Home | History | Annotate | Download | only in ADT
      1 //===--- llvm/ADT/SparseSet.h - Sparse set ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the SparseSet class derived from the version described in
     11 // Briggs, Torczon, "An efficient representation for sparse sets", ACM Letters
     12 // on Programming Languages and Systems, Volume 2 Issue 1-4, March-Dec.  1993.
     13 //
     14 // A sparse set holds a small number of objects identified by integer keys from
     15 // a moderately sized universe. The sparse set uses more memory than other
     16 // containers in order to provide faster operations.
     17 //
     18 //===----------------------------------------------------------------------===//
     19 
     20 #ifndef LLVM_ADT_SPARSESET_H
     21 #define LLVM_ADT_SPARSESET_H
     22 
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Support/DataTypes.h"
     26 #include <limits>
     27 
     28 namespace llvm {
     29 
     30 /// SparseSetValTraits - Objects in a SparseSet are identified by keys that can
     31 /// be uniquely converted to a small integer less than the set's universe. This
     32 /// class allows the set to hold values that differ from the set's key type as
     33 /// long as an index can still be derived from the value. SparseSet never
     34 /// directly compares ValueT, only their indices, so it can map keys to
     35 /// arbitrary values. SparseSetValTraits computes the index from the value
     36 /// object. To compute the index from a key, SparseSet uses a separate
     37 /// KeyFunctorT template argument.
     38 ///
     39 /// A simple type declaration, SparseSet<Type>, handles these cases:
     40 /// - unsigned key, identity index, identity value
     41 /// - unsigned key, identity index, fat value providing getSparseSetIndex()
     42 ///
     43 /// The type declaration SparseSet<Type, UnaryFunction> handles:
     44 /// - unsigned key, remapped index, identity value (virtual registers)
     45 /// - pointer key, pointer-derived index, identity value (node+ID)
     46 /// - pointer key, pointer-derived index, fat value with getSparseSetIndex()
     47 ///
     48 /// Only other, unexpected cases require specializing SparseSetValTraits.
     49 ///
     50 /// For best results, ValueT should not require a destructor.
     51 ///
     52 template<typename ValueT>
     53 struct SparseSetValTraits {
     54   static unsigned getValIndex(const ValueT &Val) {
     55     return Val.getSparseSetIndex();
     56   }
     57 };
     58 
     59 /// SparseSetValFunctor - Helper class for selecting SparseSetValTraits. The
     60 /// generic implementation handles ValueT classes which either provide
     61 /// getSparseSetIndex() or specialize SparseSetValTraits<>.
     62 ///
     63 template<typename KeyT, typename ValueT, typename KeyFunctorT>
     64 struct SparseSetValFunctor {
     65   unsigned operator()(const ValueT &Val) const {
     66     return SparseSetValTraits<ValueT>::getValIndex(Val);
     67   }
     68 };
     69 
     70 /// SparseSetValFunctor<KeyT, KeyT> - Helper class for the common case of
     71 /// identity key/value sets.
     72 template<typename KeyT, typename KeyFunctorT>
     73 struct SparseSetValFunctor<KeyT, KeyT, KeyFunctorT> {
     74   unsigned operator()(const KeyT &Key) const {
     75     return KeyFunctorT()(Key);
     76   }
     77 };
     78 
     79 /// SparseSet - Fast set implmentation for objects that can be identified by
     80 /// small unsigned keys.
     81 ///
     82 /// SparseSet allocates memory proportional to the size of the key universe, so
     83 /// it is not recommended for building composite data structures.  It is useful
     84 /// for algorithms that require a single set with fast operations.
     85 ///
     86 /// Compared to DenseSet and DenseMap, SparseSet provides constant-time fast
     87 /// clear() and iteration as fast as a vector.  The find(), insert(), and
     88 /// erase() operations are all constant time, and typically faster than a hash
     89 /// table.  The iteration order doesn't depend on numerical key values, it only
     90 /// depends on the order of insert() and erase() operations.  When no elements
     91 /// have been erased, the iteration order is the insertion order.
     92 ///
     93 /// Compared to BitVector, SparseSet<unsigned> uses 8x-40x more memory, but
     94 /// offers constant-time clear() and size() operations as well as fast
     95 /// iteration independent on the size of the universe.
     96 ///
     97 /// SparseSet contains a dense vector holding all the objects and a sparse
     98 /// array holding indexes into the dense vector.  Most of the memory is used by
     99 /// the sparse array which is the size of the key universe.  The SparseT
    100 /// template parameter provides a space/speed tradeoff for sets holding many
    101 /// elements.
    102 ///
    103 /// When SparseT is uint32_t, find() only touches 2 cache lines, but the sparse
    104 /// array uses 4 x Universe bytes.
    105 ///
    106 /// When SparseT is uint8_t (the default), find() touches up to 2+[N/256] cache
    107 /// lines, but the sparse array is 4x smaller.  N is the number of elements in
    108 /// the set.
    109 ///
    110 /// For sets that may grow to thousands of elements, SparseT should be set to
    111 /// uint16_t or uint32_t.
    112 ///
    113 /// @tparam ValueT      The type of objects in the set.
    114 /// @tparam KeyFunctorT A functor that computes an unsigned index from KeyT.
    115 /// @tparam SparseT     An unsigned integer type. See above.
    116 ///
    117 template<typename ValueT,
    118          typename KeyFunctorT = llvm::identity<unsigned>,
    119          typename SparseT = uint8_t>
    120 class SparseSet {
    121   static_assert(std::numeric_limits<SparseT>::is_integer &&
    122                 !std::numeric_limits<SparseT>::is_signed,
    123                 "SparseT must be an unsigned integer type");
    124 
    125   typedef typename KeyFunctorT::argument_type KeyT;
    126   typedef SmallVector<ValueT, 8> DenseT;
    127   typedef unsigned size_type;
    128   DenseT Dense;
    129   SparseT *Sparse;
    130   unsigned Universe;
    131   KeyFunctorT KeyIndexOf;
    132   SparseSetValFunctor<KeyT, ValueT, KeyFunctorT> ValIndexOf;
    133 
    134   // Disable copy construction and assignment.
    135   // This data structure is not meant to be used that way.
    136   SparseSet(const SparseSet&) = delete;
    137   SparseSet &operator=(const SparseSet&) = delete;
    138 
    139 public:
    140   typedef ValueT value_type;
    141   typedef ValueT &reference;
    142   typedef const ValueT &const_reference;
    143   typedef ValueT *pointer;
    144   typedef const ValueT *const_pointer;
    145 
    146   SparseSet() : Sparse(nullptr), Universe(0) {}
    147   ~SparseSet() { free(Sparse); }
    148 
    149   /// setUniverse - Set the universe size which determines the largest key the
    150   /// set can hold.  The universe must be sized before any elements can be
    151   /// added.
    152   ///
    153   /// @param U Universe size. All object keys must be less than U.
    154   ///
    155   void setUniverse(unsigned U) {
    156     // It's not hard to resize the universe on a non-empty set, but it doesn't
    157     // seem like a likely use case, so we can add that code when we need it.
    158     assert(empty() && "Can only resize universe on an empty map");
    159     // Hysteresis prevents needless reallocations.
    160     if (U >= Universe/4 && U <= Universe)
    161       return;
    162     free(Sparse);
    163     // The Sparse array doesn't actually need to be initialized, so malloc
    164     // would be enough here, but that will cause tools like valgrind to
    165     // complain about branching on uninitialized data.
    166     Sparse = reinterpret_cast<SparseT*>(calloc(U, sizeof(SparseT)));
    167     Universe = U;
    168   }
    169 
    170   // Import trivial vector stuff from DenseT.
    171   typedef typename DenseT::iterator iterator;
    172   typedef typename DenseT::const_iterator const_iterator;
    173 
    174   const_iterator begin() const { return Dense.begin(); }
    175   const_iterator end() const { return Dense.end(); }
    176   iterator begin() { return Dense.begin(); }
    177   iterator end() { return Dense.end(); }
    178 
    179   /// empty - Returns true if the set is empty.
    180   ///
    181   /// This is not the same as BitVector::empty().
    182   ///
    183   bool empty() const { return Dense.empty(); }
    184 
    185   /// size - Returns the number of elements in the set.
    186   ///
    187   /// This is not the same as BitVector::size() which returns the size of the
    188   /// universe.
    189   ///
    190   size_type size() const { return Dense.size(); }
    191 
    192   /// clear - Clears the set.  This is a very fast constant time operation.
    193   ///
    194   void clear() {
    195     // Sparse does not need to be cleared, see find().
    196     Dense.clear();
    197   }
    198 
    199   /// findIndex - Find an element by its index.
    200   ///
    201   /// @param   Idx A valid index to find.
    202   /// @returns An iterator to the element identified by key, or end().
    203   ///
    204   iterator findIndex(unsigned Idx) {
    205     assert(Idx < Universe && "Key out of range");
    206     const unsigned Stride = std::numeric_limits<SparseT>::max() + 1u;
    207     for (unsigned i = Sparse[Idx], e = size(); i < e; i += Stride) {
    208       const unsigned FoundIdx = ValIndexOf(Dense[i]);
    209       assert(FoundIdx < Universe && "Invalid key in set. Did object mutate?");
    210       if (Idx == FoundIdx)
    211         return begin() + i;
    212       // Stride is 0 when SparseT >= unsigned.  We don't need to loop.
    213       if (!Stride)
    214         break;
    215     }
    216     return end();
    217   }
    218 
    219   /// find - Find an element by its key.
    220   ///
    221   /// @param   Key A valid key to find.
    222   /// @returns An iterator to the element identified by key, or end().
    223   ///
    224   iterator find(const KeyT &Key) {
    225     return findIndex(KeyIndexOf(Key));
    226   }
    227 
    228   const_iterator find(const KeyT &Key) const {
    229     return const_cast<SparseSet*>(this)->findIndex(KeyIndexOf(Key));
    230   }
    231 
    232   /// count - Returns 1 if this set contains an element identified by Key,
    233   /// 0 otherwise.
    234   ///
    235   size_type count(const KeyT &Key) const {
    236     return find(Key) == end() ? 0 : 1;
    237   }
    238 
    239   /// insert - Attempts to insert a new element.
    240   ///
    241   /// If Val is successfully inserted, return (I, true), where I is an iterator
    242   /// pointing to the newly inserted element.
    243   ///
    244   /// If the set already contains an element with the same key as Val, return
    245   /// (I, false), where I is an iterator pointing to the existing element.
    246   ///
    247   /// Insertion invalidates all iterators.
    248   ///
    249   std::pair<iterator, bool> insert(const ValueT &Val) {
    250     unsigned Idx = ValIndexOf(Val);
    251     iterator I = findIndex(Idx);
    252     if (I != end())
    253       return std::make_pair(I, false);
    254     Sparse[Idx] = size();
    255     Dense.push_back(Val);
    256     return std::make_pair(end() - 1, true);
    257   }
    258 
    259   /// array subscript - If an element already exists with this key, return it.
    260   /// Otherwise, automatically construct a new value from Key, insert it,
    261   /// and return the newly inserted element.
    262   ValueT &operator[](const KeyT &Key) {
    263     return *insert(ValueT(Key)).first;
    264   }
    265 
    266   ValueT pop_back_val() {
    267     // Sparse does not need to be cleared, see find().
    268     return Dense.pop_back_val();
    269   }
    270 
    271   /// erase - Erases an existing element identified by a valid iterator.
    272   ///
    273   /// This invalidates all iterators, but erase() returns an iterator pointing
    274   /// to the next element.  This makes it possible to erase selected elements
    275   /// while iterating over the set:
    276   ///
    277   ///   for (SparseSet::iterator I = Set.begin(); I != Set.end();)
    278   ///     if (test(*I))
    279   ///       I = Set.erase(I);
    280   ///     else
    281   ///       ++I;
    282   ///
    283   /// Note that end() changes when elements are erased, unlike std::list.
    284   ///
    285   iterator erase(iterator I) {
    286     assert(unsigned(I - begin()) < size() && "Invalid iterator");
    287     if (I != end() - 1) {
    288       *I = Dense.back();
    289       unsigned BackIdx = ValIndexOf(Dense.back());
    290       assert(BackIdx < Universe && "Invalid key in set. Did object mutate?");
    291       Sparse[BackIdx] = I - begin();
    292     }
    293     // This depends on SmallVector::pop_back() not invalidating iterators.
    294     // std::vector::pop_back() doesn't give that guarantee.
    295     Dense.pop_back();
    296     return I;
    297   }
    298 
    299   /// erase - Erases an element identified by Key, if it exists.
    300   ///
    301   /// @param   Key The key identifying the element to erase.
    302   /// @returns True when an element was erased, false if no element was found.
    303   ///
    304   bool erase(const KeyT &Key) {
    305     iterator I = find(Key);
    306     if (I == end())
    307       return false;
    308     erase(I);
    309     return true;
    310   }
    311 
    312 };
    313 
    314 } // end namespace llvm
    315 
    316 #endif
    317