Home | History | Annotate | Download | only in IR
      1 //===- ConstantRange.h - Represent a range ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Represent a range of possible values that may occur when the program is run
     11 // for an integral value.  This keeps track of a lower and upper bound for the
     12 // constant, which MAY wrap around the end of the numeric range.  To do this, it
     13 // keeps track of a [lower, upper) bound, which specifies an interval just like
     14 // STL iterators.  When used with boolean values, the following are important
     15 // ranges: :
     16 //
     17 //  [F, F) = {}     = Empty set
     18 //  [T, F) = {T}
     19 //  [F, T) = {F}
     20 //  [T, T) = {F, T} = Full set
     21 //
     22 // The other integral ranges use min/max values for special range values. For
     23 // example, for 8-bit types, it uses:
     24 // [0, 0)     = {}       = Empty set
     25 // [255, 255) = {0..255} = Full Set
     26 //
     27 // Note that ConstantRange can be used to represent either signed or
     28 // unsigned ranges.
     29 //
     30 //===----------------------------------------------------------------------===//
     31 
     32 #ifndef LLVM_IR_CONSTANTRANGE_H
     33 #define LLVM_IR_CONSTANTRANGE_H
     34 
     35 #include "llvm/ADT/APInt.h"
     36 #include "llvm/IR/InstrTypes.h"
     37 #include "llvm/Support/DataTypes.h"
     38 
     39 namespace llvm {
     40 
     41 /// This class represents a range of values.
     42 ///
     43 class ConstantRange {
     44   APInt Lower, Upper;
     45 
     46   // If we have move semantics, pass APInts by value and move them into place.
     47   typedef APInt APIntMoveTy;
     48 
     49 public:
     50   /// Initialize a full (the default) or empty set for the specified bit width.
     51   ///
     52   explicit ConstantRange(uint32_t BitWidth, bool isFullSet = true);
     53 
     54   /// Initialize a range to hold the single specified value.
     55   ///
     56   ConstantRange(APIntMoveTy Value);
     57 
     58   /// @brief Initialize a range of values explicitly. This will assert out if
     59   /// Lower==Upper and Lower != Min or Max value for its type. It will also
     60   /// assert out if the two APInt's are not the same bit width.
     61   ConstantRange(APIntMoveTy Lower, APIntMoveTy Upper);
     62 
     63   /// Produce the smallest range such that all values that may satisfy the given
     64   /// predicate with any value contained within Other is contained in the
     65   /// returned range.  Formally, this returns a superset of
     66   /// 'union over all y in Other . { x : icmp op x y is true }'.  If the exact
     67   /// answer is not representable as a ConstantRange, the return value will be a
     68   /// proper superset of the above.
     69   ///
     70   /// Example: Pred = ult and Other = i8 [2, 5) returns Result = [0, 4)
     71   static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred,
     72                                              const ConstantRange &Other);
     73 
     74   /// Produce the largest range such that all values in the returned range
     75   /// satisfy the given predicate with all values contained within Other.
     76   /// Formally, this returns a subset of
     77   /// 'intersection over all y in Other . { x : icmp op x y is true }'.  If the
     78   /// exact answer is not representable as a ConstantRange, the return value
     79   /// will be a proper subset of the above.
     80   ///
     81   /// Example: Pred = ult and Other = i8 [2, 5) returns [0, 2)
     82   static ConstantRange makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
     83                                                 const ConstantRange &Other);
     84 
     85   /// Produce the exact range such that all values in the returned range satisfy
     86   /// the given predicate with any value contained within Other. Formally, this
     87   /// returns the exact answer when the superset of 'union over all y in Other
     88   /// is exactly same as the subset of intersection over all y in Other.
     89   /// { x : icmp op x y is true}'.
     90   ///
     91   /// Example: Pred = ult and Other = i8 3 returns [0, 3)
     92   static ConstantRange makeExactICmpRegion(CmpInst::Predicate Pred,
     93                                            const APInt &Other);
     94 
     95   /// Return the largest range containing all X such that "X BinOpC Y" is
     96   /// guaranteed not to wrap (overflow) for all Y in Other.
     97   ///
     98   /// NB! The returned set does *not* contain **all** possible values of X for
     99   /// which "X BinOpC Y" does not wrap -- some viable values of X may be
    100   /// missing, so you cannot use this to contrain X's range.  E.g. in the last
    101   /// example, "(-2) + 1" is both nsw and nuw (so the "X" could be -2), but (-2)
    102   /// is not in the set returned.
    103   ///
    104   /// Examples:
    105   ///  typedef OverflowingBinaryOperator OBO;
    106   ///  #define MGNR makeGuaranteedNoWrapRegion
    107   ///  MGNR(Add, [i8 1, 2), OBO::NoSignedWrap) == [-128, 127)
    108   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap) == [0, -1)
    109   ///  MGNR(Add, [i8 0, 1), OBO::NoUnsignedWrap) == Full Set
    110   ///  MGNR(Add, [i8 1, 2), OBO::NoUnsignedWrap | OBO::NoSignedWrap)
    111   ///    == [0,INT_MAX)
    112   ///  MGNR(Add, [i8 -1, 6), OBO::NoSignedWrap) == [INT_MIN+1, INT_MAX-4)
    113   static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
    114                                                   const ConstantRange &Other,
    115                                                   unsigned NoWrapKind);
    116 
    117   /// Set up \p Pred and \p RHS such that
    118   /// ConstantRange::makeExactICmpRegion(Pred, RHS) == *this.  Return true if
    119   /// successful.
    120   bool getEquivalentICmp(CmpInst::Predicate &Pred, APInt &RHS) const;
    121 
    122   /// Return the lower value for this range.
    123   ///
    124   const APInt &getLower() const { return Lower; }
    125 
    126   /// Return the upper value for this range.
    127   ///
    128   const APInt &getUpper() const { return Upper; }
    129 
    130   /// Get the bit width of this ConstantRange.
    131   ///
    132   uint32_t getBitWidth() const { return Lower.getBitWidth(); }
    133 
    134   /// Return true if this set contains all of the elements possible
    135   /// for this data-type.
    136   ///
    137   bool isFullSet() const;
    138 
    139   /// Return true if this set contains no members.
    140   ///
    141   bool isEmptySet() const;
    142 
    143   /// Return true if this set wraps around the top of the range.
    144   /// For example: [100, 8).
    145   ///
    146   bool isWrappedSet() const;
    147 
    148   /// Return true if this set wraps around the INT_MIN of
    149   /// its bitwidth. For example: i8 [120, 140).
    150   ///
    151   bool isSignWrappedSet() const;
    152 
    153   /// Return true if the specified value is in the set.
    154   ///
    155   bool contains(const APInt &Val) const;
    156 
    157   /// Return true if the other range is a subset of this one.
    158   ///
    159   bool contains(const ConstantRange &CR) const;
    160 
    161   /// If this set contains a single element, return it, otherwise return null.
    162   ///
    163   const APInt *getSingleElement() const {
    164     if (Upper == Lower + 1)
    165       return &Lower;
    166     return nullptr;
    167   }
    168 
    169   /// Return true if this set contains exactly one member.
    170   ///
    171   bool isSingleElement() const { return getSingleElement() != nullptr; }
    172 
    173   /// Return the number of elements in this set.
    174   ///
    175   APInt getSetSize() const;
    176 
    177   /// Return the largest unsigned value contained in the ConstantRange.
    178   ///
    179   APInt getUnsignedMax() const;
    180 
    181   /// Return the smallest unsigned value contained in the ConstantRange.
    182   ///
    183   APInt getUnsignedMin() const;
    184 
    185   /// Return the largest signed value contained in the ConstantRange.
    186   ///
    187   APInt getSignedMax() const;
    188 
    189   /// Return the smallest signed value contained in the ConstantRange.
    190   ///
    191   APInt getSignedMin() const;
    192 
    193   /// Return true if this range is equal to another range.
    194   ///
    195   bool operator==(const ConstantRange &CR) const {
    196     return Lower == CR.Lower && Upper == CR.Upper;
    197   }
    198   bool operator!=(const ConstantRange &CR) const {
    199     return !operator==(CR);
    200   }
    201 
    202   /// Subtract the specified constant from the endpoints of this constant range.
    203   ConstantRange subtract(const APInt &CI) const;
    204 
    205   /// \brief Subtract the specified range from this range (aka relative
    206   /// complement of the sets).
    207   ConstantRange difference(const ConstantRange &CR) const;
    208 
    209   /// Return the range that results from the intersection of
    210   /// this range with another range.  The resultant range is guaranteed to
    211   /// include all elements contained in both input ranges, and to have the
    212   /// smallest possible set size that does so.  Because there may be two
    213   /// intersections with the same set size, A.intersectWith(B) might not
    214   /// be equal to B.intersectWith(A).
    215   ///
    216   ConstantRange intersectWith(const ConstantRange &CR) const;
    217 
    218   /// Return the range that results from the union of this range
    219   /// with another range.  The resultant range is guaranteed to include the
    220   /// elements of both sets, but may contain more.  For example, [3, 9) union
    221   /// [12,15) is [3, 15), which includes 9, 10, and 11, which were not included
    222   /// in either set before.
    223   ///
    224   ConstantRange unionWith(const ConstantRange &CR) const;
    225 
    226   /// Return a new range in the specified integer type, which must
    227   /// be strictly larger than the current type.  The returned range will
    228   /// correspond to the possible range of values if the source range had been
    229   /// zero extended to BitWidth.
    230   ConstantRange zeroExtend(uint32_t BitWidth) const;
    231 
    232   /// Return a new range in the specified integer type, which must
    233   /// be strictly larger than the current type.  The returned range will
    234   /// correspond to the possible range of values if the source range had been
    235   /// sign extended to BitWidth.
    236   ConstantRange signExtend(uint32_t BitWidth) const;
    237 
    238   /// Return a new range in the specified integer type, which must be
    239   /// strictly smaller than the current type.  The returned range will
    240   /// correspond to the possible range of values if the source range had been
    241   /// truncated to the specified type.
    242   ConstantRange truncate(uint32_t BitWidth) const;
    243 
    244   /// Make this range have the bit width given by \p BitWidth. The
    245   /// value is zero extended, truncated, or left alone to make it that width.
    246   ConstantRange zextOrTrunc(uint32_t BitWidth) const;
    247 
    248   /// Make this range have the bit width given by \p BitWidth. The
    249   /// value is sign extended, truncated, or left alone to make it that width.
    250   ConstantRange sextOrTrunc(uint32_t BitWidth) const;
    251 
    252   /// Return a new range representing the possible values resulting
    253   /// from an addition of a value in this range and a value in \p Other.
    254   ConstantRange add(const ConstantRange &Other) const;
    255 
    256   /// Return a new range representing the possible values resulting
    257   /// from a subtraction of a value in this range and a value in \p Other.
    258   ConstantRange sub(const ConstantRange &Other) const;
    259 
    260   /// Return a new range representing the possible values resulting
    261   /// from a multiplication of a value in this range and a value in \p Other,
    262   /// treating both this and \p Other as unsigned ranges.
    263   ConstantRange multiply(const ConstantRange &Other) const;
    264 
    265   /// Return a new range representing the possible values resulting
    266   /// from a signed maximum of a value in this range and a value in \p Other.
    267   ConstantRange smax(const ConstantRange &Other) const;
    268 
    269   /// Return a new range representing the possible values resulting
    270   /// from an unsigned maximum of a value in this range and a value in \p Other.
    271   ConstantRange umax(const ConstantRange &Other) const;
    272 
    273   /// Return a new range representing the possible values resulting
    274   /// from a signed minimum of a value in this range and a value in \p Other.
    275   ConstantRange smin(const ConstantRange &Other) const;
    276 
    277   /// Return a new range representing the possible values resulting
    278   /// from an unsigned minimum of a value in this range and a value in \p Other.
    279   ConstantRange umin(const ConstantRange &Other) const;
    280 
    281   /// Return a new range representing the possible values resulting
    282   /// from an unsigned division of a value in this range and a value in
    283   /// \p Other.
    284   ConstantRange udiv(const ConstantRange &Other) const;
    285 
    286   /// Return a new range representing the possible values resulting
    287   /// from a binary-and of a value in this range by a value in \p Other.
    288   ConstantRange binaryAnd(const ConstantRange &Other) const;
    289 
    290   /// Return a new range representing the possible values resulting
    291   /// from a binary-or of a value in this range by a value in \p Other.
    292   ConstantRange binaryOr(const ConstantRange &Other) const;
    293 
    294   /// Return a new range representing the possible values resulting
    295   /// from a left shift of a value in this range by a value in \p Other.
    296   /// TODO: This isn't fully implemented yet.
    297   ConstantRange shl(const ConstantRange &Other) const;
    298 
    299   /// Return a new range representing the possible values resulting from a
    300   /// logical right shift of a value in this range and a value in \p Other.
    301   ConstantRange lshr(const ConstantRange &Other) const;
    302 
    303   /// Return a new range that is the logical not of the current set.
    304   ///
    305   ConstantRange inverse() const;
    306 
    307   /// Print out the bounds to a stream.
    308   ///
    309   void print(raw_ostream &OS) const;
    310 
    311   /// Allow printing from a debugger easily.
    312   ///
    313   void dump() const;
    314 };
    315 
    316 inline raw_ostream &operator<<(raw_ostream &OS, const ConstantRange &CR) {
    317   CR.print(OS);
    318   return OS;
    319 }
    320 
    321 } // End llvm namespace
    322 
    323 #endif
    324