Home | History | Annotate | Download | only in IR
      1 //===- CFG.h - Process LLVM structures as graphs ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines specializations of GraphTraits that allow Function and
     11 // BasicBlock graphs to be treated as proper graphs for generic algorithms.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_IR_CFG_H
     16 #define LLVM_IR_CFG_H
     17 
     18 #include "llvm/ADT/GraphTraits.h"
     19 #include "llvm/ADT/iterator_range.h"
     20 #include "llvm/IR/Function.h"
     21 #include "llvm/IR/InstrTypes.h"
     22 
     23 namespace llvm {
     24 
     25 //===----------------------------------------------------------------------===//
     26 // BasicBlock pred_iterator definition
     27 //===----------------------------------------------------------------------===//
     28 
     29 template <class Ptr, class USE_iterator> // Predecessor Iterator
     30 class PredIterator : public std::iterator<std::forward_iterator_tag,
     31                                           Ptr, ptrdiff_t, Ptr*, Ptr*> {
     32   typedef std::iterator<std::forward_iterator_tag, Ptr, ptrdiff_t, Ptr*,
     33                                                                     Ptr*> super;
     34   typedef PredIterator<Ptr, USE_iterator> Self;
     35   USE_iterator It;
     36 
     37   inline void advancePastNonTerminators() {
     38     // Loop to ignore non-terminator uses (for example BlockAddresses).
     39     while (!It.atEnd() && !isa<TerminatorInst>(*It))
     40       ++It;
     41   }
     42 
     43 public:
     44   typedef typename super::pointer pointer;
     45   typedef typename super::reference reference;
     46 
     47   PredIterator() {}
     48   explicit inline PredIterator(Ptr *bb) : It(bb->user_begin()) {
     49     advancePastNonTerminators();
     50   }
     51   inline PredIterator(Ptr *bb, bool) : It(bb->user_end()) {}
     52 
     53   inline bool operator==(const Self& x) const { return It == x.It; }
     54   inline bool operator!=(const Self& x) const { return !operator==(x); }
     55 
     56   inline reference operator*() const {
     57     assert(!It.atEnd() && "pred_iterator out of range!");
     58     return cast<TerminatorInst>(*It)->getParent();
     59   }
     60   inline pointer *operator->() const { return &operator*(); }
     61 
     62   inline Self& operator++() {   // Preincrement
     63     assert(!It.atEnd() && "pred_iterator out of range!");
     64     ++It; advancePastNonTerminators();
     65     return *this;
     66   }
     67 
     68   inline Self operator++(int) { // Postincrement
     69     Self tmp = *this; ++*this; return tmp;
     70   }
     71 
     72   /// getOperandNo - Return the operand number in the predecessor's
     73   /// terminator of the successor.
     74   unsigned getOperandNo() const {
     75     return It.getOperandNo();
     76   }
     77 
     78   /// getUse - Return the operand Use in the predecessor's terminator
     79   /// of the successor.
     80   Use &getUse() const {
     81     return It.getUse();
     82   }
     83 };
     84 
     85 typedef PredIterator<BasicBlock, Value::user_iterator> pred_iterator;
     86 typedef PredIterator<const BasicBlock,
     87                      Value::const_user_iterator> const_pred_iterator;
     88 typedef llvm::iterator_range<pred_iterator> pred_range;
     89 typedef llvm::iterator_range<const_pred_iterator> pred_const_range;
     90 
     91 inline pred_iterator pred_begin(BasicBlock *BB) { return pred_iterator(BB); }
     92 inline const_pred_iterator pred_begin(const BasicBlock *BB) {
     93   return const_pred_iterator(BB);
     94 }
     95 inline pred_iterator pred_end(BasicBlock *BB) { return pred_iterator(BB, true);}
     96 inline const_pred_iterator pred_end(const BasicBlock *BB) {
     97   return const_pred_iterator(BB, true);
     98 }
     99 inline bool pred_empty(const BasicBlock *BB) {
    100   return pred_begin(BB) == pred_end(BB);
    101 }
    102 inline pred_range predecessors(BasicBlock *BB) {
    103   return pred_range(pred_begin(BB), pred_end(BB));
    104 }
    105 inline pred_const_range predecessors(const BasicBlock *BB) {
    106   return pred_const_range(pred_begin(BB), pred_end(BB));
    107 }
    108 
    109 //===----------------------------------------------------------------------===//
    110 // BasicBlock succ_iterator helpers
    111 //===----------------------------------------------------------------------===//
    112 
    113 typedef TerminatorInst::SuccIterator<TerminatorInst *, BasicBlock>
    114     succ_iterator;
    115 typedef TerminatorInst::SuccIterator<const TerminatorInst *, const BasicBlock>
    116     succ_const_iterator;
    117 typedef llvm::iterator_range<succ_iterator> succ_range;
    118 typedef llvm::iterator_range<succ_const_iterator> succ_const_range;
    119 
    120 inline succ_iterator succ_begin(BasicBlock *BB) {
    121   return succ_iterator(BB->getTerminator());
    122 }
    123 inline succ_const_iterator succ_begin(const BasicBlock *BB) {
    124   return succ_const_iterator(BB->getTerminator());
    125 }
    126 inline succ_iterator succ_end(BasicBlock *BB) {
    127   return succ_iterator(BB->getTerminator(), true);
    128 }
    129 inline succ_const_iterator succ_end(const BasicBlock *BB) {
    130   return succ_const_iterator(BB->getTerminator(), true);
    131 }
    132 inline bool succ_empty(const BasicBlock *BB) {
    133   return succ_begin(BB) == succ_end(BB);
    134 }
    135 inline succ_range successors(BasicBlock *BB) {
    136   return succ_range(succ_begin(BB), succ_end(BB));
    137 }
    138 inline succ_const_range successors(const BasicBlock *BB) {
    139   return succ_const_range(succ_begin(BB), succ_end(BB));
    140 }
    141 
    142 template <typename T, typename U>
    143 struct isPodLike<TerminatorInst::SuccIterator<T, U>> {
    144   static const bool value = isPodLike<T>::value;
    145 };
    146 
    147 
    148 
    149 //===--------------------------------------------------------------------===//
    150 // GraphTraits specializations for basic block graphs (CFGs)
    151 //===--------------------------------------------------------------------===//
    152 
    153 // Provide specializations of GraphTraits to be able to treat a function as a
    154 // graph of basic blocks...
    155 
    156 template <> struct GraphTraits<BasicBlock*> {
    157   typedef BasicBlock NodeType;
    158   typedef succ_iterator ChildIteratorType;
    159 
    160   static NodeType *getEntryNode(BasicBlock *BB) { return BB; }
    161   static inline ChildIteratorType child_begin(NodeType *N) {
    162     return succ_begin(N);
    163   }
    164   static inline ChildIteratorType child_end(NodeType *N) {
    165     return succ_end(N);
    166   }
    167 };
    168 
    169 template <> struct GraphTraits<const BasicBlock*> {
    170   typedef const BasicBlock NodeType;
    171   typedef succ_const_iterator ChildIteratorType;
    172 
    173   static NodeType *getEntryNode(const BasicBlock *BB) { return BB; }
    174 
    175   static inline ChildIteratorType child_begin(NodeType *N) {
    176     return succ_begin(N);
    177   }
    178   static inline ChildIteratorType child_end(NodeType *N) {
    179     return succ_end(N);
    180   }
    181 };
    182 
    183 // Provide specializations of GraphTraits to be able to treat a function as a
    184 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    185 // a function is considered to be when traversing the predecessor edges of a BB
    186 // instead of the successor edges.
    187 //
    188 template <> struct GraphTraits<Inverse<BasicBlock*> > {
    189   typedef BasicBlock NodeType;
    190   typedef pred_iterator ChildIteratorType;
    191   static NodeType *getEntryNode(Inverse<BasicBlock *> G) { return G.Graph; }
    192   static inline ChildIteratorType child_begin(NodeType *N) {
    193     return pred_begin(N);
    194   }
    195   static inline ChildIteratorType child_end(NodeType *N) {
    196     return pred_end(N);
    197   }
    198 };
    199 
    200 template <> struct GraphTraits<Inverse<const BasicBlock*> > {
    201   typedef const BasicBlock NodeType;
    202   typedef const_pred_iterator ChildIteratorType;
    203   static NodeType *getEntryNode(Inverse<const BasicBlock*> G) {
    204     return G.Graph;
    205   }
    206   static inline ChildIteratorType child_begin(NodeType *N) {
    207     return pred_begin(N);
    208   }
    209   static inline ChildIteratorType child_end(NodeType *N) {
    210     return pred_end(N);
    211   }
    212 };
    213 
    214 
    215 
    216 //===--------------------------------------------------------------------===//
    217 // GraphTraits specializations for function basic block graphs (CFGs)
    218 //===--------------------------------------------------------------------===//
    219 
    220 // Provide specializations of GraphTraits to be able to treat a function as a
    221 // graph of basic blocks... these are the same as the basic block iterators,
    222 // except that the root node is implicitly the first node of the function.
    223 //
    224 template <> struct GraphTraits<Function*> : public GraphTraits<BasicBlock*> {
    225   static NodeType *getEntryNode(Function *F) { return &F->getEntryBlock(); }
    226 
    227   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    228   typedef Function::iterator nodes_iterator;
    229   static nodes_iterator nodes_begin(Function *F) { return F->begin(); }
    230   static nodes_iterator nodes_end  (Function *F) { return F->end(); }
    231   static size_t         size       (Function *F) { return F->size(); }
    232 };
    233 template <> struct GraphTraits<const Function*> :
    234   public GraphTraits<const BasicBlock*> {
    235   static NodeType *getEntryNode(const Function *F) {return &F->getEntryBlock();}
    236 
    237   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
    238   typedef Function::const_iterator nodes_iterator;
    239   static nodes_iterator nodes_begin(const Function *F) { return F->begin(); }
    240   static nodes_iterator nodes_end  (const Function *F) { return F->end(); }
    241   static size_t         size       (const Function *F) { return F->size(); }
    242 };
    243 
    244 
    245 // Provide specializations of GraphTraits to be able to treat a function as a
    246 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
    247 // a function is considered to be when traversing the predecessor edges of a BB
    248 // instead of the successor edges.
    249 //
    250 template <> struct GraphTraits<Inverse<Function*> > :
    251   public GraphTraits<Inverse<BasicBlock*> > {
    252   static NodeType *getEntryNode(Inverse<Function*> G) {
    253     return &G.Graph->getEntryBlock();
    254   }
    255 };
    256 template <> struct GraphTraits<Inverse<const Function*> > :
    257   public GraphTraits<Inverse<const BasicBlock*> > {
    258   static NodeType *getEntryNode(Inverse<const Function *> G) {
    259     return &G.Graph->getEntryBlock();
    260   }
    261 };
    262 
    263 } // End llvm namespace
    264 
    265 #endif
    266