Home | History | Annotate | Download | only in Chapter5
      1 //===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Contains a simple JIT definition for use in the kaleidoscope tutorials.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
     15 #define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
     16 
     17 #include "RemoteJITUtils.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ExecutionEngine/ExecutionEngine.h"
     20 #include "llvm/ExecutionEngine/RuntimeDyld.h"
     21 #include "llvm/ExecutionEngine/SectionMemoryManager.h"
     22 #include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
     23 #include "llvm/ExecutionEngine/Orc/CompileUtils.h"
     24 #include "llvm/ExecutionEngine/Orc/JITSymbol.h"
     25 #include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
     26 #include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
     27 #include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
     28 #include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
     29 #include "llvm/ExecutionEngine/Orc/OrcRemoteTargetClient.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Mangler.h"
     32 #include "llvm/Support/DynamicLibrary.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Target/TargetMachine.h"
     35 #include <algorithm>
     36 #include <memory>
     37 #include <string>
     38 #include <vector>
     39 
     40 class PrototypeAST;
     41 class ExprAST;
     42 
     43 /// FunctionAST - This class represents a function definition itself.
     44 class FunctionAST {
     45   std::unique_ptr<PrototypeAST> Proto;
     46   std::unique_ptr<ExprAST> Body;
     47 
     48 public:
     49   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
     50               std::unique_ptr<ExprAST> Body)
     51       : Proto(std::move(Proto)), Body(std::move(Body)) {}
     52   const PrototypeAST& getProto() const;
     53   const std::string& getName() const;
     54   llvm::Function *codegen();
     55 };
     56 
     57 /// This will compile FnAST to IR, rename the function to add the given
     58 /// suffix (needed to prevent a name-clash with the function's stub),
     59 /// and then take ownership of the module that the function was compiled
     60 /// into.
     61 std::unique_ptr<llvm::Module>
     62 irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);
     63 
     64 namespace llvm {
     65 namespace orc {
     66 
     67 // Typedef the remote-client API.
     68 typedef remote::OrcRemoteTargetClient<FDRPCChannel> MyRemote;
     69 
     70 class KaleidoscopeJIT {
     71 private:
     72   MyRemote &Remote;
     73   std::unique_ptr<TargetMachine> TM;
     74   const DataLayout DL;
     75   JITCompileCallbackManager *CompileCallbackMgr;
     76   std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
     77   ObjectLinkingLayer<> ObjectLayer;
     78   IRCompileLayer<decltype(ObjectLayer)> CompileLayer;
     79 
     80   typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
     81     OptimizeFunction;
     82 
     83   IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
     84 
     85 public:
     86   typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;
     87 
     88   KaleidoscopeJIT(MyRemote &Remote)
     89       : Remote(Remote),
     90         TM(EngineBuilder().selectTarget()),
     91         DL(TM->createDataLayout()),
     92         CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
     93         OptimizeLayer(CompileLayer,
     94                       [this](std::unique_ptr<Module> M) {
     95                         return optimizeModule(std::move(M));
     96                       }) {
     97     auto CCMgrOrErr = Remote.enableCompileCallbacks(0);
     98     if (!CCMgrOrErr) {
     99       logAllUnhandledErrors(CCMgrOrErr.takeError(), errs(),
    100                             "Error enabling remote compile callbacks:");
    101       exit(1);
    102     }
    103     CompileCallbackMgr = &*CCMgrOrErr;
    104     std::unique_ptr<MyRemote::RCIndirectStubsManager> ISM;
    105     if (auto Err = Remote.createIndirectStubsManager(ISM)) {
    106       logAllUnhandledErrors(std::move(Err), errs(),
    107                             "Error creating indirect stubs manager:");
    108       exit(1);
    109     }
    110     IndirectStubsMgr = std::move(ISM);
    111     llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
    112   }
    113 
    114   TargetMachine &getTargetMachine() { return *TM; }
    115 
    116   ModuleHandle addModule(std::unique_ptr<Module> M) {
    117 
    118     // Build our symbol resolver:
    119     // Lambda 1: Look back into the JIT itself to find symbols that are part of
    120     //           the same "logical dylib".
    121     // Lambda 2: Search for external symbols in the host process.
    122     auto Resolver = createLambdaResolver(
    123         [&](const std::string &Name) {
    124           if (auto Sym = IndirectStubsMgr->findStub(Name, false))
    125             return Sym.toRuntimeDyldSymbol();
    126           if (auto Sym = OptimizeLayer.findSymbol(Name, false))
    127             return Sym.toRuntimeDyldSymbol();
    128           return RuntimeDyld::SymbolInfo(nullptr);
    129         },
    130         [&](const std::string &Name) {
    131           if (auto AddrOrErr = Remote.getSymbolAddress(Name))
    132             return RuntimeDyld::SymbolInfo(*AddrOrErr,
    133                                            JITSymbolFlags::Exported);
    134           else {
    135             logAllUnhandledErrors(AddrOrErr.takeError(), errs(),
    136                                   "Error resolving remote symbol:");
    137             exit(1);
    138           }
    139           return RuntimeDyld::SymbolInfo(nullptr);
    140         });
    141 
    142     std::unique_ptr<MyRemote::RCMemoryManager> MemMgr;
    143     if (auto Err = Remote.createRemoteMemoryManager(MemMgr)) {
    144       logAllUnhandledErrors(std::move(Err), errs(),
    145                             "Error creating remote memory manager:");
    146       exit(1);
    147     }
    148 
    149     // Build a singlton module set to hold our module.
    150     std::vector<std::unique_ptr<Module>> Ms;
    151     Ms.push_back(std::move(M));
    152 
    153     // Add the set to the JIT with the resolver we created above and a newly
    154     // created SectionMemoryManager.
    155     return OptimizeLayer.addModuleSet(std::move(Ms),
    156                                       std::move(MemMgr),
    157                                       std::move(Resolver));
    158   }
    159 
    160   Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
    161     // Create a CompileCallback - this is the re-entry point into the compiler
    162     // for functions that haven't been compiled yet.
    163     auto CCInfo = CompileCallbackMgr->getCompileCallback();
    164 
    165     // Create an indirect stub. This serves as the functions "canonical
    166     // definition" - an unchanging (constant address) entry point to the
    167     // function implementation.
    168     // Initially we point the stub's function-pointer at the compile callback
    169     // that we just created. In the compile action for the callback (see below)
    170     // we will update the stub's function pointer to point at the function
    171     // implementation that we just implemented.
    172     if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),
    173                                                 CCInfo.getAddress(),
    174                                                 JITSymbolFlags::Exported))
    175       return Err;
    176 
    177     // Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
    178     // capture-by-move, which is be required for unique_ptr.
    179     auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));
    180 
    181     // Set the action to compile our AST. This lambda will be run if/when
    182     // execution hits the compile callback (via the stub).
    183     //
    184     // The steps to compile are:
    185     // (1) IRGen the function.
    186     // (2) Add the IR module to the JIT to make it executable like any other
    187     //     module.
    188     // (3) Use findSymbol to get the address of the compiled function.
    189     // (4) Update the stub pointer to point at the implementation so that
    190     ///    subsequent calls go directly to it and bypass the compiler.
    191     // (5) Return the address of the implementation: this lambda will actually
    192     //     be run inside an attempted call to the function, and we need to
    193     //     continue on to the implementation to complete the attempted call.
    194     //     The JIT runtime (the resolver block) will use the return address of
    195     //     this function as the address to continue at once it has reset the
    196     //     CPU state to what it was immediately before the call.
    197     CCInfo.setCompileAction(
    198       [this, SharedFnAST]() {
    199         auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
    200         addModule(std::move(M));
    201         auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
    202         assert(Sym && "Couldn't find compiled function?");
    203         TargetAddress SymAddr = Sym.getAddress();
    204         if (auto Err =
    205               IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
    206                                               SymAddr)) {
    207           logAllUnhandledErrors(std::move(Err), errs(),
    208                                 "Error updating function pointer: ");
    209           exit(1);
    210         }
    211 
    212         return SymAddr;
    213       });
    214 
    215     return Error::success();
    216   }
    217 
    218   Error executeRemoteExpr(TargetAddress ExprAddr) {
    219     return Remote.callVoidVoid(ExprAddr);
    220   }
    221 
    222   JITSymbol findSymbol(const std::string Name) {
    223     return OptimizeLayer.findSymbol(mangle(Name), true);
    224   }
    225 
    226   void removeModule(ModuleHandle H) {
    227     OptimizeLayer.removeModuleSet(H);
    228   }
    229 
    230 private:
    231 
    232   std::string mangle(const std::string &Name) {
    233     std::string MangledName;
    234     raw_string_ostream MangledNameStream(MangledName);
    235     Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
    236     return MangledNameStream.str();
    237   }
    238 
    239   std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
    240     // Create a function pass manager.
    241     auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());
    242 
    243     // Add some optimizations.
    244     FPM->add(createInstructionCombiningPass());
    245     FPM->add(createReassociatePass());
    246     FPM->add(createGVNPass());
    247     FPM->add(createCFGSimplificationPass());
    248     FPM->doInitialization();
    249 
    250     // Run the optimizations over all functions in the module being added to
    251     // the JIT.
    252     for (auto &F : *M)
    253       FPM->run(F);
    254 
    255     return M;
    256   }
    257 
    258 };
    259 
    260 } // end namespace orc
    261 } // end namespace llvm
    262 
    263 #endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
    264