Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/EquivalenceClasses.h - Generic Equiv. Classes --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Generic implementation of equivalence classes through the use Tarjan's
     11 // efficient union-find algorithm.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ADT_EQUIVALENCECLASSES_H
     16 #define LLVM_ADT_EQUIVALENCECLASSES_H
     17 
     18 #include "llvm/Support/DataTypes.h"
     19 #include <cassert>
     20 #include <cstddef>
     21 #include <set>
     22 
     23 namespace llvm {
     24 
     25 /// EquivalenceClasses - This represents a collection of equivalence classes and
     26 /// supports three efficient operations: insert an element into a class of its
     27 /// own, union two classes, and find the class for a given element.  In
     28 /// addition to these modification methods, it is possible to iterate over all
     29 /// of the equivalence classes and all of the elements in a class.
     30 ///
     31 /// This implementation is an efficient implementation that only stores one copy
     32 /// of the element being indexed per entry in the set, and allows any arbitrary
     33 /// type to be indexed (as long as it can be ordered with operator<).
     34 ///
     35 /// Here is a simple example using integers:
     36 ///
     37 /// \code
     38 ///  EquivalenceClasses<int> EC;
     39 ///  EC.unionSets(1, 2);                // insert 1, 2 into the same set
     40 ///  EC.insert(4); EC.insert(5);        // insert 4, 5 into own sets
     41 ///  EC.unionSets(5, 1);                // merge the set for 1 with 5's set.
     42 ///
     43 ///  for (EquivalenceClasses<int>::iterator I = EC.begin(), E = EC.end();
     44 ///       I != E; ++I) {           // Iterate over all of the equivalence sets.
     45 ///    if (!I->isLeader()) continue;   // Ignore non-leader sets.
     46 ///    for (EquivalenceClasses<int>::member_iterator MI = EC.member_begin(I);
     47 ///         MI != EC.member_end(); ++MI)   // Loop over members in this set.
     48 ///      cerr << *MI << " ";  // Print member.
     49 ///    cerr << "\n";   // Finish set.
     50 ///  }
     51 /// \endcode
     52 ///
     53 /// This example prints:
     54 ///   4
     55 ///   5 1 2
     56 ///
     57 template <class ElemTy>
     58 class EquivalenceClasses {
     59   /// ECValue - The EquivalenceClasses data structure is just a set of these.
     60   /// Each of these represents a relation for a value.  First it stores the
     61   /// value itself, which provides the ordering that the set queries.  Next, it
     62   /// provides a "next pointer", which is used to enumerate all of the elements
     63   /// in the unioned set.  Finally, it defines either a "end of list pointer" or
     64   /// "leader pointer" depending on whether the value itself is a leader.  A
     65   /// "leader pointer" points to the node that is the leader for this element,
     66   /// if the node is not a leader.  A "end of list pointer" points to the last
     67   /// node in the list of members of this list.  Whether or not a node is a
     68   /// leader is determined by a bit stolen from one of the pointers.
     69   class ECValue {
     70     friend class EquivalenceClasses;
     71     mutable const ECValue *Leader, *Next;
     72     ElemTy Data;
     73     // ECValue ctor - Start out with EndOfList pointing to this node, Next is
     74     // Null, isLeader = true.
     75     ECValue(const ElemTy &Elt)
     76       : Leader(this), Next((ECValue*)(intptr_t)1), Data(Elt) {}
     77 
     78     const ECValue *getLeader() const {
     79       if (isLeader()) return this;
     80       if (Leader->isLeader()) return Leader;
     81       // Path compression.
     82       return Leader = Leader->getLeader();
     83     }
     84     const ECValue *getEndOfList() const {
     85       assert(isLeader() && "Cannot get the end of a list for a non-leader!");
     86       return Leader;
     87     }
     88 
     89     void setNext(const ECValue *NewNext) const {
     90       assert(getNext() == nullptr && "Already has a next pointer!");
     91       Next = (const ECValue*)((intptr_t)NewNext | (intptr_t)isLeader());
     92     }
     93   public:
     94     ECValue(const ECValue &RHS) : Leader(this), Next((ECValue*)(intptr_t)1),
     95                                   Data(RHS.Data) {
     96       // Only support copying of singleton nodes.
     97       assert(RHS.isLeader() && RHS.getNext() == nullptr && "Not a singleton!");
     98     }
     99 
    100     bool operator<(const ECValue &UFN) const { return Data < UFN.Data; }
    101 
    102     bool isLeader() const { return (intptr_t)Next & 1; }
    103     const ElemTy &getData() const { return Data; }
    104 
    105     const ECValue *getNext() const {
    106       return (ECValue*)((intptr_t)Next & ~(intptr_t)1);
    107     }
    108 
    109     template<typename T>
    110     bool operator<(const T &Val) const { return Data < Val; }
    111   };
    112 
    113   /// TheMapping - This implicitly provides a mapping from ElemTy values to the
    114   /// ECValues, it just keeps the key as part of the value.
    115   std::set<ECValue> TheMapping;
    116 
    117 public:
    118   EquivalenceClasses() {}
    119   EquivalenceClasses(const EquivalenceClasses &RHS) {
    120     operator=(RHS);
    121   }
    122 
    123   const EquivalenceClasses &operator=(const EquivalenceClasses &RHS) {
    124     TheMapping.clear();
    125     for (iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
    126       if (I->isLeader()) {
    127         member_iterator MI = RHS.member_begin(I);
    128         member_iterator LeaderIt = member_begin(insert(*MI));
    129         for (++MI; MI != member_end(); ++MI)
    130           unionSets(LeaderIt, member_begin(insert(*MI)));
    131       }
    132     return *this;
    133   }
    134 
    135   //===--------------------------------------------------------------------===//
    136   // Inspection methods
    137   //
    138 
    139   /// iterator* - Provides a way to iterate over all values in the set.
    140   typedef typename std::set<ECValue>::const_iterator iterator;
    141   iterator begin() const { return TheMapping.begin(); }
    142   iterator end() const { return TheMapping.end(); }
    143 
    144   bool empty() const { return TheMapping.empty(); }
    145 
    146   /// member_* Iterate over the members of an equivalence class.
    147   ///
    148   class member_iterator;
    149   member_iterator member_begin(iterator I) const {
    150     // Only leaders provide anything to iterate over.
    151     return member_iterator(I->isLeader() ? &*I : nullptr);
    152   }
    153   member_iterator member_end() const {
    154     return member_iterator(nullptr);
    155   }
    156 
    157   /// findValue - Return an iterator to the specified value.  If it does not
    158   /// exist, end() is returned.
    159   iterator findValue(const ElemTy &V) const {
    160     return TheMapping.find(V);
    161   }
    162 
    163   /// getLeaderValue - Return the leader for the specified value that is in the
    164   /// set.  It is an error to call this method for a value that is not yet in
    165   /// the set.  For that, call getOrInsertLeaderValue(V).
    166   const ElemTy &getLeaderValue(const ElemTy &V) const {
    167     member_iterator MI = findLeader(V);
    168     assert(MI != member_end() && "Value is not in the set!");
    169     return *MI;
    170   }
    171 
    172   /// getOrInsertLeaderValue - Return the leader for the specified value that is
    173   /// in the set.  If the member is not in the set, it is inserted, then
    174   /// returned.
    175   const ElemTy &getOrInsertLeaderValue(const ElemTy &V) {
    176     member_iterator MI = findLeader(insert(V));
    177     assert(MI != member_end() && "Value is not in the set!");
    178     return *MI;
    179   }
    180 
    181   /// getNumClasses - Return the number of equivalence classes in this set.
    182   /// Note that this is a linear time operation.
    183   unsigned getNumClasses() const {
    184     unsigned NC = 0;
    185     for (iterator I = begin(), E = end(); I != E; ++I)
    186       if (I->isLeader()) ++NC;
    187     return NC;
    188   }
    189 
    190 
    191   //===--------------------------------------------------------------------===//
    192   // Mutation methods
    193 
    194   /// insert - Insert a new value into the union/find set, ignoring the request
    195   /// if the value already exists.
    196   iterator insert(const ElemTy &Data) {
    197     return TheMapping.insert(ECValue(Data)).first;
    198   }
    199 
    200   /// findLeader - Given a value in the set, return a member iterator for the
    201   /// equivalence class it is in.  This does the path-compression part that
    202   /// makes union-find "union findy".  This returns an end iterator if the value
    203   /// is not in the equivalence class.
    204   ///
    205   member_iterator findLeader(iterator I) const {
    206     if (I == TheMapping.end()) return member_end();
    207     return member_iterator(I->getLeader());
    208   }
    209   member_iterator findLeader(const ElemTy &V) const {
    210     return findLeader(TheMapping.find(V));
    211   }
    212 
    213 
    214   /// union - Merge the two equivalence sets for the specified values, inserting
    215   /// them if they do not already exist in the equivalence set.
    216   member_iterator unionSets(const ElemTy &V1, const ElemTy &V2) {
    217     iterator V1I = insert(V1), V2I = insert(V2);
    218     return unionSets(findLeader(V1I), findLeader(V2I));
    219   }
    220   member_iterator unionSets(member_iterator L1, member_iterator L2) {
    221     assert(L1 != member_end() && L2 != member_end() && "Illegal inputs!");
    222     if (L1 == L2) return L1;   // Unifying the same two sets, noop.
    223 
    224     // Otherwise, this is a real union operation.  Set the end of the L1 list to
    225     // point to the L2 leader node.
    226     const ECValue &L1LV = *L1.Node, &L2LV = *L2.Node;
    227     L1LV.getEndOfList()->setNext(&L2LV);
    228 
    229     // Update L1LV's end of list pointer.
    230     L1LV.Leader = L2LV.getEndOfList();
    231 
    232     // Clear L2's leader flag:
    233     L2LV.Next = L2LV.getNext();
    234 
    235     // L2's leader is now L1.
    236     L2LV.Leader = &L1LV;
    237     return L1;
    238   }
    239 
    240   class member_iterator : public std::iterator<std::forward_iterator_tag,
    241                                                const ElemTy, ptrdiff_t> {
    242     typedef std::iterator<std::forward_iterator_tag,
    243                           const ElemTy, ptrdiff_t> super;
    244     const ECValue *Node;
    245     friend class EquivalenceClasses;
    246   public:
    247     typedef size_t size_type;
    248     typedef typename super::pointer pointer;
    249     typedef typename super::reference reference;
    250 
    251     explicit member_iterator() {}
    252     explicit member_iterator(const ECValue *N) : Node(N) {}
    253 
    254     reference operator*() const {
    255       assert(Node != nullptr && "Dereferencing end()!");
    256       return Node->getData();
    257     }
    258     pointer operator->() const { return &operator*(); }
    259 
    260     member_iterator &operator++() {
    261       assert(Node != nullptr && "++'d off the end of the list!");
    262       Node = Node->getNext();
    263       return *this;
    264     }
    265 
    266     member_iterator operator++(int) {    // postincrement operators.
    267       member_iterator tmp = *this;
    268       ++*this;
    269       return tmp;
    270     }
    271 
    272     bool operator==(const member_iterator &RHS) const {
    273       return Node == RHS.Node;
    274     }
    275     bool operator!=(const member_iterator &RHS) const {
    276       return Node != RHS.Node;
    277     }
    278   };
    279 };
    280 
    281 } // End llvm namespace
    282 
    283 #endif
    284