definitions establish the registers "``AX``", "``EAX``", and "``RAX``" as
    409 aliases for one another, so TableGen generates a null-terminated array
    410 (``AL_AliasSet``) for this register alias set.
    411 
    412 The ``Register`` class is commonly used as a base class for more complex
    413 classes.  In ``Target.td``, the ``Register`` class is the base for the
    414 ``RegisterWithSubRegs`` class that is used to define registers that need to
    415 specify subregisters in the ``SubRegs`` list, as shown here:
    416 
    417 .. code-block:: llvm
    418 
    419   class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
    420     let SubRegs = subregs;
    421   }
    422 
    423 In ``SparcRegisterInfo.td``, additional register classes are defined for SPARC:
    424 a ``Register`` subclass, ``SparcReg``, and further subclasses: ``Ri``, ``Rf``,
    425 and ``Rd``.  SPARC registers are identified by 5-bit ID numbers, which is a
    426 feature common to these subclasses.  Note the use of "``let``" expressions to
    427 override values that are initially defined in a superclass (such as ``SubRegs``
    428 field in the ``Rd`` class).
    429 
    430 .. code-block:: llvm
    431 
    432   class SparcReg<string n> : Register<n> {
    433     field bits<5> Num;
    434     let Namespace = "SP";
    435   }
    436   // Ri - 32-bit integer registers
    437   class Ri<bits<5> num, string n> :
    438   SparcReg<n> {
    439     let Num = num;
    440   }
    441   // Rf - 32-bit floating-point registers
    442   class Rf<bits<5> num, string n> :
    443   SparcReg<n> {
    444     let Num = num;
    445   }
    446   // Rd - Slots in the FP register file for 64-bit floating-point values.
    447   class Rd<bits<5> num, string n, list<Register> subregs> : SparcReg<n> {
    448     let Num = num;
    449     let SubRegs = subregs;
    450   }
    451 
    452 In the ``SparcRegisterInfo.td`` file, there are register definitions that
    453 utilize these subclasses of ``Register``, such as:
    454 
    455 .. code-block:: llvm
    456 
    457   def G0 : Ri< 0, "G0">, DwarfRegNum<[0]>;
    458   def G1 : Ri< 1, "G1">, DwarfRegNum<[1]>;
    459   ...
    460   def F0 : Rf< 0, "F0">, DwarfRegNum<[32]>;
    461   def F1 : Rf< 1, "F1">, DwarfRegNum<[33]>;
    462   ...
    463   def D0 : Rd< 0, "F0", [F0, F1]>, DwarfRegNum<[32]>;
    464   def D1 : Rd< 2, "F2", [F2, F3]>, DwarfRegNum<[34]>;
    465 
    466 The last two registers shown above (``D0`` and ``D1``) are double-precision
    467 floating-point registers that are aliases for pairs of single-precision
    468 floating-point sub-registers.  In addition to aliases, the sub-register and
    469 super-register relationships of the defined register are in fields of a
    470 register's ``TargetRegisterDesc``.
    471 
    472 Defining a Register Class
    473 -------------------------
    474 
    475 The ``RegisterClass`` class (specified in ``Target.td``) is used to define an
    476 object that represents a group of related registers and also defines the
    477 default allocation order of the registers.  A target description file
    478 ``XXXRegisterInfo.td`` that uses ``Target.td`` can construct register classes
    479 using the following class:
    480 
    481 .. code-block:: llvm
    482 
    483   class RegisterClass<string namespace,
    484   list<ValueType> regTypes, int alignment, dag regList> {
    485     string Namespace = namespace;
    486     list<ValueType> RegTypes = regTypes;
    487     int Size = 0;  // spill size, in bits; zero lets tblgen pick the size
    488     int Alignment = alignment;
    489 
    490     // CopyCost is the cost of copying a value between two registers
    491     // default value 1 means a single instruction
    492     // A negative value means copying is extremely expensive or impossible
    493     int CopyCost = 1;
    494     dag MemberList = regList;
    495 
    496     // for register classes that are subregisters of this class
    497     list<RegisterClass> SubRegClassList = [];
    498 
    499     code MethodProtos = [{}];  // to insert arbitrary code
    500     code MethodBodies = [{}];
    501   }
    502 
    503 To define a ``RegisterClass``, use the following 4 arguments:
    504 
    505 * The first argument of the definition is the name of the namespace.
    506 
    507 * The second argument is a list of ``ValueType`` register type values that are
    508   defined in ``include/llvm/CodeGen/ValueTypes.td``.  Defined values include
    509   integer types (such as ``i16``, ``i32``, and ``i1`` for Boolean),
    510   floating-point types (``f32``, ``f64``), and vector types (for example,
    511   ``v8i16`` for an ``8 x i16`` vector).  All registers in a ``RegisterClass``
    512   must have the same ``ValueType``, but some registers may store vector data in
    513   different configurations.  For example a register that can process a 128-bit
    514   vector may be able to handle 16 8-bit integer elements, 8 16-bit integers, 4
    515   32-bit integers, and so on.
    516 
    517 * The third argument of the ``RegisterClass`` definition specifies the
    518   alignment required of the registers when they are stored or loaded to
    519   memory.
    520 
    521 * The final argument, ``regList``, specifies which registers are in this class.
    522   If an alternative allocation order method is not specified, then ``regList``
    523   also defines the order of allocation used by the register allocator.  Besides
    524   simply listing registers with ``(add R0, R1, ...)``, more advanced set
    525   operators are available.  See ``include/llvm/Target/Target.td`` for more
    526   information.
    527 
    528 In ``SparcRegisterInfo.td``, three ``RegisterClass`` objects are defined:
    529 ``FPRegs``, ``DFPRegs``, and ``IntRegs``.  For all three register classes, the
    530 first argument defines the namespace with the string "``SP``".  ``FPRegs``
    531 defines a group of 32 single-precision floating-point registers (``F0`` to
    532 ``F31``); ``DFPRegs`` defines a group of 16 double-precision registers
    533 (``D0-D15``).
    534 
    535 .. code-block:: llvm
    536 
    537   // F0, F1, F2, ..., F31
    538   def FPRegs : RegisterClass<"SP", [f32], 32, (sequence "F%u", 0, 31)>;
    539 
    540   def DFPRegs : RegisterClass<"SP", [f64], 64,
    541                               (add D0, D1, D2, D3, D4, D5, D6, D7, D8,
    542                                    D9, D10, D11, D12, D13, D14, D15)>;
    543 
    544   def IntRegs : RegisterClass<"SP", [i32], 32,
    545       (add L0, L1, L2, L3, L4, L5, L6, L7,
    546            I0, I1, I2, I3, I4, I5,
    547            O0, O1, O2, O3, O4, O5, O7,
    548            G1,
    549            // Non-allocatable regs:
    550            G2, G3, G4,
    551            O6,        // stack ptr
    552            I6,        // frame ptr
    553            I7,        // return address
    554            G0,        // constant zero
    555            G5, G6, G7 // reserved for kernel
    556       )>;
    557 
    558 Using ``SparcRegisterInfo.td`` with TableGen generates several output files
    559 that are intended for inclusion in other source code that you write.
    560 ``SparcRegisterInfo.td`` generates ``SparcGenRegisterInfo.h.inc``, which should
    561 be included in the header file for the implementation of the SPARC register
    562 implementation that you write (``SparcRegisterInfo.h``).  In
    563 ``SparcGenRegisterInfo.h.inc`` a new structure is defined called
    564 ``SparcGenRegisterInfo`` that uses ``TargetRegisterInfo`` as its base.  It also
    565 specifies types, based upon the defined register classes: ``DFPRegsClass``,
    566 ``FPRegsClass``, and ``IntRegsClass``.
    567 
    568 ``SparcRegisterInfo.td`` also generates ``SparcGenRegisterInfo.inc``, which is
    569 included at the bottom of ``SparcRegisterInfo.cpp``, the SPARC register
    570 implementation.  The code below shows only the generated integer registers and
    571 associated register classes.  The order of registers in ``IntRegs`` reflects
    572 the order in the definition of ``IntRegs`` in the target description file.
    573 
    574 .. code-block:: c++
    575 
    576   // IntRegs Register Class...
    577   static const unsigned IntRegs[] = {
    578     SP::L0, SP::L1, SP::L2, SP::L3, SP::L4, SP::L5,
    579     SP::L6, SP::L7, SP::I0, SP::I1, SP::I2, SP::I3,
    580     SP::I4, SP::I5, SP::O0, SP::O1, SP::O2, SP::O3,
    581     SP::O4, SP::O5, SP::O7, SP::G1, SP::G2, SP::G3,
    582     SP::G4, SP::O6, SP::I6, SP::I7, SP::G0, SP::G5,
    583     SP::G6, SP::G7,
    584   };
    585 
    586   // IntRegsVTs Register Class Value Types...
    587   static const MVT::ValueType IntRegsVTs[] = {
    588     MVT::i32, MVT::Other
    589   };
    590 
    591   namespace SP {   // Register class instances
    592     DFPRegsClass    DFPRegsRegClass;
    593     FPRegsClass     FPRegsRegClass;
    594     IntRegsClass    IntRegsRegClass;
    595   ...
    596     // IntRegs Sub-register Classess...
    597     static const TargetRegisterClass* const IntRegsSubRegClasses [] = {
    598       NULL
    599     };
    600   ...
    601     // IntRegs Super-register Classess...
    602     static const TargetRegisterClass* const IntRegsSuperRegClasses [] = {
    603       NULL
    604     };
    605   ...
    606     // IntRegs Register Class sub-classes...
    607     static const TargetRegisterClass* const IntRegsSubclasses [] = {
    608       NULL
    609     };
    610   ...
    611     // IntRegs Register Class super-classes...
    612     static const TargetRegisterClass* const IntRegsSuperclasses [] = {
    613       NULL
    614     };
    615 
    616     IntRegsClass::IntRegsClass() : TargetRegisterClass(IntRegsRegClassID,
    617       IntRegsVTs, IntRegsSubclasses, IntRegsSuperclasses, IntRegsSubRegClasses,
    618       IntRegsSuperRegClasses, 4, 4, 1, IntRegs, IntRegs + 32) {}
    619   }
    620 
    621 The register allocators will avoid using reserved registers, and callee saved
    622 registers are not used until all the volatile registers have been used.  That
    623 is usually good enough, but in some cases it may be necessary to provide custom
    624 allocation orders.
    625 
    626 Implement a subclass of ``TargetRegisterInfo``
    627 ----------------------------------------------
    628 
    629 The final step is to hand code portions of ``XXXRegisterInfo``, which
    630 implements the interface described in ``TargetRegisterInfo.h`` (see
    631 :ref:`TargetRegisterInfo`).  These functions return ``0``, ``NULL``, or
    632 ``false``, unless overridden.  Here is a list of functions that are overridden
    633 for the SPARC implementation in ``SparcRegisterInfo.cpp``:
    634 
    635 * ``getCalleeSavedRegs`` --- Returns a list of callee-saved registers in the
    636   order of the desired callee-save stack frame offset.
    637 
    638 * ``getReservedRegs`` --- Returns a bitset indexed by physical register
    639   numbers, indicating if a particular register is unavailable.
    640 
    641 * ``hasFP`` --- Return a Boolean indicating if a function should have a
    642   dedicated frame pointer register.
    643 
    644 * ``eliminateCallFramePseudoInstr`` --- If call frame setup or destroy pseudo
    645   instructions are used, this can be called to eliminate them.
    646 
    647 * ``eliminateFrameIndex`` --- Eliminate abstract frame indices from
    648   instructions that may use them.
    649 
    650 * ``emitPrologue`` --- Insert prologue code into the function.
    651 
    652 * ``emitEpilogue`` --- Insert epilogue code into the function.
    653 
    654 .. _instruction-set:
    655 
    656 Instruction Set
    657 ===============
    658 
    659 During the early stages of code generation, the LLVM IR code is converted to a
    660 ``SelectionDAG`` with nodes that are instances of the ``SDNode`` class
    661 containing target instructions.  An ``SDNode`` has an opcode, operands, type
    662 requirements, and operation properties.  For example, is an operation
    663 commutative, does an operation load from memory.  The various operation node
    664 types are described in the ``include/llvm/CodeGen/SelectionDAGNodes.h`` file
    665 (values of the ``NodeType`` enum in the ``ISD`` namespace).
    666 
    667 TableGen uses the following target description (``.td``) input files to
    668 generate much of the code for instruction definition:
    669 
    670 * ``Target.td`` --- Where the ``Instruction``, ``Operand``, ``InstrInfo``, and
    671   other fundamental classes are defined.
    672 
    673 * ``TargetSelectionDAG.td`` --- Used by ``SelectionDAG`` instruction selection
    674   generators, contains ``SDTC*`` classes (selection DAG type constraint),
    675   definitions of ``SelectionDAG`` nodes (such as ``imm``, ``cond``, ``bb``,
    676   ``add``, ``fadd``, ``sub``), and pattern support (``Pattern``, ``Pat``,
    677   ``PatFrag``, ``PatLeaf``, ``ComplexPattern``.
    678 
    679 * ``XXXInstrFormats.td`` --- Patterns for definitions of target-specific
    680   instructions.
    681 
    682 * ``XXXInstrInfo.td`` --- Target-specific definitions of instruction templates,
    683   condition codes, and instructions of an instruction set.  For architecture
    684   modifications, a different file name may be used.  For example, for Pentium
    685   with SSE instruction, this file is ``X86InstrSSE.td``, and for Pentium with
    686   MMX, this file is ``X86InstrMMX.td``.
    687 
    688 There is also a target-specific ``XXX.td`` file, where ``XXX`` is the name of
    689 the target.  The ``XXX.td`` file includes the other ``.td`` input files, but
    690 its contents are only directly important for subtargets.
    691 
    692 You should describe a concrete target-specific class ``XXXInstrInfo`` that
    693 represents machine instructions supported by a target machine.
    694 ``XXXInstrInfo`` contains an array of ``XXXInstrDescriptor`` objects, each of
    695 which describes one instruction.  An instruction descriptor defines:
    696 
    697 * Opcode mnemonic
    698 * Number of operands
    699 * List of implicit register definitions and uses
    700 * Target-independent properties (such as memory access, is commutable)
    701 * Target-specific flags
    702 
    703 The Instruction class (defined in ``Target.td``) is mostly used as a base for
    704 more complex instruction classes.
    705 
    706 .. code-block:: llvm
    707 
    708   class Instruction {
    709     string Namespace = "";
    710     dag OutOperandList;    // A dag containing the MI def operand list.
    711     dag InOperandList;     // A dag containing the MI use operand list.
    712     string AsmString = ""; // The .s format to print the instruction with.
    713     list<dag> Pattern;     // Set to the DAG pattern for this instruction.
    714     list<Register> Uses = [];
    715     list<Register> Defs = [];
    716     list<Predicate> Predicates = [];  // predicates turned into isel match code
    717     ... remainder not shown for space ...
    718   }
    719 
    720 A ``SelectionDAG`` node (``SDNode``) should contain an object representing a
    721 target-specific instruction that is defined in ``XXXInstrInfo.td``.  The
    722 instruction objects should represent instructions from the architecture manual
    723 of the target machine (such as the SPARC Architecture Manual for the SPARC
    724 target).
    725 
    726 A single instruction from the architecture manual is often modeled as multiple
    727 target instructions, depending upon its operands.  For example, a manual might
    728 describe an add instruction that takes a register or an immediate operand.  An
    729 LLVM target could model this with two instructions named ``ADDri`` and
    730 ``ADDrr``.
    731 
    732 You should define a class for each instruction category and define each opcode
    733 as a subclass of the category with appropriate parameters such as the fixed
    734 binary encoding of opcodes and extended opcodes.  You should map the register
    735 bits to the bits of the instruction in which they are encoded (for the JIT).
    736 Also you should specify how the instruction should be printed when the
    737 automatic assembly printer is used.
    738 
    739 As is described in the SPARC Architecture Manual, Version 8, there are three
    740 major 32-bit formats for instructions.  Format 1 is only for the ``CALL``
    741 instruction.  Format 2 is for branch on condition codes and ``SETHI`` (set high
    742 bits of a register) instructions.  Format 3 is for other instructions.
    743 
    744 Each of these formats has corresponding classes in ``SparcInstrFormat.td``.
    745 ``InstSP`` is a base class for other instruction classes.  Additional base
    746 classes are specified for more precise formats: for example in
    747 ``SparcInstrFormat.td``, ``F2_1`` is for ``SETHI``, and ``F2_2`` is for
    748 branches.  There are three other base classes: ``F3_1`` for register/register
    749 operations, ``F3_2`` for register/immediate operations, and ``F3_3`` for
    750 floating-point operations.  ``SparcInstrInfo.td`` also adds the base class
    751 ``Pseudo`` for synthetic SPARC instructions.
    752 
    753 ``SparcInstrInfo.td`` largely consists of operand and instruction definitions
    754 for the SPARC target.  In ``SparcInstrInfo.td``, the following target
    755 description file entry, ``LDrr``, defines the Load Integer instruction for a
    756 Word (the ``LD`` SPARC opcode) from a memory address to a register.  The first
    757 parameter, the value 3 (``11``\ :sub:`2`), is the operation value for this
    758 category of operation.  The second parameter (``000000``\ :sub:`2`) is the
    759 specific operation value for ``LD``/Load Word.  The third parameter is the
    760 output destination, which is a register operand and defined in the ``Register``
    761 target description file (``IntRegs``).
    762 
    763 .. code-block:: llvm
    764 
    765   def LDrr : F3_1 <3, 0b000000, (outs IntRegs:$dst), (ins MEMrr:$addr),
    766                    "ld [$addr], $dst",
    767                    [(set i32:$dst, (load ADDRrr:$addr))]>;
    768 
    769 The fourth parameter is the input source, which uses the address operand
    770 ``MEMrr`` that is defined earlier in ``SparcInstrInfo.td``:
    771 
    772 .. code-block:: llvm
    773 
    774   def MEMrr : Operand<i32> {
    775     let PrintMethod = "printMemOperand";
    776     let MIOperandInfo = (ops IntRegs, IntRegs);
    777   }
    778 
    779 The fifth parameter is a string that is used by the assembly printer and can be
    780 left as an empty string until the assembly printer interface is implemented.
    781 The sixth and final parameter is the pattern used to match the instruction
    782 during the SelectionDAG Select Phase described in :doc:`CodeGenerator`.
    783 This parameter is detailed in the next section, :ref:`instruction-selector`.
    784 
    785 Instruction class definitions are not overloaded for different operand types,
    786 so separate versions of instructions are needed for register, memory, or
    787 immediate value operands.  For example, to perform a Load Integer instruction
    788 for a Word from an immediate operand to a register, the following instruction
    789 class is defined:
    790 
    791 .. code-block:: llvm
    792 
    793   def LDri : F3_2 <3, 0b000000, (outs IntRegs:$dst), (ins MEMri:$addr),
    794                    "ld [$addr], $dst",
    795                    [(set i32:$dst, (load ADDRri:$addr))]>;
    796 
    797 Writing these definitions for so many similar instructions can involve a lot of
    798 cut and paste.  In ``.td`` files, the ``multiclass`` directive enables the
    799 creation of templates to define several instruction classes at once (using the
    800 ``defm`` directive).  For example in ``SparcInstrInfo.td``, the ``multiclass``
    801 pattern ``F3_12`` is defined to create 2 instruction classes each time
    802 ``F3_12`` is invoked:
    803 
    804 .. code-block:: llvm
    805 
    806   multiclass F3_12 <string OpcStr, bits<6> Op3Val, SDNode OpNode> {
    807     def rr  : F3_1 <2, Op3Val,
    808                    (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    809                    !strconcat(OpcStr, " $b, $c, $dst"),
    810                    [(set i32:$dst, (OpNode i32:$b, i32:$c))]>;
    811     def ri  : F3_2 <2, Op3Val,
    812                    (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
    813                    !strconcat(OpcStr, " $b, $c, $dst"),
    814                    [(set i32:$dst, (OpNode i32:$b, simm13:$c))]>;
    815   }
    816 
    817 So when the ``defm`` directive is used for the ``XOR`` and ``ADD``
    818 instructions, as seen below, it creates four instruction objects: ``XORrr``,
    819 ``XORri``, ``ADDrr``, and ``ADDri``.
    820 
    821 .. code-block:: llvm
    822 
    823   defm XOR   : F3_12<"xor", 0b000011, xor>;
    824   defm ADD   : F3_12<"add", 0b000000, add>;
    825 
    826 ``SparcInstrInfo.td`` also includes definitions for condition codes that are
    827 referenced by branch instructions.  The following definitions in
    828 ``SparcInstrInfo.td`` indicate the bit location of the SPARC condition code.
    829 For example, the 10\ :sup:`th` bit represents the "greater than" condition for
    830 integers, and the 22\ :sup:`nd` bit represents the "greater than" condition for
    831 floats.
    832 
    833 .. code-block:: llvm
    834 
    835   def ICC_NE  : ICC_VAL< 9>;  // Not Equal
    836   def ICC_E   : ICC_VAL< 1>;  // Equal
    837   def ICC_G   : ICC_VAL<10>;  // Greater
    838   ...
    839   def FCC_U   : FCC_VAL<23>;  // Unordered
    840   def FCC_G   : FCC_VAL<22>;  // Greater
    841   def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater
    842   ...
    843 
    844 (Note that ``Sparc.h`` also defines enums that correspond to the same SPARC
    845 condition codes.  Care must be taken to ensure the values in ``Sparc.h``
    846 correspond to the values in ``SparcInstrInfo.td``.  I.e., ``SPCC::ICC_NE = 9``,
    847 ``SPCC::FCC_U = 23`` and so on.)
    848 
    849 Instruction Operand Mapping
    850 ---------------------------
    851 
    852 The code generator backend maps instruction operands to fields in the
    853 instruction.  Operands are assigned to unbound fields in the instruction in the
    854 order they are defined.  Fields are bound when they are assigned a value.  For
    855 example, the Sparc target defines the ``XNORrr`` instruction as a ``F3_1``
    856 format instruction having three operands.
    857 
    858 .. code-block:: llvm
    859 
    860   def XNORrr  : F3_1<2, 0b000111,
    861                      (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
    862                      "xnor $b, $c, $dst",
    863                      [(set i32:$dst, (not (xor i32:$b, i32:$c)))]>;
    864 
    865 The instruction templates in ``SparcInstrFormats.td`` show the base class for
    866 ``F3_1`` is ``InstSP``.
    867 
    868 .. code-block:: llvm
    869 
    870   class InstSP<dag outs, dag ins, string asmstr, list<dag> pattern> : Instruction {
    871     field bits<32> Inst;
    872     let Namespace = "SP";
    873     bits<2> op;
    874     let Inst{31-30} = op;
    875     dag OutOperandList = outs;
    876     dag InOperandList = ins;
    877     let AsmString   = asmstr;
    878     let Pattern = pattern;
    879   }
    880 
    881 ``InstSP`` leaves the ``op`` field unbound.
    882 
    883 .. code-block:: llvm
    884 
    885   class F3<dag outs, dag ins, string asmstr, list<dag> pattern>
    886       : InstSP<outs, ins, asmstr, pattern> {
    887     bits<5> rd;
    888     bits<6> op3;
    889     bits<5> rs1;
    890     let op{1} = 1;   // Op = 2 or 3
    891     let Inst{29-25} = rd;
    892     let Inst{24-19} = op3;
    893     let Inst{18-14} = rs1;
    894   }
    895 
    896 ``F3`` binds the ``op`` field and defines the ``rd``, ``op3``, and ``rs1``
    897 fields.  ``F3`` format instructions will bind the operands ``rd``, ``op3``, and
    898 ``rs1`` fields.
    899 
    900 .. code-block:: llvm
    901 
    902   class F3_1<bits<2> opVal, bits<6> op3val, dag outs, dag ins,
    903              string asmstr, list<dag> pattern> : F3<outs, ins, asmstr, pattern> {
    904     bits<8> asi = 0; // asi not currently used
    905     bits<5> rs2;
    906     let op         = opVal;
    907     let op3        = op3val;
    908     let Inst{13}   = 0;     // i field = 0
    909     let Inst{12-5} = asi;   // address space identifier
    910     let Inst{4-0}  = rs2;
    911   }
    912 
    913 ``F3_1`` binds the ``op3`` field and defines the ``rs2`` fields.  ``F3_1``
    914 format instructions will bind the operands to the ``rd``, ``rs1``, and ``rs2``
    915 fields.  This results in the ``XNORrr`` instruction binding ``$dst``, ``$b``,
    916 and ``$c`` operands to the ``rd``, ``rs1``, and ``rs2`` fields respectively.
    917 
    918 Instruction Operand Name Mapping
    919 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    920 
    921 TableGen will also generate a function called getNamedOperandIdx() which
    922 can be used to look up an operand's index in a MachineInstr based on its
    923 TableGen name.  Setting the UseNamedOperandTable bit in an instruction's
    924 TableGen definition will add all of its operands to an enumeration in the
    925 llvm::XXX:OpName namespace and also add an entry for it into the OperandMap
    926 table, which can be queried using getNamedOperandIdx()
    927 
    928 .. code-block:: llvm
    929 
    930   int DstIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::dst); // => 0
    931   int BIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::b);     // => 1
    932   int CIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::c);     // => 2
    933   int DIndex = SP::getNamedOperandIdx(SP::XNORrr, SP::OpName::d);     // => -1
    934 
    935   ...
    936 
    937 The entries in the OpName enum are taken verbatim from the TableGen definitions,
    938 so operands with lowercase names will have lower case entries in the enum.
    939 
    940 To include the getNamedOperandIdx() function in your backend, you will need
    941 to define a few preprocessor macros in XXXInstrInfo.cpp and XXXInstrInfo.h.
    942 For example:
    943 
    944 XXXInstrInfo.cpp:
    945 
    946 .. code-block:: c++ 
    947 
    948   #define GET_INSTRINFO_NAMED_OPS // For getNamedOperandIdx() function
    949   #include "XXXGenInstrInfo.inc"
    950 
    951 XXXInstrInfo.h:
    952 
    953 .. code-block:: c++
    954 
    955   #define GET_INSTRINFO_OPERAND_ENUM // For OpName enum
    956   #include "XXXGenInstrInfo.inc"
    957 
    958   namespace XXX {
    959     int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIndex);
    960   } // End namespace XXX
    961 
    962 Instruction Operand Types
    963 ^^^^^^^^^^^^^^^^^^^^^^^^^
    964 
    965 TableGen will also generate an enumeration consisting of all named Operand
    966 types defined in the backend, in the llvm::XXX::OpTypes namespace.
    967 Some common immediate Operand types (for instance i8, i32, i64, f32, f64)
    968 are defined for all targets in ``include/llvm/Target/Target.td``, and are
    969 available in each Target's OpTypes enum.  Also, only named Operand types appear
    970 in the enumeration: anonymous types are ignored.
    971 For example, the X86 backend defines ``brtarget`` and ``brtarget8``, both
    972 instances of the TableGen ``Operand`` class, which represent branch target
    973 operands:
    974 
    975 .. code-block:: llvm
    976 
    977   def brtarget : Operand<OtherVT>;
    978   def brtarget8 : Operand<OtherVT>;
    979 
    980 This results in:
    981 
    982 .. code-block:: c++
    983 
    984   namespace X86 {
    985   namespace OpTypes {
    986   enum OperandType {
    987     ...
    988     brtarget,
    989     brtarget8,
    990     ...
    991     i32imm,
    992     i64imm,
    993     ...
    994     OPERAND_TYPE_LIST_END
    995   } // End namespace OpTypes
    996   } // End namespace X86
    997 
    998 In typical TableGen fashion, to use the enum, you will need to define a
    999 preprocessor macro:
   1000 
   1001 .. code-block:: c++
   1002 
   1003   #define GET_INSTRINFO_OPERAND_TYPES_ENUM // For OpTypes enum
   1004   #include "XXXGenInstrInfo.inc"
   1005 
   1006 
   1007 Instruction Scheduling
   1008 ----------------------
   1009 
   1010 Instruction itineraries can be queried using MCDesc::getSchedClass(). The
   1011 value can be named by an enumemation in llvm::XXX::Sched namespace generated
   1012 by TableGen in XXXGenInstrInfo.inc. The name of the schedule classes are
   1013 the same as provided in XXXSchedule.td plus a default NoItinerary class.
   1014 
   1015 Instruction Relation Mapping
   1016 ----------------------------
   1017 
   1018 This TableGen feature is used to relate instructions with each other.  It is
   1019 particularly useful when you have multiple instruction formats and need to
   1020 switch between them after instruction selection.  This entire feature is driven
   1021 by relation models which can be defined in ``XXXInstrInfo.td`` files
   1022 according to the target-specific instruction set.  Relation models are defined
   1023 using ``InstrMapping`` class as a base.  TableGen parses all the models
   1024 and generates instruction relation maps using the specified information.
   1025 Relation maps are emitted as tables in the ``XXXGenInstrInfo.inc`` file
   1026 along with the functions to query them.  For the detailed information on how to
   1027 use this feature, please refer to :doc:`HowToUseInstrMappings`.
   1028 
   1029 Implement a subclass of ``TargetInstrInfo``
   1030 -------------------------------------------
   1031 
   1032 The final step is to hand code portions of ``XXXInstrInfo``, which implements
   1033 the interface described in ``TargetInstrInfo.h`` (see :ref:`TargetInstrInfo`).
   1034 These functions return ``0`` or a Boolean or they assert, unless overridden.
   1035 Here's a list of functions that are overridden for the SPARC implementation in
   1036 ``SparcInstrInfo.cpp``:
   1037 
   1038 * ``isLoadFromStackSlot`` --- If the specified machine instruction is a direct
   1039   load from a stack slot, return the register number of the destination and the
   1040   ``FrameIndex`` of the stack slot.
   1041 
   1042 * ``isStoreToStackSlot`` --- If the specified machine instruction is a direct
   1043   store to a stack slot, return the register number of the destination and the
   1044   ``FrameIndex`` of the stack slot.
   1045 
   1046 * ``copyPhysReg`` --- Copy values between a pair of physical registers.
   1047 
   1048 * ``storeRegToStackSlot`` --- Store a register value to a stack slot.
   1049 
   1050 * ``loadRegFromStackSlot`` --- Load a register value from a stack slot.
   1051 
   1052 * ``storeRegToAddr`` --- Store a register value to memory.
   1053 
   1054 * ``loadRegFromAddr`` --- Load a register value from memory.
   1055 
   1056 * ``foldMemoryOperand`` --- Attempt to combine instructions of any load or
   1057   store instruction for the specified operand(s).
   1058 
   1059 Branch Folding and If Conversion
   1060 --------------------------------
   1061 
   1062 Performance can be improved by combining instructions or by eliminating
   1063 instructions that are never reached.  The ``AnalyzeBranch`` method in
   1064 ``XXXInstrInfo`` may be implemented to examine conditional instructions and
   1065 remove unnecessary instructions.  ``AnalyzeBranch`` looks at the end of a
   1066 machine basic block (MBB) for opportunities for improvement, such as branch
   1067 folding and if conversion.  The ``BranchFolder`` and ``IfConverter`` machine
   1068 function passes (see the source files ``BranchFolding.cpp`` and
   1069 ``IfConversion.cpp`` in the ``lib/CodeGen`` directory) call ``AnalyzeBranch``
   1070 to improve the control flow graph that represents the instructions.
   1071 
   1072 Several implementations of ``AnalyzeBranch`` (for ARM, Alpha, and X86) can be
   1073 examined as models for your own ``AnalyzeBranch`` implementation.  Since SPARC
   1074 does not implement a useful ``AnalyzeBranch``, the ARM target implementation is
   1075 shown below.
   1076 
   1077 ``AnalyzeBranch`` returns a Boolean value and takes four parameters:
   1078 
   1079 * ``MachineBasicBlock &MBB`` --- The incoming block to be examined.
   1080 
   1081 * ``MachineBasicBlock *&TBB`` --- A destination block that is returned.  For a
   1082   conditional branch that evaluates to true, ``TBB`` is the destination.
   1083 
   1084 * ``MachineBasicBlock *&FBB`` --- For a conditional branch that evaluates to
   1085   false, ``FBB`` is returned as the destination.
   1086 
   1087 * ``std::vector<MachineOperand> &Cond`` --- List of operands to evaluate a
   1088   condition for a conditional branch.
   1089 
   1090 In the simplest case, if a block ends without a branch, then it falls through
   1091 to the successor block.  No destination blocks are specified for either ``TBB``
   1092 or ``FBB``, so both parameters return ``NULL``.  The start of the
   1093 ``AnalyzeBranch`` (see code below for the ARM target) shows the function
   1094 parameters and the code for the simplest case.
   1095 
   1096 .. code-block:: c++
   1097 
   1098   bool ARMInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
   1099                                    MachineBasicBlock *&TBB,
   1100                                    MachineBasicBlock *&FBB,
   1101                                    std::vector<MachineOperand> &Cond) const
   1102   {
   1103     MachineBasicBlock::iterator I = MBB.end();
   1104     if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
   1105       return false;
   1106 
   1107 If a block ends with a single unconditional branch instruction, then
   1108 ``AnalyzeBranch`` (shown below) should return the destination of that branch in
   1109 the ``TBB`` parameter.
   1110 
   1111 .. code-block:: c++
   1112 
   1113     if (LastOpc == ARM::B || LastOpc == ARM::tB) {
   1114       TBB = LastInst->getOperand(0).getMBB();
   1115       return false;
   1116     }
   1117 
   1118 If a block ends with two unconditional branches, then the second branch is
   1119 never reached.  In that situation, as shown below, remove the last branch
   1120 instruction and return the penultimate branch in the ``TBB`` parameter.
   1121 
   1122 .. code-block:: c++
   1123 
   1124     if ((SecondLastOpc == ARM::B || SecondLastOpc == ARM::tB) &&
   1125         (LastOpc == ARM::B || LastOpc == ARM::tB)) {
   1126       TBB = SecondLastInst->getOperand(0).getMBB();
   1127       I = LastInst;
   1128       I->eraseFromParent();
   1129       return false;
   1130     }
   1131 
   1132 A block may end with a single conditional branch instruction that falls through
   1133 to successor block if the condition evaluates to false.  In that case,
   1134 ``AnalyzeBranch`` (shown below) should return the destination of that
   1135 conditional branch in the ``TBB`` parameter and a list of operands in the
   1136 ``Cond`` parameter to evaluate the condition.
   1137 
   1138 .. code-block:: c++
   1139 
   1140     if (LastOpc == ARM::Bcc || LastOpc == ARM::tBcc) {
   1141       // Block ends with fall-through condbranch.
   1142       TBB = LastInst->getOperand(0).getMBB();
   1143       Cond.push_back(LastInst->getOperand(1));
   1144       Cond.push_back(LastInst->getOperand(2));
   1145       return false;
   1146     }
   1147 
   1148 If a block ends with both a conditional branch and an ensuing unconditional
   1149 branch, then ``AnalyzeBranch`` (shown below) should return the conditional
   1150 branch destination (assuming it corresponds to a conditional evaluation of
   1151 "``true``") in the ``TBB`` parameter and the unconditional branch destination
   1152 in the ``FBB`` (corresponding to a conditional evaluation of "``false``").  A
   1153 list of operands to evaluate the condition should be returned in the ``Cond``
   1154 parameter.
   1155 
   1156 .. code-block:: c++
   1157 
   1158     unsigned SecondLastOpc = SecondLastInst->getOpcode();
   1159 
   1160     if ((SecondLastOpc == ARM::Bcc && LastOpc == ARM::B) ||
   1161         (SecondLastOpc == ARM::tBcc && LastOpc == ARM::tB)) {
   1162       TBB =  SecondLastInst->getOperand(0).getMBB();
   1163       Cond.push_back(SecondLastInst->getOperand(1));
   1164       Cond.push_back(SecondLastInst->getOperand(2));
   1165       FBB = LastInst->getOperand(0).getMBB();
   1166       return false;
   1167     }
   1168 
   1169 For the last two cases (ending with a single conditional branch or ending with
   1170 one conditional and one unconditional branch), the operands returned in the
   1171 ``Cond`` parameter can be passed to methods of other instructions to create new
   1172 branches or perform other operations.  An implementation of ``AnalyzeBranch``
   1173 requires the helper methods ``RemoveBranch`` and ``InsertBranch`` to manage
   1174 subsequent operations.
   1175 
   1176 ``AnalyzeBranch`` should return false indicating success in most circumstances.
   1177 ``AnalyzeBranch`` should only return true when the method is stumped about what
   1178 to do, for example, if a block has three terminating branches.
   1179 ``AnalyzeBranch`` may return true if it encounters a terminator it cannot
   1180 handle, such as an indirect branch.
   1181 
   1182 .. _instruction-selector:
   1183 
   1184 Instruction Selector
   1185 ====================
   1186 
   1187 LLVM uses a ``SelectionDAG`` to represent LLVM IR instructions, and nodes of
   1188 the ``SelectionDAG`` ideally represent native target instructions.  During code
   1189 generation, instruction selection passes are performed to convert non-native
   1190 DAG instructions into native target-specific instructions.  The pass described
   1191 in ``XXXISelDAGToDAG.cpp`` is used to match patterns and perform DAG-to-DAG
   1192 instruction selection.  Optionally, a pass may be defined (in
   1193 ``XXXBranchSelector.cpp``) to perform similar DAG-to-DAG operations for branch
   1194 instructions.  Later, the code in ``XXXISelLowering.cpp`` replaces or removes
   1195 operations and data types not supported natively (legalizes) in a
   1196 ``SelectionDAG``.
   1197 
   1198 TableGen generates code for instruction selection using the following target
   1199 description input files:
   1200 
   1201 * ``XXXInstrInfo.td`` --- Contains definitions of instructions in a
   1202   target-specific instruction set, generates ``XXXGenDAGISel.inc``, which is
   1203   included in ``XXXISelDAGToDAG.cpp``.
   1204 
   1205 * ``XXXCallingConv.td`` --- Contains the calling and return value conventions
   1206   for the target architecture, and it generates ``XXXGenCallingConv.inc``,
   1207   which is included in ``XXXISelLowering.cpp``.
   1208 
   1209 The implementation of an instruction selection pass must include a header that
   1210 declares the ``FunctionPass`` class or a subclass of ``FunctionPass``.  In
   1211 ``XXXTargetMachine.cpp``, a Pass Manager (PM) should add each instruction
   1212 selection pass into the queue of passes to run.
   1213 
   1214 The LLVM static compiler (``llc``) is an excellent tool for visualizing the
   1215 contents of DAGs.  To display the ``SelectionDAG`` before or after specific
   1216 processing phases, use the command line options for ``llc``, described at
   1217 :ref:`SelectionDAG-Process`.
   1218 
   1219 To describe instruction selector behavior, you should add patterns for lowering
   1220 LLVM code into a ``SelectionDAG`` as the last parameter of the instruction
   1221 definitions in ``XXXInstrInfo.td``.  For example, in ``SparcInstrInfo.td``,
   1222 this entry defines a register store operation, and the last parameter describes
   1223 a pattern with the store DAG operator.
   1224 
   1225 .. code-block:: llvm
   1226 
   1227   def STrr  : F3_1< 3, 0b000100, (outs), (ins MEMrr:$addr, IntRegs:$src),
   1228                    "st $src, [$addr]", [(store i32:$src, ADDRrr:$addr)]>;
   1229 
   1230 ``ADDRrr`` is a memory mode that is also defined in ``SparcInstrInfo.td``:
   1231 
   1232 .. code-block:: llvm
   1233 
   1234   def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
   1235 
   1236 The definition of ``ADDRrr`` refers to ``SelectADDRrr``, which is a function
   1237 defined in an implementation of the Instructor Selector (such as
   1238 ``SparcISelDAGToDAG.cpp``).
   1239 
   1240 In ``lib/Target/TargetSelectionDAG.td``, the DAG operator for store is defined
   1241 below:
   1242 
   1243 .. code-block:: llvm
   1244 
   1245   def store : PatFrag<(ops node:$val, node:$ptr),
   1246                       (st node:$val, node:$ptr), [{
   1247     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
   1248       return !ST->isTruncatingStore() &&
   1249              ST->getAddressingMode() == ISD::UNINDEXED;
   1250     return false;
   1251   }]>;
   1252 
   1253 ``XXXInstrInfo.td`` also generates (in ``XXXGenDAGISel.inc``) the
   1254 ``SelectCode`` method that is used to call the appropriate processing method
   1255 for an instruction.  In this example, ``SelectCode`` calls ``Select_ISD_STORE``
   1256 for the ``ISD::STORE`` opcode.
   1257 
   1258 .. code-block:: c++
   1259 
   1260   SDNode *SelectCode(SDValue N) {
   1261     ...
   1262     MVT::ValueType NVT = N.getNode()->getValueType(0);
   1263     switch (N.getOpcode()) {
   1264     case ISD::STORE: {
   1265       switch (NVT) {
   1266       default:
   1267         return Select_ISD_STORE(N);
   1268         break;
   1269       }
   1270       break;
   1271     }
   1272     ...
   1273 
   1274 The pattern for ``STrr`` is matched, so elsewhere in ``XXXGenDAGISel.inc``,
   1275 code for ``STrr`` is created for ``Select_ISD_STORE``.  The ``Emit_22`` method
   1276 is also generated in ``XXXGenDAGISel.inc`` to complete the processing of this
   1277 instruction.
   1278 
   1279 .. code-block:: c++
   1280 
   1281   SDNode *Select_ISD_STORE(const SDValue &N) {
   1282     SDValue Chain = N.getOperand(0);
   1283     if (Predicate_store(N.getNode())) {
   1284       SDValue N1 = N.getOperand(1);
   1285       SDValue N2 = N.getOperand(2);
   1286       SDValue CPTmp0;
   1287       SDValue CPTmp1;
   1288 
   1289       // Pattern: (st:void i32:i32:$src,
   1290       //           ADDRrr:i32:$addr)<<P:Predicate_store>>
   1291       // Emits: (STrr:void ADDRrr:i32:$addr, IntRegs:i32:$src)
   1292       // Pattern complexity = 13  cost = 1  size = 0
   1293       if (SelectADDRrr(N, N2, CPTmp0, CPTmp1) &&
   1294           N1.getNode()->getValueType(0) == MVT::i32 &&
   1295           N2.getNode()->getValueType(0) == MVT::i32) {
   1296         return Emit_22(N, SP::STrr, CPTmp0, CPTmp1);
   1297       }
   1298   ...
   1299 
   1300 The SelectionDAG Legalize Phase
   1301 -------------------------------
   1302 
   1303 The Legalize phase converts a DAG to use types and operations that are natively
   1304 supported by the target.  For natively unsupported types and operations, you
   1305 need to add code to the target-specific ``XXXTargetLowering`` implementation to
   1306 convert unsupported types and operations to supported ones.
   1307 
   1308 In the constructor for the ``XXXTargetLowering`` class, first use the
   1309 ``addRegisterClass`` method to specify which types are supported and which
   1310 register classes are associated with them.  The code for the register classes
   1311 are generated by TableGen from ``XXXRegisterInfo.td`` and placed in
   1312 ``XXXGenRegisterInfo.h.inc``.  For example, the implementation of the
   1313 constructor for the SparcTargetLowering class (in ``SparcISelLowering.cpp``)
   1314 starts with the following code:
   1315 
   1316 .. code-block:: c++
   1317 
   1318   addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
   1319   addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
   1320   addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
   1321 
   1322 You should examine the node types in the ``ISD`` namespace
   1323 (``include/llvm/CodeGen/SelectionDAGNodes.h``) and determine which operations
   1324 the target natively supports.  For operations that do **not** have native
   1325 support, add a callback to the constructor for the ``XXXTargetLowering`` class,
   1326 so the instruction selection process knows what to do.  The ``TargetLowering``
   1327 class callback methods (declared in ``llvm/Target/TargetLowering.h``) are:
   1328 
   1329 * ``setOperationAction`` --- General operation.
   1330 * ``setLoadExtAction`` --- Load with extension.
   1331 * ``setTruncStoreAction`` --- Truncating store.
   1332 * ``setIndexedLoadAction`` --- Indexed load.
   1333 * ``setIndexedStoreAction`` --- Indexed store.
   1334 * ``setConvertAction`` --- Type conversion.
   1335 * ``setCondCodeAction`` --- Support for a given condition code.
   1336 
   1337 Note: on older releases, ``setLoadXAction`` is used instead of
   1338 ``setLoadExtAction``.  Also, on older releases, ``setCondCodeAction`` may not
   1339 be supported.  Examine your release to see what methods are specifically
   1340 supported.
   1341 
   1342 These callbacks are used to determine that an operation does or does not work
   1343 with a specified type (or types).  And in all cases, the third parameter is a
   1344 ``LegalAction`` type enum value: ``Promote``, ``Expand``, ``Custom``, or
   1345 ``Legal``.  ``SparcISelLowering.cpp`` contains examples of all four
   1346 ``LegalAction`` values.
   1347 
   1348 Promote
   1349 ^^^^^^^
   1350 
   1351 For an operation without native support for a given type, the specified type
   1352 may be promoted to a larger type that is supported.  For example, SPARC does
   1353 not support a sign-extending load for Boolean values (``i1`` type), so in
   1354 ``SparcISelLowering.cpp`` the third parameter below, ``Promote``, changes
   1355 ``i1`` type values to a large type before loading.
   1356 
   1357 .. code-block:: c++
   1358 
   1359   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
   1360 
   1361 Expand
   1362 ^^^^^^
   1363 
   1364 For a type without native support, a value may need to be broken down further,
   1365 rather than promoted.  For an operation without native support, a combination
   1366 of other operations may be used to similar effect.  In SPARC, the
   1367 floating-point sine and cosine trig operations are supported by expansion to
   1368 other operations, as indicated by the third parameter, ``Expand``, to
   1369 ``setOperationAction``:
   1370 
   1371 .. code-block:: c++
   1372 
   1373   setOperationAction(ISD::FSIN, MVT::f32, Expand);
   1374   setOperationAction(ISD::FCOS, MVT::f32, Expand);
   1375 
   1376 Custom
   1377 ^^^^^^
   1378 
   1379 For some operations, simple type promotion or operation expansion may be
   1380 insufficient.  In some cases, a special intrinsic function must be implemented.
   1381 
   1382 For example, a constant value may require special treatment, or an operation
   1383 may require spilling and restoring registers in the stack and working with
   1384 register allocators.
   1385 
   1386 As seen in ``SparcISelLowering.cpp`` code below, to perform a type conversion
   1387 from a floating point value to a signed integer, first the
   1388 ``setOperationAction`` should be called with ``Custom`` as the third parameter:
   1389 
   1390 .. code-block:: c++
   1391 
   1392   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
   1393 
   1394 In the ``LowerOperation`` method, for each ``Custom`` operation, a case
   1395 statement should be added to indicate what function to call.  In the following
   1396 code, an ``FP_TO_SINT`` opcode will call the ``LowerFP_TO_SINT`` method:
   1397 
   1398 .. code-block:: c++
   1399 
   1400   SDValue SparcTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
   1401     switch (Op.getOpcode()) {
   1402     case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
   1403     ...
   1404     }
   1405   }
   1406 
   1407 Finally, the ``LowerFP_TO_SINT`` method is implemented, using an FP register to
   1408 convert the floating-point value to an integer.
   1409 
   1410 .. code-block:: c++
   1411 
   1412   static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
   1413     assert(Op.getValueType() == MVT::i32);
   1414     Op = DAG.getNode(SPISD::FTOI, MVT::f32, Op.getOperand(0));
   1415     return DAG.getNode(ISD::BITCAST, MVT::i32, Op);
   1416   }
   1417 
   1418 Legal
   1419 ^^^^^
   1420 
   1421 The ``Legal`` ``LegalizeAction`` enum value simply indicates that an operation
   1422 **is** natively supported.  ``Legal`` represents the default condition, so it
   1423 is rarely used.  In ``SparcISelLowering.cpp``, the action for ``CTPOP`` (an
   1424 operation to count the bits set in an integer) is natively supported only for
   1425 SPARC v9.  The following code enables the ``Expand`` conversion technique for
   1426 non-v9 SPARC implementations.
   1427 
   1428 .. code-block:: c++
   1429 
   1430   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
   1431   ...
   1432   if (TM.getSubtarget<SparcSubtarget>().isV9())
   1433     setOperationAction(ISD::CTPOP, MVT::i32, Legal);
   1434 
   1435 Calling Conventions
   1436 -------------------
   1437 
   1438 To support target-specific calling conventions, ``XXXGenCallingConv.td`` uses
   1439 interfaces (such as ``CCIfType`` and ``CCAssignToReg``) that are defined in
   1440 ``lib/Target/TargetCallingConv.td``.  TableGen can take the target descriptor
   1441 file ``XXXGenCallingConv.td`` and generate the header file
   1442 ``XXXGenCallingConv.inc``, which is typically included in
   1443 ``XXXISelLowering.cpp``.  You can use the interfaces in
   1444 ``TargetCallingConv.td`` to specify:
   1445 
   1446 * The order of parameter allocation.
   1447 
   1448 * Where parameters and return values are placed (that is, on the stack or in
   1449   registers).
   1450 
   1451 * Which registers may be used.
   1452 
   1453 * Whether the caller or callee unwinds the stack.
   1454 
   1455 The following example demonstrates the use of the ``CCIfType`` and
   1456 ``CCAssignToReg`` interfaces.  If the ``CCIfType`` predicate is true (that is,
   1457 if the current argument is of type ``f32`` or ``f64``), then the action is
   1458 performed.  In this case, the ``CCAssignToReg`` action assigns the argument
   1459 value to the first available register: either ``R0`` or ``R1``.
   1460 
   1461 .. code-block:: llvm
   1462 
   1463   CCIfType<[f32,f64], CCAssignToReg<[R0, R1]>>
   1464 
   1465 ``SparcCallingConv.td`` contains definitions for a target-specific return-value
   1466 calling convention (``RetCC_Sparc32``) and a basic 32-bit C calling convention
   1467 (``CC_Sparc32``).  The definition of ``RetCC_Sparc32`` (shown below) indicates
   1468 which registers are used for specified scalar return types.  A single-precision
   1469 float is returned to register ``F0``, and a double-precision float goes to
   1470 register ``D0``.  A 32-bit integer is returned in register ``I0`` or ``I1``.
   1471 
   1472 .. code-block:: llvm
   1473 
   1474   def RetCC_Sparc32 : CallingConv<[
   1475     CCIfType<[i32], CCAssignToReg<[I0, I1]>>,
   1476     CCIfType<[f32], CCAssignToReg<[F0]>>,
   1477     CCIfType<[f64], CCAssignToReg<[D0]>>
   1478   ]>;
   1479 
   1480 The definition of ``CC_Sparc32`` in ``SparcCallingConv.td`` introduces
   1481 ``CCAssignToStack``, which assigns the value to a stack slot with the specified
   1482 size and alignment.  In the example below, the first parameter, 4, indicates
   1483 the size of the slot, and the second parameter, also 4, indicates the stack
   1484 alignment along 4-byte units.  (Special cases: if size is zero, then the ABI
   1485 size is used; if alignment is zero, then the ABI alignment is used.)
   1486 
   1487 .. code-block:: llvm
   1488 
   1489   def CC_Sparc32 : CallingConv<[
   1490     // All arguments get passed in integer registers if there is space.
   1491     CCIfType<[i32, f32, f64], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
   1492     CCAssignToStack<4, 4>
   1493   ]>;
   1494 
   1495 ``CCDelegateTo`` is another commonly used interface, which tries to find a
   1496 specified sub-calling convention, and, if a match is found, it is invoked.  In
   1497 the following example (in ``X86CallingConv.td``), the definition of
   1498 ``RetCC_X86_32_C`` ends with ``CCDelegateTo``.  After the current value is
   1499 assigned to the register ``ST0`` or ``ST1``, the ``RetCC_X86Common`` is
   1500 invoked.
   1501 
   1502 .. code-block:: llvm
   1503 
   1504   def RetCC_X86_32_C : CallingConv<[
   1505     CCIfType<[f32], CCAssignToReg<[ST0, ST1]>>,
   1506     CCIfType<[f64], CCAssignToReg<[ST0, ST1]>>,
   1507     CCDelegateTo<RetCC_X86Common>
   1508   ]>;
   1509 
   1510 ``CCIfCC`` is an interface that attempts to match the given name to the current
   1511 calling convention.  If the name identifies the current calling convention,
   1512 then a specified action is invoked.  In the following example (in
   1513 ``X86CallingConv.td``), if the ``Fast`` calling convention is in use, then
   1514 ``RetCC_X86_32_Fast`` is invoked.  If the ``SSECall`` calling convention is in
   1515 use, then ``RetCC_X86_32_SSE`` is invoked.
   1516 
   1517 .. code-block:: llvm
   1518 
   1519   def RetCC_X86_32 : CallingConv<[
   1520     CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
   1521     CCIfCC<"CallingConv::X86_SSECall", CCDelegateTo<RetCC_X86_32_SSE>>,
   1522     CCDelegateTo<RetCC_X86_32_C>
   1523   ]>;
   1524 
   1525 Other calling convention interfaces include:
   1526 
   1527 * ``CCIf <predicate, action>`` --- If the predicate matches, apply the action.
   1528 
   1529 * ``CCIfInReg <action>`` --- If the argument is marked with the "``inreg``"
   1530   attribute, then apply the action.
   1531 
   1532 * ``CCIfNest <action>`` --- If the argument is marked with the "``nest``"
   1533   attribute, then apply the action.
   1534 
   1535 * ``CCIfNotVarArg <action>`` --- If the current function does not take a
   1536   variable number of arguments, apply the action.
   1537 
   1538 * ``CCAssignToRegWithShadow <registerList, shadowList>`` --- similar to
   1539   ``CCAssignToReg``, but with a shadow list of registers.
   1540 
   1541 * ``CCPassByVal <size, align>`` --- Assign value to a stack slot with the
   1542   minimum specified size and alignment.
   1543 
   1544 * ``CCPromoteToType <type>`` --- Promote the current value to the specified
   1545   type.
   1546 
   1547 * ``CallingConv <[actions]>`` --- Define each calling convention that is
   1548   supported.
   1549 
   1550 Assembly Printer
   1551 ================
   1552 
   1553 During the code emission stage, the code generator may utilize an LLVM pass to
   1554 produce assembly output.  To do this, you want to implement the code for a
   1555 printer that converts LLVM IR to a GAS-format assembly language for your target
   1556 machine, using the following steps:
   1557 
   1558 * Define all the assembly strings for your target, adding them to the
   1559   instructions defined in the ``XXXInstrInfo.td`` file.  (See
   1560   :ref:`instruction-set`.)  TableGen will produce an output file
   1561   (``XXXGenAsmWriter.inc``) with an implementation of the ``printInstruction``
   1562   method for the ``XXXAsmPrinter`` class.
   1563 
   1564 * Write ``XXXTargetAsmInfo.h``, which contains the bare-bones declaration of
   1565   the ``XXXTargetAsmInfo`` class (a subclass of ``TargetAsmInfo``).
   1566 
   1567 * Write ``XXXTargetAsmInfo.cpp``, which contains target-specific values for
   1568   ``TargetAsmInfo`` properties and sometimes new implementations for methods.
   1569 
   1570 * Write ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that
   1571   performs the LLVM-to-assembly conversion.
   1572 
   1573 The code in ``XXXTargetAsmInfo.h`` is usually a trivial declaration of the
   1574 ``XXXTargetAsmInfo`` class for use in ``XXXTargetAsmInfo.cpp``.  Similarly,
   1575 ``XXXTargetAsmInfo.cpp`` usually has a few declarations of ``XXXTargetAsmInfo``
   1576 replacement values that override the default values in ``TargetAsmInfo.cpp``.
   1577 For example in ``SparcTargetAsmInfo.cpp``:
   1578 
   1579 .. code-block:: c++
   1580 
   1581   SparcTargetAsmInfo::SparcTargetAsmInfo(const SparcTargetMachine &TM) {
   1582     Data16bitsDirective = "\t.half\t";
   1583     Data32bitsDirective = "\t.word\t";
   1584     Data64bitsDirective = 0;  // .xword is only supported by V9.
   1585     ZeroDirective = "\t.skip\t";
   1586     CommentString = "!";
   1587     ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
   1588   }
   1589 
   1590 The X86 assembly printer implementation (``X86TargetAsmInfo``) is an example
   1591 where the target specific ``TargetAsmInfo`` class uses an overridden methods:
   1592 ``ExpandInlineAsm``.
   1593 
   1594 A target-specific implementation of ``AsmPrinter`` is written in
   1595 ``XXXAsmPrinter.cpp``, which implements the ``AsmPrinter`` class that converts
   1596 the LLVM to printable assembly.  The implementation must include the following
   1597 headers that have declarations for the ``AsmPrinter`` and
   1598 ``MachineFunctionPass`` classes.  The ``MachineFunctionPass`` is a subclass of
   1599 ``FunctionPass``.
   1600 
   1601 .. code-block:: c++
   1602 
   1603   #include "llvm/CodeGen/AsmPrinter.h"
   1604   #include "llvm/CodeGen/MachineFunctionPass.h"
   1605 
   1606 As a ``FunctionPass``, ``AsmPrinter`` first calls ``doInitialization`` to set
   1607 up the ``AsmPrinter``.  In ``SparcAsmPrinter``, a ``Mangler`` object is
   1608 instantiated to process variable names.
   1609 
   1610 In ``XXXAsmPrinter.cpp``, the ``runOnMachineFunction`` method (declared in
   1611 ``MachineFunctionPass``) must be implemented for ``XXXAsmPrinter``.  In
   1612 ``MachineFunctionPass``, the ``runOnFunction`` method invokes
   1613 ``runOnMachineFunction``.  Target-specific implementations of
   1614 ``runOnMachineFunction`` differ, but generally do the following to process each
   1615 machine function:
   1616 
   1617 * Call ``SetupMachineFunction`` to perform initialization.
   1618 
   1619 * Call ``EmitConstantPool`` to print out (to the output stream) constants which
   1620   have been spilled to memory.
   1621 
   1622 * Call ``EmitJumpTableInfo`` to print out jump tables used by the current
   1623   function.
   1624 
   1625 * Print out the label for the current function.
   1626 
   1627 * Print out the code for the function, including basic block labels and the
   1628   assembly for the instruction (using ``printInstruction``)
   1629 
   1630 The ``XXXAsmPrinter`` implementation must also include the code generated by
   1631 TableGen that is output in the ``XXXGenAsmWriter.inc`` file.  The code in
   1632 ``XXXGenAsmWriter.inc`` contains an implementation of the ``printInstruction``
   1633 method that may call these methods:
   1634 
   1635 * ``printOperand``
   1636 * ``printMemOperand``
   1637 * ``printCCOperand`` (for conditional statements)
   1638 * ``printDataDirective``
   1639 * ``printDeclare``
   1640 * ``printImplicitDef``
   1641 * ``printInlineAsm``
   1642 
   1643 The implementations of ``printDeclare``, ``printImplicitDef``,
   1644 ``printInlineAsm``, and ``printLabel`` in ``AsmPrinter.cpp`` are generally
   1645 adequate for printing assembly and do not need to be overridden.
   1646 
   1647 The ``printOperand`` method is implemented with a long ``switch``/``case``
   1648 statement for the type of operand: register, immediate, basic block, external
   1649 symbol, global address, constant pool index, or jump table index.  For an
   1650 instruction with a memory address operand, the ``printMemOperand`` method
   1651 should be implemented to generate the proper output.  Similarly,
   1652 ``printCCOperand`` should be used to print a conditional operand.
   1653 
   1654 ``doFinalization`` should be overridden in ``XXXAsmPrinter``, and it should be
   1655 called to shut down the assembly printer.  During ``doFinalization``, global
   1656 variables and constants are printed to output.
   1657 
   1658 Subtarget Support
   1659 =================
   1660 
   1661 Subtarget support is used to inform the code generation process of instruction
   1662 set variations for a given chip set.  For example, the LLVM SPARC
   1663 implementation provided covers three major versions of the SPARC microprocessor
   1664 architecture: Version 8 (V8, which is a 32-bit architecture), Version 9 (V9, a
   1665 64-bit architecture), and the UltraSPARC architecture.  V8 has 16
   1666 double-precision floating-point registers that are also usable as either 32
   1667 single-precision or 8 quad-precision registers.  V8 is also purely big-endian.
   1668 V9 has 32 double-precision floating-point registers that are also usable as 16
   1669 quad-precision registers, but cannot be used as single-precision registers.
   1670 The UltraSPARC architecture combines V9 with UltraSPARC Visual Instruction Set
   1671 extensions.
   1672 
   1673 If subtarget support is needed, you should implement a target-specific
   1674 ``XXXSubtarget`` class for your architecture.  This class should process the
   1675 command-line options ``-mcpu=`` and ``-mattr=``.
   1676 
   1677 TableGen uses definitions in the ``Target.td`` and ``Sparc.td`` files to
   1678 generate code in ``SparcGenSubtarget.inc``.  In ``Target.td``, shown below, the
   1679 ``SubtargetFeature`` interface is defined.  The first 4 string parameters of
   1680 the ``SubtargetFeature`` interface are a feature name, an attribute set by the
   1681 feature, the value of the attribute, and a description of the feature.  (The
   1682 fifth parameter is a list of features whose presence is implied, and its
   1683 default value is an empty array.)
   1684 
   1685 .. code-block:: llvm
   1686 
   1687   class SubtargetFeature<string n, string a, string v, string d,
   1688                          list<SubtargetFeature> i = []> {
   1689     string Name = n;
   1690     string Attribute = a;
   1691     string Value = v;
   1692     string Desc = d;
   1693     list<SubtargetFeature> Implies = i;
   1694   }
   1695 
   1696 In the ``Sparc.td`` file, the ``SubtargetFeature`` is used to define the
   1697 following features.
   1698 
   1699 .. code-block:: llvm
   1700 
   1701   def FeatureV9 : SubtargetFeature<"v9", "IsV9", "true",
   1702                        "Enable SPARC-V9 instructions">;
   1703   def FeatureV8Deprecated : SubtargetFeature<"deprecated-v8",
   1704                        "V8DeprecatedInsts", "true",
   1705                        "Enable deprecated V8 instructions in V9 mode">;
   1706   def FeatureVIS : SubtargetFeature<"vis", "IsVIS", "true",
   1707                        "Enable UltraSPARC Visual Instruction Set extensions">;
   1708 
   1709 Elsewhere in ``Sparc.td``, the ``Proc`` class is defined and then is used to
   1710 define particular SPARC processor subtypes that may have the previously
   1711 described features.
   1712 
   1713 .. code-block:: llvm
   1714 
   1715   class Proc<string Name, list<SubtargetFeature> Features>
   1716     : Processor<Name, NoItineraries, Features>;
   1717 
   1718   def : Proc<"generic",         []>;
   1719   def : Proc<"v8",              []>;
   1720   def : Proc<"supersparc",      []>;
   1721   def : Proc<"sparclite",       []>;
   1722   def : Proc<"f934",            []>;
   1723   def : Proc<"hypersparc",      []>;
   1724   def : Proc<"sparclite86x",    []>;
   1725   def : Proc<"sparclet",        []>;
   1726   def : Proc<"tsc701",          []>;
   1727   def : Proc<"v9",              [FeatureV9]>;
   1728   def : Proc<"ultrasparc",      [FeatureV9, FeatureV8Deprecated]>;
   1729   def : Proc<"ultrasparc3",     [FeatureV9, FeatureV8Deprecated]>;
   1730   def : Proc<"ultrasparc3-vis", [FeatureV9, FeatureV8Deprecated, FeatureVIS]>;
   1731 
   1732 From ``Target.td`` and ``Sparc.td`` files, the resulting
   1733 ``SparcGenSubtarget.inc`` specifies enum values to identify the features,
   1734 arrays of constants to represent the CPU features and CPU subtypes, and the
   1735 ``ParseSubtargetFeatures`` method that parses the features string that sets
   1736 specified subtarget options.  The generated ``SparcGenSubtarget.inc`` file
   1737 should be included in the ``SparcSubtarget.cpp``.  The target-specific
   1738 implementation of the ``XXXSubtarget`` method should follow this pseudocode:
   1739 
   1740 .. code-block:: c++
   1741 
   1742   XXXSubtarget::XXXSubtarget(const Module &M, const std::string &FS) {
   1743     // Set the default features
   1744     // Determine default and user specified characteristics of the CPU
   1745     // Call ParseSubtargetFeatures(FS, CPU) to parse the features string
   1746     // Perform any additional operations
   1747   }
   1748 
   1749 JIT Support
   1750 ===========
   1751 
   1752 The implementation of a target machine optionally includes a Just-In-Time (JIT)
   1753 code generator that emits machine code and auxiliary structures as binary
   1754 output that can be written directly to memory.  To do this, implement JIT code
   1755 generation by performing the following steps:
   1756 
   1757 * Write an ``XXXCodeEmitter.cpp`` file that contains a machine function pass
   1758   that transforms target-machine instructions into relocatable machine
   1759   code.
   1760 
   1761 * Write an ``XXXJITInfo.cpp`` file that implements the JIT interfaces for
   1762   target-specific code-generation activities, such as emitting machine code and
   1763   stubs.
   1764 
   1765 * Modify ``XXXTargetMachine`` so that it provides a ``TargetJITInfo`` object
   1766   through its ``getJITInfo`` method.
   1767 
   1768 There are several different approaches to writing the JIT support code.  For
   1769 instance, TableGen and target descriptor files may be used for creating a JIT
   1770 code generator, but are not mandatory.  For the Alpha and PowerPC target
   1771 machines, TableGen is used to generate ``XXXGenCodeEmitter.inc``, which
   1772 contains the binary coding of machine instructions and the
   1773 ``getBinaryCodeForInstr`` method to access those codes.  Other JIT
   1774 implementations do not.
   1775 
   1776 Both ``XXXJITInfo.cpp`` and ``XXXCodeEmitter.cpp`` must include the
   1777 ``llvm/CodeGen/MachineCodeEmitter.h`` header file that defines the
   1778 ``MachineCodeEmitter`` class containing code for several callback functions
   1779 that write data (in bytes, words, strings, etc.) to the output stream.
   1780 
   1781 Machine Code Emitter
   1782 --------------------
   1783 
   1784 In ``XXXCodeEmitter.cpp``, a target-specific of the ``Emitter`` class is
   1785 implemented as a function pass (subclass of ``MachineFunctionPass``).  The
   1786 target-specific implementation of ``runOnMachineFunction`` (invoked by
   1787 ``runOnFunction`` in ``MachineFunctionPass``) iterates through the
   1788 ``MachineBasicBlock`` calls ``emitInstruction`` to process each instruction and
   1789 emit binary code.  ``emitInstruction`` is largely implemented with case
   1790 statements on the instruction types defined in ``XXXInstrInfo.h``.  For
   1791 example, in ``X86CodeEmitter.cpp``, the ``emitInstruction`` method is built
   1792 around the following ``switch``/``case`` statements:
   1793 
   1794 .. code-block:: c++
   1795 
   1796   switch (Desc->TSFlags & X86::FormMask) {
   1797   case X86II::Pseudo:  // for not yet implemented instructions
   1798      ...               // or pseudo-instructions
   1799      break;
   1800   case X86II::RawFrm:  // for instructions with a fixed opcode value
   1801      ...
   1802      break;
   1803   case X86II::AddRegFrm: // for instructions that have one register operand
   1804      ...                 // added to their opcode
   1805      break;
   1806   case X86II::MRMDestReg:// for instructions that use the Mod/RM byte
   1807      ...                 // to specify a destination (register)
   1808      break;
   1809   case X86II::MRMDestMem:// for instructions that use the Mod/RM byte
   1810      ...                 // to specify a destination (memory)
   1811      break;
   1812   case X86II::MRMSrcReg: // for instructions that use the Mod/RM byte
   1813      ...                 // to specify a source (register)
   1814      break;
   1815   case X86II::MRMSrcMem: // for instructions that use the Mod/RM byte
   1816      ...                 // to specify a source (memory)
   1817      break;
   1818   case X86II::MRM0r: case X86II::MRM1r:  // for instructions that operate on
   1819   case X86II::MRM2r: case X86II::MRM3r:  // a REGISTER r/m operand and
   1820   case X86II::MRM4r: case X86II::MRM5r:  // use the Mod/RM byte and a field
   1821   case X86II::MRM6r: case X86II::MRM7r:  // to hold extended opcode data
   1822      ...
   1823      break;
   1824   case X86II::MRM0m: case X86II::MRM1m:  // for instructions that operate on
   1825   case X86II::MRM2m: case X86II::MRM3m:  // a MEMORY r/m operand and
   1826   case X86II::MRM4m: case X86II::MRM5m:  // use the Mod/RM byte and a field
   1827   case X86II::MRM6m: case X86II::MRM7m:  // to hold extended opcode data
   1828      ...
   1829      break;
   1830   case X86II::MRMInitReg: // for instructions whose source and
   1831      ...                  // destination are the same register
   1832      break;
   1833   }
   1834 
   1835 The implementations of these case statements often first emit the opcode and
   1836 then get the operand(s).  Then depending upon the operand, helper methods may
   1837 be called to process the operand(s).  For example, in ``X86CodeEmitter.cpp``,
   1838 for the ``X86II::AddRegFrm`` case, the first data emitted (by ``emitByte``) is
   1839 the opcode added to the register operand.  Then an object representing the
   1840 machine operand, ``MO1``, is extracted.  The helper methods such as
   1841 ``isImmediate``, ``isGlobalAddress``, ``isExternalSymbol``,
   1842 ``isConstantPoolIndex``, and ``isJumpTableIndex`` determine the operand type.
   1843 (``X86CodeEmitter.cpp`` also has private methods such as ``emitConstant``,
   1844 ``emitGlobalAddress``, ``emitExternalSymbolAddress``, ``emitConstPoolAddress``,
   1845 and ``emitJumpTableAddress`` that emit the data into the output stream.)
   1846 
   1847 .. code-block:: c++
   1848 
   1849   case X86II::AddRegFrm:
   1850     MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg()));
   1851 
   1852     if (CurOp != NumOps) {
   1853       const MachineOperand &MO1 = MI.getOperand(CurOp++);
   1854       unsigned Size = X86InstrInfo::sizeOfImm(Desc);
   1855       if (MO1.isImmediate())
   1856         emitConstant(MO1.getImm(), Size);
   1857       else {
   1858         unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
   1859           : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
   1860         if (Opcode == X86::MOV64ri)
   1861           rt = X86::reloc_absolute_dword;  // FIXME: add X86II flag?
   1862         if (MO1.isGlobalAddress()) {
   1863           bool NeedStub = isa<Function>(MO1.getGlobal());
   1864           bool isLazy = gvNeedsLazyPtr(MO1.getGlobal());
   1865           emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
   1866                             NeedStub, isLazy);
   1867         } else if (MO1.isExternalSymbol())
   1868           emitExternalSymbolAddress(MO1.getSymbolName(), rt);
   1869         else if (MO1.isConstantPoolIndex())
   1870           emitConstPoolAddress(MO1.getIndex(), rt);
   1871         else if (MO1.isJumpTableIndex())
   1872           emitJumpTableAddress(MO1.getIndex(), rt);
   1873       }
   1874     }
   1875     break;
   1876 
   1877 In the previous example, ``XXXCodeEmitter.cpp`` uses the variable ``rt``, which
   1878 is a ``RelocationType`` enum that may be used to relocate addresses (for
   1879 example, a global address with a PIC base offset).  The ``RelocationType`` enum
   1880 for that target is defined in the short target-specific ``XXXRelocations.h``
   1881 file.  The ``RelocationType`` is used by the ``relocate`` method defined in
   1882 ``XXXJITInfo.cpp`` to rewrite addresses for referenced global symbols.
   1883 
   1884 For example, ``X86Relocations.h`` specifies the following relocation types for
   1885 the X86 addresses.  In all four cases, the relocated value is added to the
   1886 value already in memory.  For ``reloc_pcrel_word`` and ``reloc_picrel_word``,
   1887 there is an additional initial adjustment.
   1888 
   1889 .. code-block:: c++
   1890 
   1891   enum RelocationType {
   1892     reloc_pcrel_word = 0,    // add reloc value after adjusting for the PC loc
   1893     reloc_picrel_word = 1,   // add reloc value after adjusting for the PIC base
   1894     reloc_absolute_word = 2, // absolute relocation; no additional adjustment
   1895     reloc_absolute_dword = 3 // absolute relocation; no additional adjustment
   1896   };
   1897 
   1898 Target JIT Info
   1899 ---------------
   1900 
   1901 ``XXXJITInfo.cpp`` implements the JIT interfaces for target-specific
   1902 code-generation activities, such as emitting machine code and stubs.  At
   1903 minimum, a target-specific version of ``XXXJITInfo`` implements the following:
   1904 
   1905 * ``getLazyResolverFunction`` --- Initializes the JIT, gives the target a
   1906   function that is used for compilation.
   1907 
   1908 * ``emitFunctionStub`` --- Returns a native function with a specified address
   1909   for a callback function.
   1910 
   1911 * ``relocate`` --- Changes the addresses of referenced globals, based on
   1912   relocation types.
   1913 
   1914 * Callback function that are wrappers to a function stub that is used when the
   1915   real target is not initially known.
   1916 
   1917 ``getLazyResolverFunction`` is generally trivial to implement.  It makes the
   1918 incoming parameter as the global ``JITCompilerFunction`` and returns the
   1919 callback function that will be used a function wrapper.  For the Alpha target
   1920 (in ``AlphaJITInfo.cpp``), the ``getLazyResolverFunction`` implementation is
   1921 simply:
   1922 
   1923 .. code-block:: c++
   1924 
   1925   TargetJITInfo::LazyResolverFn AlphaJITInfo::getLazyResolverFunction(
   1926                                               JITCompilerFn F) {
   1927     JITCompilerFunction = F;
   1928     return AlphaCompilationCallback;
   1929   }
   1930 
   1931 For the X86 target, the ``getLazyResolverFunction`` implementation is a little
   1932 more complicated, because it returns a different callback function for
   1933 processors with SSE instructions and XMM registers.
   1934 
   1935 The callback function initially saves and later restores the callee register
   1936 values, incoming arguments, and frame and return address.  The callback
   1937 function needs low-level access to the registers or stack, so it is typically
   1938 implemented with assembler.
   1939 
   1940