Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/TinyPtrVector.h - 'Normally tiny' vectors -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #ifndef LLVM_ADT_TINYPTRVECTOR_H
     11 #define LLVM_ADT_TINYPTRVECTOR_H
     12 
     13 #include "llvm/ADT/ArrayRef.h"
     14 #include "llvm/ADT/PointerUnion.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 
     17 namespace llvm {
     18 
     19 /// TinyPtrVector - This class is specialized for cases where there are
     20 /// normally 0 or 1 element in a vector, but is general enough to go beyond that
     21 /// when required.
     22 ///
     23 /// NOTE: This container doesn't allow you to store a null pointer into it.
     24 ///
     25 template <typename EltTy>
     26 class TinyPtrVector {
     27 public:
     28   typedef llvm::SmallVector<EltTy, 4> VecTy;
     29   typedef typename VecTy::value_type value_type;
     30   typedef llvm::PointerUnion<EltTy, VecTy *> PtrUnion;
     31 
     32 private:
     33   PtrUnion Val;
     34 
     35 public:
     36   TinyPtrVector() {}
     37   ~TinyPtrVector() {
     38     if (VecTy *V = Val.template dyn_cast<VecTy*>())
     39       delete V;
     40   }
     41 
     42   TinyPtrVector(const TinyPtrVector &RHS) : Val(RHS.Val) {
     43     if (VecTy *V = Val.template dyn_cast<VecTy*>())
     44       Val = new VecTy(*V);
     45   }
     46   TinyPtrVector &operator=(const TinyPtrVector &RHS) {
     47     if (this == &RHS)
     48       return *this;
     49     if (RHS.empty()) {
     50       this->clear();
     51       return *this;
     52     }
     53 
     54     // Try to squeeze into the single slot. If it won't fit, allocate a copied
     55     // vector.
     56     if (Val.template is<EltTy>()) {
     57       if (RHS.size() == 1)
     58         Val = RHS.front();
     59       else
     60         Val = new VecTy(*RHS.Val.template get<VecTy*>());
     61       return *this;
     62     }
     63 
     64     // If we have a full vector allocated, try to re-use it.
     65     if (RHS.Val.template is<EltTy>()) {
     66       Val.template get<VecTy*>()->clear();
     67       Val.template get<VecTy*>()->push_back(RHS.front());
     68     } else {
     69       *Val.template get<VecTy*>() = *RHS.Val.template get<VecTy*>();
     70     }
     71     return *this;
     72   }
     73 
     74   TinyPtrVector(TinyPtrVector &&RHS) : Val(RHS.Val) {
     75     RHS.Val = (EltTy)nullptr;
     76   }
     77   TinyPtrVector &operator=(TinyPtrVector &&RHS) {
     78     if (this == &RHS)
     79       return *this;
     80     if (RHS.empty()) {
     81       this->clear();
     82       return *this;
     83     }
     84 
     85     // If this vector has been allocated on the heap, re-use it if cheap. If it
     86     // would require more copying, just delete it and we'll steal the other
     87     // side.
     88     if (VecTy *V = Val.template dyn_cast<VecTy*>()) {
     89       if (RHS.Val.template is<EltTy>()) {
     90         V->clear();
     91         V->push_back(RHS.front());
     92         return *this;
     93       }
     94       delete V;
     95     }
     96 
     97     Val = RHS.Val;
     98     RHS.Val = (EltTy)nullptr;
     99     return *this;
    100   }
    101 
    102   /// Constructor from an ArrayRef.
    103   ///
    104   /// This also is a constructor for individual array elements due to the single
    105   /// element constructor for ArrayRef.
    106   explicit TinyPtrVector(ArrayRef<EltTy> Elts)
    107       : Val(Elts.empty()
    108                 ? PtrUnion()
    109                 : Elts.size() == 1
    110                       ? PtrUnion(Elts[0])
    111                       : PtrUnion(new VecTy(Elts.begin(), Elts.end()))) {}
    112 
    113   TinyPtrVector(size_t Count, EltTy Value)
    114       : Val(Count == 0 ? PtrUnion()
    115                        : Count == 1 ? PtrUnion(Value)
    116                                     : PtrUnion(new VecTy(Count, Value))) {}
    117 
    118   // implicit conversion operator to ArrayRef.
    119   operator ArrayRef<EltTy>() const {
    120     if (Val.isNull())
    121       return None;
    122     if (Val.template is<EltTy>())
    123       return *Val.getAddrOfPtr1();
    124     return *Val.template get<VecTy*>();
    125   }
    126 
    127   // implicit conversion operator to MutableArrayRef.
    128   operator MutableArrayRef<EltTy>() {
    129     if (Val.isNull())
    130       return None;
    131     if (Val.template is<EltTy>())
    132       return *Val.getAddrOfPtr1();
    133     return *Val.template get<VecTy*>();
    134   }
    135 
    136   // Implicit conversion to ArrayRef<U> if EltTy* implicitly converts to U*.
    137   template<typename U,
    138            typename std::enable_if<
    139                std::is_convertible<ArrayRef<EltTy>, ArrayRef<U>>::value,
    140                bool>::type = false>
    141   operator ArrayRef<U>() const {
    142     return operator ArrayRef<EltTy>();
    143   }
    144 
    145   bool empty() const {
    146     // This vector can be empty if it contains no element, or if it
    147     // contains a pointer to an empty vector.
    148     if (Val.isNull()) return true;
    149     if (VecTy *Vec = Val.template dyn_cast<VecTy*>())
    150       return Vec->empty();
    151     return false;
    152   }
    153 
    154   unsigned size() const {
    155     if (empty())
    156       return 0;
    157     if (Val.template is<EltTy>())
    158       return 1;
    159     return Val.template get<VecTy*>()->size();
    160   }
    161 
    162   typedef EltTy *iterator;
    163   typedef const EltTy *const_iterator;
    164   typedef std::reverse_iterator<iterator> reverse_iterator;
    165   typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
    166 
    167   iterator begin() {
    168     if (Val.template is<EltTy>())
    169       return Val.getAddrOfPtr1();
    170 
    171     return Val.template get<VecTy *>()->begin();
    172   }
    173   iterator end() {
    174     if (Val.template is<EltTy>())
    175       return begin() + (Val.isNull() ? 0 : 1);
    176 
    177     return Val.template get<VecTy *>()->end();
    178   }
    179 
    180   const_iterator begin() const {
    181     return (const_iterator)const_cast<TinyPtrVector*>(this)->begin();
    182   }
    183 
    184   const_iterator end() const {
    185     return (const_iterator)const_cast<TinyPtrVector*>(this)->end();
    186   }
    187 
    188   reverse_iterator rbegin() { return reverse_iterator(end()); }
    189   reverse_iterator rend() { return reverse_iterator(begin()); }
    190   const_reverse_iterator rbegin() const {
    191     return const_reverse_iterator(end());
    192   }
    193   const_reverse_iterator rend() const {
    194     return const_reverse_iterator(begin());
    195   }
    196 
    197   EltTy operator[](unsigned i) const {
    198     assert(!Val.isNull() && "can't index into an empty vector");
    199     if (EltTy V = Val.template dyn_cast<EltTy>()) {
    200       assert(i == 0 && "tinyvector index out of range");
    201       return V;
    202     }
    203 
    204     assert(i < Val.template get<VecTy*>()->size() &&
    205            "tinyvector index out of range");
    206     return (*Val.template get<VecTy*>())[i];
    207   }
    208 
    209   EltTy front() const {
    210     assert(!empty() && "vector empty");
    211     if (EltTy V = Val.template dyn_cast<EltTy>())
    212       return V;
    213     return Val.template get<VecTy*>()->front();
    214   }
    215 
    216   EltTy back() const {
    217     assert(!empty() && "vector empty");
    218     if (EltTy V = Val.template dyn_cast<EltTy>())
    219       return V;
    220     return Val.template get<VecTy*>()->back();
    221   }
    222 
    223   void push_back(EltTy NewVal) {
    224     assert(NewVal && "Can't add a null value");
    225 
    226     // If we have nothing, add something.
    227     if (Val.isNull()) {
    228       Val = NewVal;
    229       return;
    230     }
    231 
    232     // If we have a single value, convert to a vector.
    233     if (EltTy V = Val.template dyn_cast<EltTy>()) {
    234       Val = new VecTy();
    235       Val.template get<VecTy*>()->push_back(V);
    236     }
    237 
    238     // Add the new value, we know we have a vector.
    239     Val.template get<VecTy*>()->push_back(NewVal);
    240   }
    241 
    242   void pop_back() {
    243     // If we have a single value, convert to empty.
    244     if (Val.template is<EltTy>())
    245       Val = (EltTy)nullptr;
    246     else if (VecTy *Vec = Val.template get<VecTy*>())
    247       Vec->pop_back();
    248   }
    249 
    250   void clear() {
    251     // If we have a single value, convert to empty.
    252     if (Val.template is<EltTy>()) {
    253       Val = (EltTy)nullptr;
    254     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
    255       // If we have a vector form, just clear it.
    256       Vec->clear();
    257     }
    258     // Otherwise, we're already empty.
    259   }
    260 
    261   iterator erase(iterator I) {
    262     assert(I >= begin() && "Iterator to erase is out of bounds.");
    263     assert(I < end() && "Erasing at past-the-end iterator.");
    264 
    265     // If we have a single value, convert to empty.
    266     if (Val.template is<EltTy>()) {
    267       if (I == begin())
    268         Val = (EltTy)nullptr;
    269     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
    270       // multiple items in a vector; just do the erase, there is no
    271       // benefit to collapsing back to a pointer
    272       return Vec->erase(I);
    273     }
    274     return end();
    275   }
    276 
    277   iterator erase(iterator S, iterator E) {
    278     assert(S >= begin() && "Range to erase is out of bounds.");
    279     assert(S <= E && "Trying to erase invalid range.");
    280     assert(E <= end() && "Trying to erase past the end.");
    281 
    282     if (Val.template is<EltTy>()) {
    283       if (S == begin() && S != E)
    284         Val = (EltTy)nullptr;
    285     } else if (VecTy *Vec = Val.template dyn_cast<VecTy*>()) {
    286       return Vec->erase(S, E);
    287     }
    288     return end();
    289   }
    290 
    291   iterator insert(iterator I, const EltTy &Elt) {
    292     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    293     assert(I <= this->end() && "Inserting past the end of the vector.");
    294     if (I == end()) {
    295       push_back(Elt);
    296       return std::prev(end());
    297     }
    298     assert(!Val.isNull() && "Null value with non-end insert iterator.");
    299     if (EltTy V = Val.template dyn_cast<EltTy>()) {
    300       assert(I == begin());
    301       Val = Elt;
    302       push_back(V);
    303       return begin();
    304     }
    305 
    306     return Val.template get<VecTy*>()->insert(I, Elt);
    307   }
    308 
    309   template<typename ItTy>
    310   iterator insert(iterator I, ItTy From, ItTy To) {
    311     assert(I >= this->begin() && "Insertion iterator is out of bounds.");
    312     assert(I <= this->end() && "Inserting past the end of the vector.");
    313     if (From == To)
    314       return I;
    315 
    316     // If we have a single value, convert to a vector.
    317     ptrdiff_t Offset = I - begin();
    318     if (Val.isNull()) {
    319       if (std::next(From) == To) {
    320         Val = *From;
    321         return begin();
    322       }
    323 
    324       Val = new VecTy();
    325     } else if (EltTy V = Val.template dyn_cast<EltTy>()) {
    326       Val = new VecTy();
    327       Val.template get<VecTy*>()->push_back(V);
    328     }
    329     return Val.template get<VecTy*>()->insert(begin() + Offset, From, To);
    330   }
    331 };
    332 } // end namespace llvm
    333 
    334 #endif
    335